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Understanding recovery from TBI is complex, involving multiple systems and

modalities. The current study applied modern data science tools to manage this

complexity and harmonize large-scale data to understand relationships between

gene expression and behavioral outcomes in a preclinical model of chronic TBI

(cTBI). Data collected by theMoody Project for Translational TBI Research included

ratswith no injury (naïve animalswith similar amounts of anesthetic exposure to TBI

and sham-injured animals), sham injury, or lateral fluid percussion TBI, followed by

recovery periods up to 12 months. Behavioral measures included locomotor

coordination (beam balance neuroscore) and memory and cognition

assessments (Morris water maze: MWM) at multiple timepoints. Gene arrays

were performed using hippocampal and cortical samples to probe

45,610 genes. To reduce the high dimensionality of molecular and behavioral

domains and uncover gene–behavior associations, we performed non-linear

principal components analyses (NL-PCA), which de-noised the data. Genomic

NL-PCA unveiled three interpretable eigengene components (PC2, PC3, and PC4).

Ingenuity pathway analysis (IPA) identified the PCs as an integrated stress response

(PC2; EIF2-mTOR, corticotropin signaling, etc.), inflammatory factor translation

(PC3; PI3K-p70S6K signaling), and neurite growth inhibition (PC4; Rho pathways).

Behavioral PCA revealed three principal components reflecting the contribution of

MWM overall speed and distance, neuroscore/beam walk, and MWM platform

measures. Integrating the genomic and behavioral domains, we then performed a

‘meta-PCA’ on individual PC scores for each rat from genomic and behavioral

PCAs. This meta-PCA uncovered three unique multimodal PCs, characterized by

robust associations between inflammatory/stress response and neuroscore/beam

walk performance (meta-PC1), stress response and MWM performance (meta-

PC2), and stress response and neuroscore/beam walk performance (meta-PC3).

Multivariate analysis of variance (MANOVA) on genomic–behavioral meta-PC
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scores tested separately on cortex and hippocampal samples revealed the main

effects of TBI and recovery time. These findings are a proof of concept for the

integration of disparate data domains for translational knowledge discovery,

harnessing the full syndromic space of TBI.

KEYWORDS

TBI, traumatic brain injury, data-driven learning, behavior analysis, multivariate
statistical analyses, genomic

Introduction

Traumatic brain injury (TBI) is complex and heterogenous in

nature and can produce long-lasting effects clinically that can be

replicated with preclinical models (Masel and DeWitt, 2010). To

date, there are no FDA-approved therapies specifically for the

treatment of TBI. This may be in part due to limitations in

preclinical study design and data analysis (DeWitt et al., 2018).

Multi-site groups are efficient at evaluating treatments for TBI

(CENTER-TBI and TRACK-TBI for clinical studies) and

preclinically through efforts such as The Moody Project for

Translational TBI Research (Moody Project) and Operation

Brain Trauma Therapy (OBTT (Kochanek et al., 2011; Yue

et al., 2013; Maas et al., 2015; DeWitt et al., 2018).

The neurotraumafield is facing a big data challenge, and the large

collaborative efforts have been at the forefront in designing protocols

for dealing with variable datasets (Huie et al., 2018; Hawkins et al.,

2020). The Moody Project has accumulated large amounts of highly

varied datasets including gene expression, proteomics, histology,

behavior, and surgical data over multiple timepoints and with

more than one brain region and injury status group.

Themain purpose of this effort is to create an example repository

of completed studies in preclinical TBI and develop syndromic

analytical workflows that 1) capture the complexity of the study

design and 2) render outcome testing through multidimensional

machine learning approaches to increase the effect size resolution

for hypothesis testing of treatment trials. Prior applications of these

methodologies to preclinical TBI and clinical TBI have demonstrated

the utility of multiscalar ‘omics (syndromics) for TBI and spinal cord

injury (SCI) (Ferguson et al., 2011; Haefeli et al., 2017; Nielson et al.,

2017). The current study aims to expand upon these efforts, capturing

the full spectrum of bio-behavioral and molecular changes that result

from TBI, and help resolve treatment approaches that reproduce

results across diverse endpoints, increasing potential for translation

into clinical trials in humans.

Materials and methods

Animals

This study was conducted in a facility approved by the

American Association for the Accreditation of Laboratory

Animal Care (AAALAC), and all experiments were performed

in accordance with the National Institutes of Health Guide for

the Care and Use of Laboratory Animals (eighth edition,

National Research Council) and approved by the Institutional

Animal Care and Use Committee of the University of Texas

Medical Branch (UTMB). Adult, male, Sprague–Dawley rats

(Charles Rivers Laboratories, Inc., Wilmington, MA),

weighing 350–400 g, were group-housed (two rats of similar

injury status per cage) and had access to food and water ad

libitum in a vivarium with the following constant conditions:

light cycle (600–1800), temperature (21°C–23°C), and humidity

(40%–50%). Unless noted, all animals were provided with

enrichment materials, such as a cardboard tube, in their

home cage.

Fluid percussion injury

Animals were anesthetized with 4% isoflurane in an

anesthetic chamber, intubated, and mechanically ventilated

with 1.5–2.0% isoflurane in O2:room air (70:30) using a

volume ventilator (EDCO Scientific, Chapel Hill, NC). Rats

were prepared for parasagittal fluid-percussion TBI as

previously described (Sell et al., 2017). Briefly, animals were

placed in a stereotaxic head frame, and the scalp was sagittally

incised. A 4.0-mm-diameter hole was trephined 2.0 mm into the

skull to the right of the sagittal suture and midway between

lambda and bregma. Then, a modified 20-gauge Luer Lok syringe

hub (Becton-Dickinson, Franklin Lakes, NJ) was placed over the

exposed dura, bonded in place with cyanoacrylic adhesive, and

covered with dental acrylic. Animals with punctured dura were

excluded from the study. Isoflurane was temporarily

discontinued, and rats were connected to the fluid percussion

trauma device (Custom Design and Fabrication, Virginia

Commonwealth University, VA) using a long tube (high-

pressure tubing length 41 cm, volume 2 ml, Baxter #2C5643)

connected at one end to the FPI device and the other end fit

securely into the Luer Lok syringe hub of the rat still in the

stereotaxic head holder. They were subjected to fluid-percussion

TBI (266–320 mV oscilloscope (Tektronix TDS 1002 (60MHz, 2-

channel digital real-time) with Trauma Inducer Pressure

Transducer Amplifier) readings, 1.81–2.17 atm range

calculated, consistently held at 15.5 cm pendulum height, and

pressure pulse length set at 25 ms) immediately after the return of

a withdrawal reflex to paw pinch. Prior to FPI induction, the
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device and connected tubing were filled with sterile water and

checked that they were free of air bubbles. The device was

prepared for the injury by delivering approximately three test

pulses (confirmed by a smooth waveform on the oscilloscope)

while the Luer Lok syringe hub at the end of the tubing was in the

closed position. After TBI or sham injury, rats were disconnected

from the fluid percussion device, and righting reflex was assessed

until a normal righting reflex was observed three times (and the

time at the third righting was recorded). Rats were then placed on

2% isoflurane, while wound sites were infused with bupivicaine

and skin was closed with wound clips. The animals received

approximately 100 mg/kg acetaminophen suppository before

emerging from anesthesia. Isoflurane was discontinued, and

the rats were extubated and allowed to recover in a warm,

humidified incubator. When each rat was fully recovered, it

was returned to its home cage with ad libitum food and

water. All animals were monitored for signs of infection,

severe neurological injury, or discomfort. Signs of discomfort

or pain in rodents include persistent dormouse position and

unwillingness to move, refusal to eat or drink, vocalizations when

handled, posturing, aggressiveness, and polyphagia of bedding.

Rats exhibiting these symptoms are humanely euthanized

immediately (4% isoflurane in an anesthetic chamber followed

by decapitation) to prevent pain and distress.

Tissue collection

At the appropriate timepoint after FPI (24 h, 2 weeks, 3, 6 or

12 months post FPI), animals were anesthetized with 4%

isoflurane in an anesthetic chamber and decapitated. The

brain was quickly and carefully removed using bone rongeurs,

and the brain regions were dissected out and either flash-frozen

on dry ice (for proteins) or put into a microcentrifuge tube filled

with RNALater (for gene expression). The rest of the brain was

flash-frozen on dry ice and kept at −80 C.

Working-memory Morris water maze

We used a working-memory Morris water maze (MWM)

paradigm that showed learning and memory deficits persisting

up to a year following the FPI model used in this study (Sell et al.,

2017). On post-injury days 11–15, rats underwent MWM testing,

which is described in more detail in the study by Sell et al. (2017).

Briefly, the water maze consisted of a 1.8-m-diameter tank filled

with water to a height of 28 cm. This height is 2 cm higher than

the invisible platform, which is 10 cm in diameter and 26 cm in

height. Rats received four pairs of trials for five consecutive days.

Rats were assigned four starting points (N, S, E, or W) and four

platform locations (1, 2, 3, or 4) in a balanced order to avoid

starting points too close to the platforms. For Trial 1, rats were

placed in the tank facing the wall at the assigned location and

allowed 120 s to find the platform. For Trial 2, rats were

immediately placed back in the same starting position and

again allowed 120 s to find the platform. After Trial 2, the

rats rested for 4 min in a heated enclosure, followed by the

second pair of trials (using a new entry point and new platform

location) and repeated until four pairs of trials were completed.

All rats experienced the same sequence of start points and

platform locations, which were randomly selected at the

beginning of the experiment.

RNA isolation, quality, and quantity
evaluation

The quality and quantity of the total RNA sample were

assessed using an Agilent Bioanalyzer with the

RNA6000 Nano Lab Chip (Agilent Technologies; Santa

Clara, CA).

Gene expression microarrays

Labeled cRNA was prepared by linear amplification of the

Poly(A) + RNA population within the total RNA sample. Briefly,

total RNA was reverse-transcribed after priming with a DNA

oligonucleotide containing the T7 RNA polymerase promoter 5’

to a d(T)24 sequence. After second-strand cDNA synthesis and

purification of double-stranded cDNA, in vitro transcription was

performed using T7 RNA polymerase. The quantity and quality

of the cRNA were assayed by spectrophotometry and on the

Agilent Bioanalyzer as indicated for total RNA analysis. Purified

cRNA was fragmented to a uniform size and applied to Agilent

Rat Gene Expression Microarray 8 × 60 (Agilent Technologies,

design ID 028279 and 074036) in hybridization buffer. Arrays

were hybridized at 37°C for 18 h in a rotating incubator, washed,

and scanned using a G2565 Microarray Scanner (Agilent

Technologies). All arrays were performed by GenUs

BioSystems, Inc.

All arrays were processed using Agilent Feature Extraction

software, and data were analyzed using GeneSpring GX software

(Agilent Technologies) by GenUs BioSystems, Inc. To compare

individual expression values across arrays, raw intensity data

from each probe were normalized to the 75th percentile intensity

of its array. Probes with values greater than background intensity

in three or more replicates of at least one condition were filtered

for further analysis. After this quality filtering, differentially

expressed probes were identified with unadjusted Welch t-test

p-values < 0.05 and fold change >1.5 fold. This combination of

quality filtering, fold change filtering, and a moderate p-value is

in accordance with the US FDA-sponsored MAQC study

conclusion that there is better reproducibility when genes are

ranked on fold change with a non-stringent p-value cutoff (Shi

et al., 2006).
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Identification of eigengenes and
behavioral principal component analyses

A combined dataset for probe expression data from the

microarray analyses was used for all animal subjects across

two brain regions (cortex and hippocampus), three injury

conditions (naïve, sham, and TBI), and multiple timepoints

ranging from 24 h up to 1 year post injury/surgery (n = 4 per

group, N = 96 total). Data were initially curated based on

problematic genes whose expression results were outside the

acceptable range (flagged as “A” for absent) in either the

hippocampus, the cortex, or both regions. From the

45,598 probes in the original array, 23,480 probes were

excluded from the analysis based on the exclusion criteria,

leaving 22,118 probes remaining for the identification of

eigengenes that could be used for more robust hypothesis

testing on the three-way interaction between brain region,

injury condition, and timepoint.

Non-linear principal component analysis (NL-PCA) was

performed using SPSS v24. Due to the large size of this

dataset, where the analysis needed to be run across more than

20,000 variables, customized SPSS syntax was written to suppress

graphical outputs and generate data tables with the PC loadings

and percent variance accounted for. Each probe was categorized

as a numeric variable with multiplying discretization and listwise

deletion for any missing data. However, the dataset used was

complete, and therefore no deletion was necessary to account for

missing data. An initial NL-PCA was performed using

20 dimensions for factor determination, and the eigenvalues

were used to determine how many dimensions to force into

themodel (e.g., when the eigenvalues are greater than 1.0). A total

of 10 factors were assigned in the NL-PCA model. Once the

eigengenes were calculated, a scree plot of the eigenvalues/

variance accounted for was plotted for each PC, where factors

to include were determined based on the asymptote in the scree

plot (Supplementary Figure S1).

The identity of each new eigengene was determined by rank

sorting the PC loadings for each probe. Individual probes were

assigned only to an eigengene where their loading was the highest

across all PCs. Only probes with a loading greater than |0.5| were

included. Each list of probes that met the criteria for the highest

loading across all PCs and was greater than |0.5| was uploaded for

each eigengene individually into Ingenuity Pathways Analysis

(IPA, QIAGEN, version 01-12 (01-12)). Analyses were run using

the core analysis option, using the ingenuity knowledge base for

probe IDs, and PC loadings as the expression outcome to identify

the top canonical pathways and upstream regulators.

Second-order “meta-PCA” is a PCA that uses the PC scores

from the first round of analyses to further understand the

relationship between components. The meta-PCA is set up

and run like a normal PCA, with the only difference being

that instead of raw variables (such as gene expression or

behavioral tasks) as the input, it uses components that have

been identified in the previous set of PCAs, represented by PC

scores of those components. This allows for disparate,

multimodal data to be combined and patterns of variance

explained between these components to be explored. Principal

component analyses for behavioral data, as well as the second-

order PCA run on PC scores from genomic and behavioral PCAs,

were run using the syndRomics package in R (Torres-Espín et al.,

2021).

Hypothesis testing of PC scores

PC scores were created for each eigengene for each animal

with the probe dataset (N = 96 total, n = 4 per group). Due to

differences in timepoints of the samples collected from the cortex

(24 h, 2 weeks, 3 months, 6 months, and 1 year) and

hippocampus (2 weeks, 6 months, and 1 year), full analyses

across all timepoints for hypothesis testing was performed

separately for each brain region to test a two-way interaction

between these three independent variables. Hypothesis testing for

injury condition, timepoint, and brain region used two-way or

three-way analysis of variance, as appropriate. All statistical

testing on PC scores was performed in R.

Results

Principal component analysis: Genomics

Non-linear principal component analysis performed on

22,118 genes on 96 animals revealed four eigengenes

(principal components, Figure 1). These four eigengenes

accounted for 67% of the variance in the dataset. Using an

absolute loading threshold of 0.5, we found that the first

eigengene was comprised of ~11,354 high-loading genes, with

eigengenes 2, 3, and 4 represented by ~3,806, 1,278, and 1,000,

respectively. Ingenuity Pathway Analysis was then used to

determine the gene families and cell signaling pathways that

represented the ‘identity’ of each eigengene. This pathway

analysis unveiled three interpretable eigengene components

(PC2, PC3, and PC4) characterized by integrated stress

response (PC2; EIF2-mTOR, corticotropin signaling, etc.),

inflammatory factors (PC3; GM-CSF and PI3K-p70S6K

signaling), and neurite growth inhibition (PC4; Rho pathways).

We then used individual PC scores for each subject on PCs 2,

3, and 4 for hypothesis testing of differential eigengene

expression across timepoints, injury condition, and brain

region (Figure 2). For integrated stress response gene

expression component (PC2), three-way analysis of variance

revealed the main effects of timepoint after injury (F4,72 =

61.5, p < 0.001, partial η2 = 0.77) and brain region (F1,72 =

951.3, p < 0.001, partial η2 = 0.93). All two-way and three-way

interactions between injury condition, timepoint, and brain
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region were also significant (Fs > 2.65, p < 0.05, partial η2 > 0.13).

There was no overall main effect of injury condition (F2,72 =

2.12, p = 0.13, partial η2 = 0.06). These findings suggest an early

(24 h–2 weeks) increase in stress response gene expression in the

cortex in response to TBI that is resolved between 3 and

12 months post injury. Stress response gene expression is

greater in the hippocampus overall than in the cortex, and by

12 months this response is significantly decreased in TBI subjects

compared to sham and naïve subjects.

For the inflammatory principal component (PC3), three-way

analysis of variance revealed main effects of injury condition

(F2,72 = 10.2, p < 0.001, partial η2 = 0.06), timepoint after injury

(F4,72 = 33.0, p < 0.001), and brain region (F1,72 = 19.0, p <
0.001). All other two-way interactions were also significant (Fs >
6.36, p < 0.001). Inflammatory gene expression in the cortex was

high in TBI subjects in early timepoints (24 hr–2 weeks) but

resolved by 3 months. Compared to that of the cortex,

inflammatory gene expression in the hippocampus was

reduced, with TBI patients showing significantly lower

expression at 1 year than sham or naïve subjects.

For the neurite outgrowth inhibition principal component

(PC4), three-way analysis of variance revealed main effects of

injury condition (F2, 72 = 20.4, p < 0.001) and timepoint after

injury (F4, 72 = 26.5, p < 0.001), but no main effect of the brain

region (F1,72 = 3.6, p = 0.06). All two-way interactions were

significant (Fs > 3.4, p < 0.01). While neurite growth inhibition

generally increases over time in both brain regions and injury

conditions, TBI subjects tended to have lower expression than

sham and naïve subjects, and this expression significantly

decreased compared to that of sham and naïve subjects in

both brain regions at 6 months.

Principal component analysis: Behavior

A separate principal component analysis was then

performed on behavioral data (24 total behavioral

variables). As with the genomic PCA, loadings were

thresholded at the absolute value of 0.5 to determine those

variables that contributed the most to the variance explained

within each principal component and to aid in determining

the identity of each PC. This unveiled three interpretable

behavioral components characterized by broad Morris

water maze measures (PC1), neuroscore and beam walk

measures (PC2), and specific Morris water maze platform

entry/time measures (PC3). We identified three principal

components, accounting for 49.6%, 12%, and 10% of the

variance, respectively. PC1 uncovered a pattern of Morris

water maze variables loading together in the same

direction, indicating that the most variance is explained by

converging measures of working memory. PC2 consisted of

neuroscore/beam balance scores loading together, and

PC3 was a more specific subset of Morris water maze

measures of platform performance.

FIGURE 1
NL-PCAwas performed on 22, 119 gene expression probes to reduce the complexity into eigengenes for the discovery of clusters of genes that
covary together independently from one another. (A) First, four PCs accounted for a total of 67% of the variance in the dataset. Total probes with
significant loadings greater than |0.5| were plotted based on positive (red) or negative (blue) loadings across PC1–4 = 17,438 probes. (B–D)
Eigengenes were further analyzed using Ingenuity Pathway Analysis (IPA) to identify the gene families and cell signaling pathways that each
eigengene represents. (B) PC2was characterized by EIF2 andmTOR signaling, indicating an integrated stress response component. (C) PC3 included
GM-CSF and p70S6K, indicating an inflammatory component. (D) PC4 included Rho pathways, indicating neurite outgrowth inhibition. Error
bars = SEM.
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We then used individual PC scores for each subject to test

for differences in behavioral outcome across injury condition

and timepoint after injury (Figure 3). For the broad Morris

water maze component (behavioral PC1), higher PC scores

indicated worse outcome. Despite a robust increase in the

PC1 score for TBI subjects at 6 months, there was no overall

main effect of injury condition (F2, 106 = 2.0, p = 0.14, partial

η2 = 0.04), no main effect of timepoint (F2,106 = 0.72, p = 0.49,

partial η2 = 0.01), and no injury by the timepoint interaction

(F4,106 = 1.5, p = 0.22, partial η2 = 0.03). In the neuroscore/

beam balance component (behavioral PC2), higher PC scores

were also indicative of worse outcome, and two-way ANOVA

revealed main effects of injury condition (F2,106 = 34.1, p <
0.001, partial η2 = 0.38) and timepoint (F2,106 = 6.9, p < 0.01,

partial η2 = 0.10). At each timepoint, there was a significant

difference between each injury condition, illustrating a

persistent impairment for TBI subjects out to 12 months.

For the specific Morris water maze platform component

(behavioral PC3), higher values reflected less time in the

platform area and fewer entries into the platform area, and

thus higher PC3 scores indicated worse performance. Similar

to the broad Morris water maze measures in PC1, there was an

increase in PC3 scores for TBI subjects between 3 and

6 months that resolved by 12 months. In this case though,

naïve and sham subjects followed this pattern closely. Thus,

there was no main effect of injury condition (F2, 106 = 0.2, p >
0.05, partial η2 = 0.01), but there was a significant main effect

of timepoint (F2,106 = 4.1, p < 0.05, partial η2 = 0.07).

Second-order principal component
analysis: Integrating genomic and
behavior data

In the prior analyses, the high dimensionality of both

genomic and behavioral data was reduced to three PC scores

each per subject, representing latent constructs within the data.

Given that PC scores are centered and scaled (similar to a

z-score), this allows for the combination of these distinct

domains to reveal more complex patterns in the data. The

three genomic PC scores and three behavioral PC scores were

used to create a second-order principal component analysis or

“meta-PCA”. The meta-PCA revealed three new, interpretable

meta-PCs (meta-PC1, meta-PC3, and meta-PC4) that integrated

behavioral and genomic PC identities. As with previous PCAs,

loadings were thresholded at an absolute value of 0.5 to aid in

identifying underlying constructs. PC2 was excluded because

only the strong loading variables were both behavioral PCs and

thus did not provide new information about the interaction

between genomic and behavioral data. These three PCs

accounted for 32.7%, 16.5%, and 13.9% of the variance,

respectively (Figure 4).

Meta-PC1 reflected an increase in all three genomic

domains (stress response, inflammation, and neurite growth

inhibition), along with a decrease in the neuroscore/beam

walk impairment domain. This component suggests a possible

protective effect of stress/inflammation on behavioral

function. Three-way ANOVA of this meta-PC revealed

main effects of injury condition (F2,44 = 14.9, p < 0.001,

partial η2 = 0.40), timepoint (F2,44) = 36.2, p < 0.001, partial

η2 = 0.62), and brain region (F1,44 = 14.1, p < 0.001, partial

η2 = 0.24). There were also significant injury X timepoint and

injury X brain region interactions (Fs > 2.8, p < 0.05, partial

η2 > 0.19). There was a robust drop in this gene upregulation/

behavioral improvement axis in the hippocampus for sham

and TBI subjects compared to naïve subjects. For TBI subjects,

there was a decrease in this component between 6 and

12 months post-TBI in both the cortex and hippocampus.

Meta-PC3 was comprised of the genomic stress response and

neuroscore/beam walk impairment moving in the same

FIGURE 2
Effect of injury on genomic pathway components. Extraction
of eigengene expression profiles for each animal allowed for
targeted hypothesis testing for the three-way interaction between
brain region x injury condition x timepoint using PC scores
(n = 4 per group). (A) Integrated stress response. Early
(24 h–2 weeks) increase in stress response gene expression in the
cortex in response to TBI resolves between 3 and 12 months. (B)
Inflammation. Inflammatory gene expression in the cortex was
high in TBI subjects in early timepoints (24 h–2 weeks) but
resolved by 3 months. Compared to the cortex, inflammatory
gene expression in the hippocampus was reduced, with TBI
patients showing significantly lower expression at 1 year than
sham or naïve subjects. (C) Neurite outgrowth inhibition. TBI
subjects showed a significant decrease compared to sham and
naïve subjects in both brain regions at 6 months. Error bars = SEM.
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direction, suggesting that this component reflects a stress-

induced reduction in neuromotor function. Three-way

ANOVA of this meta-PC revealed main effects of injury

condition (F2,44 = 7.6, p < 0.01, partial η2 = 0.26), timepoint

(F2,44) = 7.3, p < 0.01, partial η2 = 0.25), and brain region

(F1,44 = 13.3, p < 0.001, partial η2 = 0.23). No interactions were

significant. Across all timepoints, and in both brain regions, there

was stratification by injury condition from naïve subjects with the

lowest values to TBI subjects with the highest values. Regardless

of timepoint or injury condition, there were higher values on this

component in the hippocampus than in the cortex.

The final meta-PC consisted of the genomic stress

response moving in the same direction as impairment in

the broad Morris water maze component, suggesting a

stress-induced reduction in working memory. Three-way

ANOVA of this meta-PC revealed only a main effect of the

brain region (F4,44 = 22.9, p < 0.001, partial η2 = 0.14). As seen

in the pattern of expression by the brain region in the prior

two meta-PCs, there were higher values on this component in

the hippocampus than in the cortex, regardless of injury

condition or timepoint.

Discussion

In this study, we used multivariate analytical tools to reduce

the high dimensionality of genomic and behavioral data and then

integrated these multimodal data to discover unique patterns of

impairment and recovery after TBI. Using PCA and pathway

analysis, we found three interpretable genomic components

characterized by integrated stress response, inflammatory

factors, and neurite growth inhibition. Similarly, there were

three behavioral components that arose, representing broad

impairment in Morris water maze, impairment in neuroscore/

beam balance, and more specific impairments related to Morris

water maze platform entries and time in the platform area. Then,

to explore how these components were interrelated, we ran a

second-order PCA using the genomic and behavioral PC scores.

This allowed us to further reduce the multimodal complexity to

components that identified latent bio-behavioral patterns which

we could compare across time after injury, injury condition, and

brain region.

The first “meta-PC” revealed a negative correlation between

the genomic components and neuroscore impairment,

FIGURE 3
PCA on behavioral outcome measures and testing effect of injury and time with PC scores. (A) PC1, Morris water maze impairment. Behavioral
measures that load highly (>|0.5|) reflect Morris water maze measures. Higher values indicate worse impairment. TBI induced a significant increase
over sham and naïve animals by 6 months post-TBI. (B) PC2, neuroscore/beam impairment. High-loading variables in PC2 reflect impairment in
neuroscore and beam measures. TBI significantly increased on this measure of impairment at 3, 6, and 12 months post-TBI. (C) PC3, Morris
water maze platform impairment. High-loading variables indicate specific impairment in platform measures. There was a significant effect of
timepoint, but no effect of injury, as all injury conditions followed a similar course over time. Error bars = SEM.
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suggesting that in subjects with greater neuroscore impairment,

there was an associated decrease in genes related to inflammatory

signaling, stress response, and neurite growth inhibition. This

finding is consistent with the notion that inflammation and/or

stress response can provide neuroprotection after CNS injury

(Corps et al., 2015; Russo and McGavern, 2016). One of the

signaling pathways that characterized the integrated stress

response identified in genomic PC2 was the androgen

signaling pathway. Androgen signaling is altered by TBI,

leading to mitochondrial impairment, and a recent work has

suggested that pharmacological activation of the androgen

signaling pathway after TBI may increase neuron survival

(Crespo-Castrillo et al., 2018) and decrease lesion volume

(Gölz et al., 2019). Similarly, one of the signaling pathways

that were found to be a significant contributor to genomic

inflammatory PC3 was granulocyte–macrophage colony-

stimulating factor (GM-CSF). Despite being a pro-

inflammatory cytokine, GM-CSF has been shown to induce

wound healing and reduced lesion volume after TBI (Shultz

et al., 2014), attenuated neurodegeneration in a model of

Parkinson’s disease (Kosloski et al., 2013), and has been

recently shown to improve spatial memory in a model of

Alzheimer’s disease (Potter et al., 2021). Thus, meta-PC1 may

reflect the neuroprotective roles of stress and inflammation

after TBI.

Meta-PCs 2 and 3 were characterized by increased

integrated stress response signaling positively correlating

with impairment in recovery of neuromotor and memory

after TBI. Genomic PC2 was characterized as being related

to integrated stress response, given the robust presence of the

EIF2 signaling pathway. TBI induces sustained

phosphorylation of EIF2, inhibiting protein synthesis and

undermining recovery of cognitive function (Hinnebusch

et al., 2016; Chou et al., 2017). Our finding that genomic

PC2 scores were much higher in the hippocampus is

consistent with prior findings showing a specific increase in

EIF2 phosphorylation in the hippocampus after TBI (Dash

et al., 2015; Hood et al., 2018). Interestingly, this increased

hippocampal-integrated stress response component was

correlated not only with memory impairment (meta-PC3),

as would be expected with hippocampal damage, but also with

impairment in neuromotor recovery (meta-PC2). These

findings indicate that targeting stress response signaling,

such as EIF2, may have a broad beneficial effect on

FIGURE 4
Second-order “meta-PCA” on genomic and behavioral PC scores. (A) meta-PC1, neuroscore/beam impairment loaded in the opposite
direction as genomic components, possibly reflecting a protective effect of stress and inflammatory response. This effect is prominent in naïve
animals at 6 months and 12 months, with TBI causing a robust decrease at 12 months. (B) meta-PC3, integrated stress response loading with
neuroscore/beam impairment, indicating a stress-associated behavioral deficit. Effect of TBI was seen at alternating timepoints and was more
pronounced in the hippocampus than in the cortex. (C) meta-PC4, integrated stress response loading with Morris water maze impairment. Higher
values across all injury conditions were seen in the hippocampus, suggesting a stress-mediated effect on memory function. Error bars = SEM.
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recovery after TBI, as other studies have previously shown

(Dash et al., 2015; Chou et al., 2017).

One goal of this study was to integrate separate datamodalities to

increase our sensitivity to possible effects of injury condition and

timepoint. We and other researchers have shown that when

analyzing a large number of outcome measures (as is often the

case in TBI research), there is a high risk of selection bias for reporting

only the handful of univariate measures that may be significant

(Haefeli et al., 2017). Instead, using multivariate tools such as PCA

allows us to model the variance between many outcomes together

and helps to ensure that the patterns, effects, and interactions that we

detect are robust and stable. By avoiding the possible pitfalls of

spurious univariate effects, we can also aim to generate results that are

more likely to be reproducible. Indeed, this workflow was able to

produce results that are consistent with prior work and thus lends

validity to this multivariate, multimodal approach. Future work that

integrates genomic, behavioral, and/or proteomic data in this way

may prove useful in identifying novel and previously undiscovered

patterns at the intersection of these bio-behavioral axes. PC scores

often being in opposite directions between the hippocampus and

cortex offers one such area of interest; further work will be necessary

to uncover the potential opposing roles for these brain regions when

viewing them through a multivariate lens, in which genomic

pathways and behavioral recovery over time after TBI are

considered in an integrated, multidimensional model.

Large-scale data efforts such as this one also necessitate that the

data be well-organized and accessible. To this end, we used the Open

Data Commons for Traumatic Brain Injury (ODC-TBI, https://odc-

tbi.org (Chou et al., 2021)) as a data repository and data management

tool. TheODC-TBI allowsmembers to host and organize their data in

a private online space, and then when data are used in a publication,

one can publish the dataset itself as a companion to the article. A

unique data object identifier (DOI) isminted for the dataset, so that as

others reuse the data in future work, the data can be cited and the

creators can get credit for their work. As the NIH has mandated that

by 2023 all datasets underlying NIH-funded work be made public,

tools such as the ODC-TBI will be crucial in implementing these new

policies. As such, the dataset from the current study will be made

public and can be found at https://odc-tbi.org.

Overall, this study demonstrates a practical analytical

workflow for integrating and interpreting multimodal data

and illustrates how these different forms of data can be

combined to produce new insights. While behavior and

genomic results were shown here, this large-scale effort from

the Moody Project Team also generated proteomics data. Future

studies may also be able to include these data to reveal further

multidimensional patterns of impairment and recovery after TBI.
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