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Clustering is an unsupervised learning technique widely used in the field of data mining and
analysis. Clustering encompasses many specific methods, among which the K-means
algorithm maintains the predominance of popularity with respect to its simplicity and
efficiency. However, its efficiency is significantly influenced by the initial solution and it is
susceptible to being stuck in a local optimum. To eliminate these deficiencies of K-means,
this paper proposes a quantum-inspired moth-flame optimizer with an enhanced local
search strategy (QLSMFO). Firstly, quantum double-chain encoding and quantum
revolving gates are introduced in the initial phase of the algorithm, which can enrich
the population diversity and efficiently improve the exploration ability. Second, an improved
local search strategy on the basis of the Shuffled Frog Leaping Algorithm (SFLA) is
implemented to boost the exploitation capability of the standard MFO. Finally, the poor
solutions are updated using Levy flight to obtain a faster convergence rate. Ten well-known
UCI benchmark test datasets dedicated to clustering are selected for testing the efficiency
of QLSMFO algorithms and compared with the K-means and ten currently popular swarm
intelligence algorithms. Meanwhile, the Wilcoxon rank-sum test and Friedman test are
utilized to evaluate the effect of QLSMFO. The simulation experimental results demonstrate
that QLSMFO significantly outperforms other algorithms with respect to precision,
convergence speed, and stability.

Keywords: K-means, cluster analysis, quantum-inspired moth-flame optimizer, local search mechanism, swarm
intelligence

1 INTRODUCTION

Clustering is the process of grouping objects into clusters according to the similarities within the data
objects (Jain et al., 1999). Cluster analysis (Jain, 2010) does not need to refer to any classification
information beforehand and can classify data by judging the similarity of data features. So, clustering
belongs to unsupervised learning in machine learning (Sinaga and Yang, 2020). It is widely used in
customer classification (Deng and Gao, 2020; Li et al., 2021a; Sun et al., 2021), automatic medical image
detection (Hassan et al., 2021), image retrieval (Karthikeyan andAruna, 2013; Gu et al., 2019; Anju and
Shreelekshmi, 2022), object recognition (Woźniak and Połap, 2018), data mining (Hosseini et al.,
2010), (Sato et al., 2019), pattern recognition (Xu et al., 2022), (Singh andGanie, 2021), and other fields.

There are four taxonomic methods applied to cluster analysis: partition-based, hierarchical, grid-
based, and density-based methods. K-means is a partition-based method that is widely welcomed
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owing to its simple calculation steps and easy implementation.
However, the clustering effect obtained by the K-means is easily
influenced by the preliminary location of the centroids and is
vulnerable to the risk of slipping into a local optimum as the
algorithm proceeds. There are two solutions to optimization
problems, one is deterministic and the other is non-
deterministic. Real-life engineering optimization problems
have the characteristics of complexity, large-scale, nonlinearity,
multiple constraints, and high dimensionality. However,
deterministic methods can often not effectively calculate the
correct results for such optimization problems. Therefore, it is
an urgent matter to find efficient ways to solve optimization
problems. Researchers have used non-deterministic algorithms,
also known as stochastic optimization algorithms, to achieve
excellent results in solving certain real-world complex
optimization problems over the last decades. Meta-heuristic
intelligent optimization algorithms fall under the category of
stochastic algorithms, and researchers have successively
proposed many intelligent optimization algorithms, which
have become a very popular and feasible solution in dealing
with complex problems. Classical metaheuristic algorithms that
have been widely used include differential evolution (DE) (Storn
and Price, 1997), grey wolf optimizer (GWO) (Mirjalili et al.,
2014), particle swarm optimization (PSO) (Kennedy and
Eberhart, 1995) and Monarch butterfly optimization (MBO)
(Wang et al., 2019), etc. Many researchers have made a variety
of meaningful improvements to promote the performance of the
algorithm, such as Wei et al. (2021) proposed an improved slime
mold algorithm with oscillating factor and Levy flight strategy for
optimal reactive power dispatch problem. Wang and Tan (2017)
proposed a method based on the information feedback model to
improve the performance of the heuristic algorithm. Wang et al.
(2014) introduced chaos theory into the optimization process of
the krill herd (HK) algorithm, and the algorithm’s performance
was effectively improved. Gao et al. (2020) used an improved DE
algorithm with a selection mechanism to solve the fuzzy job-shop
scheduling problem. Merwe and Engelbrecht successfully
combined the PSO to address the clustering problem by
constructing the structure of the evaluation function and the
solution (Van der Merwe and Engelbrecht, 2003). Wang et al.
(2016) improved the precision and convergence rate of the flower
pollination algorithm on cluster analysis by adding the discard
pollen operator. Zhou et al. (2017) propose an improved social
spider optimization algorithm that introduces a stochastic
strategy known as the simplex method to deal with clustering
analysis. A symbiotic biological search algorithm for clustering
analysis has been proposed by Zhou et al. (2019). Ouadfel and
Abd Elaziz (2021) introduced an improved multi-objective
gradient optimizer to handle the clustering problem of multi-
view datasets. Taib and Bahreininejad (2021) introduced an
improved water cycle algorithm incorporating an algorithm
for evaporation rate to tackle the clustering analysis problem.
Wang et al. (2021) implemented a meme algorithm with adaptive
inverse K-means operation to tackle the clustering question.

The Moth-flame Optimizer (MFO) (Mirjalili, 2015a) is a firmly
established meta-heuristic optimization algorithm that has proven
to be efficient and potentially capable of addressing real-life

problems. After MFO was put forward, many scholars applied
it to various engineering problems and achieved good results.
Elsakaan et al. (2018) applied a moth flame optimizer to solving
economic scheduling problems. Elaziz et al. (2020) introduced an
OMFODE algorithm that integrates opposition learning strategy
and differential evolution algorithm for the feature selection
problem. Moreover, the classification of galaxy images is
successfully implemented with satisfactory results. Khan et al.
(2021) used MFO to optimize the integrated power plant
system containing stochastic wind. Ahmed et al. (2021) applied
MFO to optimizing workflow scheduling in fog computing. Li et al.
(2021b) used opposition-based learning (OBL) and differential
evolution (DE) algorithm to improve the quality of the flame
population to enhance the efficiency of the standard MFO. Wu
et al. (2022) construct a bi-clustering-based moth-flame optimizer
for recommender systems to successfully generate
recommendation lists and predict unrated items for target users.

Quantum computing (QC) integrates concepts from three
disciplines: quantum physics, computer science, and classical
information theory (Steane, 1998). At present, more and more
researchers combine quantum computing with heuristic
algorithms and try to apply them in various fields. Han and
Kim (2002) were the earliest to combine QC with evolutionary
algorithms to solve combinatorial optimization problems. Layeb
(2011) applied a cuckoo search algorithm combined with
quantum-inspired for knapsack issues. Cai et al. introduced
the simulated annealing (SA) strategy and the quantum
revolving gate (QRG) strategy into the moth flame optimizer
to improve the local development and exploration capabilities. It
has achieved good results in benchmark test functions and
engineering applications and has been verified in feature
selection issues (Yu et al., 2020). The idea of introducing QRG
and water circulation (WC) mechanisms in SMA was given by
Cai et al. (Yu et al., 2021). Chen et al. (2020) introduced a hybrid
algorithm with the combination of K-means and quantum
behavior inspired by Ant Lion Optimized for data clustering
and successfully applied it to intrusion detection. Deng et al.
(2021) introduced quantum double-chain coding technology and
quantum revolving gate into differential evolution algorithm and
combined mutation strategy to further improve large-scale
complex problems. The latest study by Dahi and Alba (2022)
applied quantum-inspired metaheuristics to solve the Mobility
Management Problem (MMP) and provides a new vision of
quantum-inspired metaheuristics in conjunction with a
comprehensive analysis of the quantum hardware.

In summary, this paper proposes a quantum-inspired moth-
flame optimizer with enhanced local search capability
(QLSMFO). The proposed algorithm combines quantum
computing and the moth-flame optimizer. Quantum coding
and quantum revolving gates are introduced in the initial
period of the algorithm to enrich the swarm diversity as well
as boost the global search capability. Then, a modified local search
strategy is introduced to reinforce the mining capability. Finally,
the poor solutions of the quantum moth population are selected
to be updated by the Levy flight method to generate more
promising solutions. The contribution of this study is
primarily as follows:
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(1) Quantum coding is introduced for moth swarm to enrich
population diversity and further promote a more robust
global search capability.

(2) The quantum revolving gate primarily balances the
exploration and exploitation capabilities while guiding
moths to more promising solutions and preventing them
from falling into local optima.

(3) By adding an enhanced local search to improve the exploit
capability and enhance themining accuracy, moths can evade
the local optimum in various ways.

(4) The proposed QLSMFO is used to solve the cluster analysis
problem and has good clustering results on ten well-known
UCI datasets.

The rest of this study is structured as outlined below. Section 2
fully elaborates on the problem of cluster analysis. An overview of
the standard MFO algorithm in Section 3. Section 4 illustrates
the specific improvement strategies of the QLSMFO. Section 5
carries out simulation experiments and analysis of results. Finally,
conclusions and future work are available in Section 6.

2 CLUSTERING PROBLEM

2.1 Mathematical Definition
Clustering is characterized as unsupervised learning due to the
absence of labeling or grouping information for each data
instance. The K-Means algorithm is a classical unsupervised
clustering method, which was introduced by MacQueen (1967)
and has been widely used since it was proposed. To clearly
illustrate the clustering problem, suppose dataset D is classified
into k different clusters. There is n datum in dataset D, and each
datum has l attributes. So, dataset D can be expressed as
D � {x1, x2, . . . , xn}, where xi � (d1, d2, . . . , dl). k clusters are
represented by S � {S1, S2, . . . , Sk}, each cluster Si corresponding
to a clustering center ci(i � 1, 2, . . . , k). Thus, S(S1, S2, . . . , Sk)
should satisfy the following conditions:

(1) ∪k
i�1Si � D

(2) Si ≠∅, i � 1, 2, . . . , k
(3) Si ∩ Sj � ∅, i, j � 1, 2, . . . , K, i ≠ j

2.2 Clustering Criteria
Dataset D is grouped into k clusters, where each cluster
Si(i � 1, 2, . . . , k) has one cluster center ci(i � 1, 2, . . . , k). The
location of the center has a great impact on the clustering effect, so
determining the center vector is a very important key point.
Clustering requires the similarity or distance of sample features
as the basis for whether they belong to a certain class. Then, the
samples that are similar are grouped into one class, and those that
are not grouped into one class. There are several ways to measure
the similarity or distance of sample features. Several typical
similarity metrics are the Minkowski distance (Gan et al., 2020)
(Manhattan distance (Xu andWunschII, 2005), Euclidean distance
(Jianchang Mao and Jain, 1996) and Chebyshev distance),
Mahalanobis distance, and cosine similarity (Xu and WunschII,
2005), etc. In clustering, using different ways to measure similarity

may yield different results, so it is very important to choose an
appropriate distance or similarity when clustering. Since the
Euclidean distance is relatively simple and basically reflects the
effect of the clustering problem. Therefore, the Euclidean distance
is used as the criterion for evaluating the clustering effect in this
paper, and its definition is as follows:

d(xi, cj) � �������������∑l
m�1

(xim − cjm)2√√
(1)

where l indicates the number of attributes for each data,
xi(i � 1, 2, . . . , n) represents the i-th data in dataset D,
cj(j � 1, 2, . . . , k) and is the j-th clustering center. The
distance from data xi to the cluster center cj is calculated
using Eq. 1 to determine which cluster the data belongs to. If
d(xi, cbest)< d(xi, cothers), cbest is a certain center belonging to
cj(j � 1, 2, . . . , k). cothers represents other cluster centers
exclusive of cbest, then we assign the data xi to the cluster Sbest.

2.3 The Objective Function of Clustering
This paper presents the QLSMFO algorithm to settle the cluster
analysis problem. With the aim of clearly describing the
evaluation process, suppose there is a dataset D �
{x1, x2, . . . , xn} divided into k clusters, where each data holds l
attributes and can be expressed as xi � (d1, d2, . . . , dl). The aim
of clustering is to find the location of the k centers corresponding
to the k clusters of the dataset, in such a way that all data are
grouped into the clusters to which they belong. It is necessary to
find the optimal location of the cluster center, the solution should
be structured as a one-dimensional vector of length k × l. The
individual in the QLSMFO algorithm denotes the coordinate
vectors of the k cluster centers, and each moth is defined as
C � {c1, c2, . . . , c}k. The objective function adopted in this paper
is the sum of the intra-cluster distances (SIDC) (Gonzalez, 1985).
It is commonly used as criteria to judge a good classification. A
smaller value of SICD indicates better clustering. Therefore, the
objective function is to minimize the SICD, as shown in Eq. 2:

f(D,C) � ∑n
i�1
min{				xi, cj

				∣∣∣∣j � 1, 2, . . . , k} (2)

where D refers to the given dataset, and C is the set of cluster
centers.

3 MOTH-FLAME OPTIMIZER

3.1 Inspiration
The MFO is inspired by the phenomenon of moth jumping on
fire. The reason behind this phenomenon is a navigation method
called transverse orientation of moths in nature. Moths flying at a
constant angle to the moonlight are able to fly in a straight line
and at the shortest distance to save energy. However, artificial
light at night is troublesome for them. The light emitted from an
artificial light source is a ray centered on the light source. If the
moths still fly at a fixed angle to the light, they will fly to the center
of the light source in a spiral trajectory.
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3.2 Mathematical Model
The MFO algorithm establishes a mathematical model for the
spiral flight of moths around flames. Moths and flames
represent candidate solvers within the search space. But their
location is updated in a different way. The moths’ population is
described by a matrixM. A one-dimensional arrayOM was used
to store the fitness values calculated for all the moths. As shown
below.

M �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
m11 m12 / m1d

m21 m22 / m2d

..

. ..
.

1 ..
.

mn1 mn2 / mnd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, OM �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
OM1

OM2

..

.

OMn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

where d refers to the problem dimension, n denotes the size of the
moth swarm.

The definition of the flame is another critical part, using a
matrix Fwhich stores information about the position of the flame.
The values of the objective function corresponding to all flames
are recorded in a one-dimensional array OF as shown in Eq. 4:

F �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
f11 f12 / f1d

f21 f22 / f2d

..

. ..
.

1 ..
.

fn1 fn2 / fnd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, OF �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
OF1

OF2

..

.

OFn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

The spiral trajectory of the moth flying around the flame is
described by a mathematical model expressed by Eq. 5:

Mi � S(Mi, Fj) (5)

where S(·) refers to the spiral trajectory of the moth around the
flame. Mi and Fj, respectively, denote the i-th moth and the j-th
flame.

S(Mi, Fj) � Di · ebt · cos(2πt) + Fj (6)
where b determines the spiral shape and is set to 1, t indicates a
random number between [r, 1]. In addition, r denotes a linearly
decreasing function with a change interval of the value domain
from −1 to −2. The function is shown below:

r(it) � −1 − it

Max it
(7)

where it denotes the current generation, Max_it denotes the
largest number of generations. Di is the distance from the i-th
moth to the j-th flame and is calculated by Eq. 8:

Di �
∣∣∣∣Fj −Mi

∣∣∣∣ (8)
The position of the flame is obtained by the moths ordered in

accordance with the fitness value, then the individual moth
regenerates its location in accordance with the respective flame
using Eq. 6. Although this position update mechanism expands
the search space and enhances exploration, all moths may have
difficulty finding optimal solutions based on their respective
flame update positions. To overcome this deficiency, a scheme
for adaptively changing the number of flames is suggested and
updated using Eq. 9:

Nf � round(N − it ×
N − 1
Max it

) (9)

FIGURE 1 | Flowchart of MFO.
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where N represents the maximal size of the flames swarm.
The pseudo-code of theMFO is shown in Algorithm 1, and the

flow chart is expressed in Figure 1.

Algorithm 1. Pseudo-code of MFO.

4 QUANTUM-INSPIRED MOTH-FLAME
OPTIMIZER WITH ENHANCED LOCAL
SEARCH STRATEGY
Due to the advantages of fast convergence speed and simple
overall structure, the MFO algorithm is frequently employed in
real-life problems, and the results obtained are competitive.
However, when solving high-dimensional, multi-constraint
complex problems, the convergence of the MFO algorithm
turns out to be slower and frequently drops into local optima.
To overcome these shortcomings, three strategies are introduced
in the standard MFO algorithm. 1) Quantum coding and
quantum revolving gate. 2) An improved local search based on
SFLA (Eusuff et al., 2006). 3) Levy flight. The remainder of
Section 4 describes in detail the contents of these three
improvement strategies.

4.1 Quantum-Inspired Based MFO
4.1.1 Quantum Encoding
In quantum computing, the minimum unit to store information
is to be called a quantum bit (qubit). Distinguished from a
memory cell (bit) in a classical computer, a qubit can be a
superposition of “1” state and “0” state. The definition of a
qubit is given in the following:∣∣∣∣φ〉 � α|0〉 + β|1〉 (10)
where α and β are two complex numbers, |α|2 and |β|2 represent
the probability amplitudes of the “0” state and the “1” state,
respectively. And they satisfy the relation |α|2 + |β|2 � 1. In
order to make the equation constant, a qubit can be
expressed as Eq. 11.

∣∣∣∣φ〉 � [ α
β
] � [ cos(θ)

sin(θ) ], θ ∈ [0, 2π] (11)

In the quantum-inspired moth-flame optimization algorithm,
the individual quantum moths (QM) are represented as follows:

QMi � (φ1,φ2, . . . ,φd) � ( cos(θi1), cos(θi2), . . . , cos(θid)
sin(θi1), sin(θi2), . . . , sin(θid) )

(12)
where QMi denotes the location of the i-th moth,
θij ∈ (0, 2π), 1≤ i≤ n, 1≤ j≤ d, n represents the number of
moths in the population, and d denotes the dimension of a
qubit. Each quantum moth occupies two locations in the search
space, and each location stands for a candidate solution to the
problem, which is respectively defined as shown in Eqs 13 and 14:

FIGURE 2 | Quantum rotation angle updating.

FIGURE 3 | Diagram of grouping rules.
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QMic � (cos(θi1), cos(θi2), . . . , cos(θid)) (13)
QMis � (sin((θi1), sin(θi2), . . . , sin(θid)) (14)

4.1.2 Quantum Initialization
Step 1: Initialize angle matrix

The moth population contains N individuals, and the problem
dimension is dim. The probability amplitude is used to represent
the state of a qubit and it is generated according to the angle
matrix. When carrying out quantum initialization, it is necessary
to establish an angle matrix of N * dim, and the search range of
angle is 0 to 2π.

θij � lbij + rand(0, 1) · (ubij − lbij), 1≤ i≤ n, 1≤ j≤ d (15)
where lbj and ubj indicates the minimum and maximum
boundaries for j-th the dimension of the problem, and rand
(0,1) is a number generated randomly between 0 and 1. The value
of lbj and ubj are set to 0 and 2π, respectively. The initialized
angle matrix is shown below:

θ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
θ11 θ12 / θ1d
θ21 θ22 / θ2d
..
. ..

.
1 ..

.

θn1 θn2 / θnd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (16)

Step 2: Initialize quantum population
QM represents a quantum moth matrix containing N quantum

moths, each quantum moth occupying two positions in the search
space, each position representing a candidate solution to the
problem. The expression for the quantum population is as follows:

QM �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
QM1

QM2

..

.

QMn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

QM1c

QM1s

QM2c

QM2s

..

.

QMnc

QMns

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(θ11) cos(θ12) / cos(θ1d)
sin(θ11) sin(θ12) / sin(θ1d)
cos(θ21) cos(θ22) / cos(θ2d)
sin(θ21) sin(θ22) / sin(θ2d)

..

. ..
.

1 ..
.

cos(θn1) cos(θn2) / cos(θnd)
sin(θn1) sin(θn2) / sin(θnd)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(17)

If it is necessary to calculate the fitness value to evaluate the
individual quality, it needs to be carried out after solution space
conversion. This part will be described in detail in Section 4.1.4.

4.1.3 Quantum Rotation Gate
In quantum computing, quantum operators are used to
manipulating a quantum to change the relative phase of the
quantum. The trade-off between global and local search is
implemented by adjusting the rotation angle and direction of the
QRG.Moreover, Figure 2 illustrates the position change of the QRG
before and after changing the rotation angle. In QLSMFO, the
expression of the quantum revolving gate is as follows:

U(ξ(Δθ)) � [ cos(ξ(Δθ)) −sin(ξ(Δθ))
sin(ξ(Δθ)) cos(ξ(Δθ)) ] (18)

where ξ(·) is a function of the rotation angle (Δθ), which will be
described in detail later.

The new qubit is updated by using the quantum revolving gate,
as shown in the following formula:

[ α′i
β′i
] � U · [ αi

βi
] (19)

In QLSMFO, instead of using the traditional fixed angle for
the rotation angle of the quantum revolving gate, the
Differential Evolution (DE) algorithm is employed for
dynamically updating the angle size and direction. The
process of adjusting the rotation angle by the DE algorithm
can be seen as under:

4.1.3.1 Mutation Operation
The rotation angle θij(1≤ i≤ n, 1≤ j≤ d) in each quantum moth
QMi is updated using the DE/rand/1 strategy using the following
formula:

vij � θr1j + F(θr2j − θr3j) (20)
where r1, r2, and r3 are random integers between [1, d].

4.1.3.2 Crossover Operation
The new angle uij and the previous angle θij are crossed with a
certain probability, and the crossover operation is shown in Eq. 21.

uij � { vij, rand≤CR or j � randi
θij, else

(21)

where CR represents the probability of crossover, which is a
random number between [0,1]. randi refers to a random integer
between [1, d].

4.1.3.3 Rotation Angle Acquisition
Rotation angle ξ(Δθ) � S(αi, βi) × |uij − θij|. The sign function
S(·) represents the direction of the rotation angle and the updated
formula of the sign function is as Eq. 22. |uij − θij| represents the
magnitude of the rotation angle.

S(αi, βi) � sign(αi × βi) (22)

4.1.4 Solution Space Transformation
The fitness value was considered to assess the quality level of each
moth. It is necessary to transform the solution space of the
individual’s position. Assuming that the solution space of the
definition problem is ΩQLSMFO � [a, b], the conversion formula
of solution space is listed in the following equations:

RMic � a(1 − αi) + b(1 + αi)
2

(23)

RMis � a(1 − βi) + b(1 + βi)
2

(24)

4.2 Enhanced Local Search Strategy
To obviate the original MFO algorithm from trapping into
local optima, an individual moth is designed to fly in a spiral
trajectory according to the corresponding flame position
instead of flying towards a single flame. While this
mechanism improves the moth’s ability to fall into local
optima, it also reduces the ability to mine more promising
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solutions. To solve this defect, the standard MFO algorithm
introduces a mechanism for adjusting the number of flames in
the local search stage, which enhances the probability of
obtaining the optimal solution to a certain extent.
However, there is still much scope for improvement in
terms of convergence rate and precision.

For the purpose of finding the optimal solution at a faster rate
and obtaining higher accuracy, this paper adopts a boosted
approach based on the standard local search strategy of SFLA.
This strategy divides the moths into ρ groups according to their
fitness values. Grouping rules: 1) The moth ranked first is
assigned to the first group, and the moth ranked second is
assigned to the second group until the moth ranked ρ-th is
assigned to the ρ-th group. 2) The (ρ + 1)-th moth is assigned

to the first group, and the procedure is repeated till the last moth
is assigned. Figure 3 shows the grouping rules.

The moths with the best fitness value and the moths with the
worst fitness value in each group are defined as Mb and Mw,
respectively. The globally optimal moth is defined as Mg. The
worst moth in each group updates its position according to the
local optimum, the global optimum or both. The promising
solutions are fully utilized to obtain the optimum solution for
the purpose of avoiding collapsing towards a local optimum and
enhancing the mining ability. The specific update steps are shown
in steps 1–3. Additionally, Algorithm 2 presents the pseudo-code
for the local search mechanism.
Step 1. The worst moth adjusts its position with respect to the
optimal value in the group, as shown in Eq. 25.

Mnew � c · rand · (Mb −Mw) +Mw (25)
Step 2. If a better position cannot be obtained in Step 1, then the
worst moth is updated according to the global optimum position
according to Eq. 26.

Mnew � c · rand · (Mg −Mw) +Mw (26)
Step 3. If a better position cannot be obtained in Step 2, the worst
moth uses Eq. 27 to update the position according to the optimal
moth in the group and the global optimal moth.

Mnew � rand · ((Mg +Mb)/2 −Mw) +Mw (27)
According to the local search strategy in SFLA, steps 1–3 here

will be repeated ζ times.

FIGURE 4 | Flowchart of QLSMFO.

TABLE 1 | Parameter value setting for the comparison algorithms.

Algorithms Parameter values

ABC Limit � 5
ALO NAN
CS pa � 0.25
DE F � 0.5,CR � 0.9
FPA p � 0.8
GWO a ∈ [2, 0]
MFO b � 1, t ∈ [r, 1], r ∈ [−1,−2]
MVO WEPmin � 0.2,WEPmax � 1
PSO w � 0.7298,C1 � C2 � 1.4962
WOA b � 1, t ∈ [r, 1], r ∈ [−1,−2]
SFLA Memeplex Size = 10, Number of Memeplexes = 5
QBA alpha = 0.95,gamma = 0.05
GQPSO w1 � 0.5,w2 � 1,C1 � C2 � 1.5
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Algorithm 2. Pseudo-code of local search mechanism.

4.3 Poor Solution Update Using Levy Flight
After L iterations, moths with larger total fitness values (for the
minimization problem) are defined as individuals with weak
search ability, and these moths are defined as poor moths.
Levy flight is introduced to update the position of poor moths
to obtain more promising solutions. The update formula of the
poor moths is shown in Eq. 28.

M′
i � Mi × (1 + Levy(β)) (28)

4.4 Description of QLSMFO Algorithm
The pseudo-code of the QLSMFO is exhibited in Algorithm 3.
Then the flowchart of the QLSMFO is exhibited in Figure 4.

Algorithm 3. Pseudo-code of QLSMFO.

4.5 Computational Complexity of the
QLSMFO Algorithm
In the QLSMFO algorithm, the computational cost is mainly
composed of seven parts: quantum initialization, fitness value
calculation, generating flame population, QRG operation, moth
position update, local search strategy of SFLA, and Levy flight.
Here n is the number of moth individuals and d is the dimension.
In the quantum initialization phase, first, use the function rand to
generate an n*d matrix between 0 and 2π. The time complexity of
this operation is O (nd). Then it is converted into a quantum
population according to the angle matrix, and the time
complexity is O (nd). After entering the loop, the
computational complexity is also related to the number of
iterations t. In the iterative phase, the computational cost of
fitness value calculation, generating flame population, QRG
operation, and moth position update are all O(t) O (nd). The
computational complexity of the local search stage is O(t)O(ρζ),
and ρζ is less than n2. In the final Levy flight stage, the
computational complexity is O(t)O(nL), and L is less than n.

TABLE 2 | Details of the ten clustering benchmark datasets.

No. Datasets Attributes Clusters instances Area References

1 Artificial Dataset I 3 5 250 Numerical Niknam and Amiri (2010)
2 Artificial Dataset II 2 4 600 Numerical Niknam and Amiri (2010)
3 Iris 4 3 150 Life Frank and Asuncion (2010)
4 Glass 9 6 214 Physical Frank and Asuncion (2010)
5 Wine 13 3 178 Physical Frank and Asuncion (2010)
6 Breaster cancer Wisconsin (Original) 9 2 683 Life Frank and Asuncion (2010)
7 CMC 9 3 1,473 Life Frank and Asuncion (2010)
8 Seeds 7 3 210 Life Frank and Asuncion (2010)
9 Statlog (Heart) 13 2 270 Life Frank and Asuncion (2010)
10 Haberman’s survival 3 2 306 Life Frank and Asuncion (2010)
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TABLE 3 | Simulation results for clustering algorithm after 20 runs on 10 datasets.

Algorithms Indicators Art 1 Art 2 Iris Glass Wine Cancer CMC Seeds Heart Survival FAR Rank

K-means Best 1,720.7628 514.6614 97.1233 215.4263 16,555.6794 2,984.7454 5,542.8731 313.3424 10,695.7974 2,625.1076 10.6 11
Worst 2,483.8590 899.7352 123.6660 255.0263 18,436.9521 2,991.2629 5,546.3438 315.1928 10,700.8385 3,196.5920 7.5 6
Mean 2,182.7909 591.9153 106.5132 228.4885 17,177.6946 2,988.2538 5,544.2166 314.0933 10,697.8800 2,656.4600 8.8 10
Std. 3.4954E+02 1.5776E+02 1.2069E+01 1.4471E+01 8.7556E+02 2.5164E+00 1.1311E+00 6.1125E-01 2.4954E+00 1.2715E+02 8.5 10

ABC Best 2,621.0031 534.2840 97.2462 357.5500 16,435.6636 2,991.9163 5,773.0571 316.9397 10,645.0502 2,566.9889 11.9 13
Worst 3,240.0348 615.5024 124.6974 410.9385 16,743.6069 4,480.4801 6,099.3676 388.1249 10,720.3553 2,567.0281 9.5 11
Mean 2,902.6014 567.1584 104.9606 399.4768 16,569.2437 3,382.5750 5,929.5165 345.0643 10,669.4992 2,566.9915 10.6 12
Std. 1.6420E+02 2.3308E+01 7.1803E+00 1.5803E+01 9.3189E+01 3.8740E+02 9.8639E+01 1.7575E+01 2.0286E+01 8.6369E-03 7.8 5.5

ALO Best 1,718.2539 513.9017 96.6556 299.8880 16,318.0213 2,965.6134 5,626.9893 311.9358 10,629.3649 2,566.9889 6.6 7
Worst 2,444.7418 908.8921 127.6677 392.3352 16,401.9475 3,099.4506 5,923.8279 330.4222 10,706.0674 2,567.8248 7.6 7
Mean 2,204.0973 572.3286 99.8589 339.7677 16,352.6888 2,993.9541 5,760.3530 313.8693 10,659.0977 2,567.0725 7.5 7.5
Std. 3.2747E+02 1.4273E+02 9.5129E+00 2.9350E+01 2.5321E+01 3.7799E+01 9.0739E+01 4.0061E+00 2.1123E+01 2.5730E-01 8 7

CS Best 1,722.4942 513.9018 96.6573 249.3329 16,296.0299 2,964.4719 5,541.6300 311.9462 10,623.3962 2,566.9889 6.3 6
Worst 2,276.0927 514.3841 97.5704 282.7527 16,303.9573 2,967.0588 5,573.5388 314.0035 10,625.2040 2,566.9889 3.2 2
Mean 1,828.3900 513.9708 96.8449 267.7335 16,299.2245 2,964.9179 5,549.8029 312.6272 10,623.8756 2,566.9889 3.2 2
Std. 1.3254E+02 1.1914E-01 2.5819E-01 9.6864E+00 1.9661E+00 5.7000E-01 8.9369E+00 5.4122E-01 4.8201E-01 5.4630E-07 3.1 2

DE Best 1,718.4065 513.9017 96.6555 308.6971 16,345.1128 2,974.3611 5,539.5190 311.9595 10,623.3159 2,566.9889 7 8
Worst 2,468.3549 516.9062 120.7318 422.9514 17,659.3237 3,109.9039 5,656.5296 317.0757 11,379.4120 2,569.1538 8 8
Mean 1,967.7027 514.2086 98.3375 352.3671 16,697.5468 3,031.1791 5,561.8980 313.8235 10,668.2034 2,567.6156 6.9 6
Std. 3.2974E+02 7.0254E-01 5.3026E+00 3.3584E+01 3.6771E+02 4.2901E+01 2.8340E+01 1.3030E+00 1.6759E+02 8.1344E-01 8.6 11

FPA Best 2,209.2565 553.0295 107.9338 358.2252 16,523.6271 3,125.2321 6,022.8869 357.3546 10,756.1553 2,575.2301 13.6 14
Worst 2,590.7114 701.2459 125.3917 410.6478 16,808.5805 3,467.1155 6,415.8210 390.7098 11,375.1235 2,597.1100 10.3 12
Mean 2,392.1632 632.2991 114.4317 390.9783 16,620.3091 3,257.2720 6,239.4660 374.3006 11,125.5227 2,585.8700 12.5 14
Std. 1.0295E+02 3.7934E+01 4.6593E+00 1.7203E+01 7.6283E+01 8.9949E+01 1.2830E+02 1.0295E+01 1.8011E+02 6.2352E+00 8.3 9

GWO Best 1,719.2955 514.4099 96.6967 300.8932 16,317.0858 2,964.4685 5,577.6440 312.7450 10,640.1561 2,567.2268 8.5 9
Worst 2,420.1129 518.9048 121.4958 408.1592 16,379.2516 2,964.7198 5,881.3547 319.0629 10,679.6548 2,661.6690 5.9 3
Mean 1,755.8602 516.3923 100.7814 350.8107 16,339.0761 2,964.5506 5,697.2697 314.2480 10,656.2902 2,596.2901 6.6 5
Std. 1.5635E+02 1.4014E+00 8.7986E+00 2.7177E+01 1.7113E+01 7.3443E-02 9.4461E+01 1.3905E+00 1.1586E+01 3.0838E+01 6.6 3

MFO Best 1,718.4008 513.9017 96.6556 258.1097 16,298.1081 2,964.8051 5,534.6088 311.9329 10,625.0701 2,566.9889 5.35 5
Worst 2,701.1929 513.9017 110.7161 316.6208 16,527.7618 3,067.3649 5,972.9363 355.9924 10,701.6759 2,594.5747 6.9 5
Mean 2,154.8576 513.9017 98.7980 277.0228 16,332.1209 2,981.9060 5,650.9171 319.2587 10,647.9703 2,568.3682 6.1 4
Std. 3.5595E+02 1.9986E-06 4.3183E+00 1.6129E+01 5.3271E+01 2.6386E+01 1.1345E+02 1.3420E+01 2.4114E+01 6.1684E+00 7.8 5.5

MVO Best 1,718.8952 513.9038 96.6805 312.0478 16,330.8529 2,964.7202 5,563.0206 312.2483 10,648.6368 2,567.0123 8.9 10
Worst 3,148.8098 892.4766 125.6249 405.7594 16,452.0811 2,965.8537 5,788.7023 403.0414 10,731.3672 2,567.9309 8.1 9
Mean 2,003.3197 532.8372 98.9310 368.3374 16,382.3227 2,965.2540 5,676.3160 317.9289 10,679.5546 2,567.2569 7.5 7.5
Std. 4.8459E+02 8.4650E+01 6.5492E+00 2.5894E+01 3.1054E+01 3.5254E-01 5.6685E+01 2.0058E+01 2.4109E+01 3.8386E-01 8.2 8

PSO Best 1,718.2539 513.9017 96.6555 265.2194 16,292.4155 2,964.3872 5,532.1987 311.7982 10,622.9861 2,566.9889 3.55 2
Worst 2,444.7856 513.9017 127.6677 410.2468 16,303.2108 4,728.7901 5,533.0006 420.3489 10,623.1898 2,566.9889 6.3 4
Mean 2,124.5283 513.9017 104.4086 299.2063 16,294.6942 3,140.8319 5,532.3505 317.2281 10,623.0399 2,566.9889 5 3
Std. 3.4428E+02 2.0363E-08 1.3777E+01 3.1432E+01 2.5012E+00 5.4307E+02 2.2316E-01 2.4272E+01 5.5801E-02 1.3489E-08 7.3 4

WOA Best 1,967.3942 515.1639 97.8072 314.5328 16,341.1455 2,979.3869 5,857.9515 333.4598 10,667.4260 2,567.8508 11.8 12
Worst 3,149.4792 909.1263 130.1484 441.8749 16,509.7300 3,158.4952 6,327.4464 403.9605 11,486.1792 2,615.7618 11.9 14
Mean 2,577.3095 614.8494 109.4386 370.4912 16,408.0293 3,015.8097 6,072.2996 366.5992 10,885.3931 2,581.9343 11.3 13
Std. 3.1224E+02 1.6672E+02 1.2182E+01 3.5617E+01 4.5097E+01 4.0373E+01 1.3849E+02 1.8027E+01 2.3303E+02 1.4936E+01 11.1 13

SFLA Best 1,718.2539 513.9017 96.9582 407.4744 16,394.8405 2,964.3870 5,532.1852 311.7978 10,622.9824 2,566.9889 4.5 3
Worst 2,377.4273 862.5571 122.3652 518.1696 17,583.7551 3,454.1298 6,019.0809 311.7978 10,854.7384 2,569.1504 8.3 10
Mean 1,912.3766 531.3345 106.1995 465.5880 16,955.6852 3,049.8002 5,583.5415 311.7978 10,637.8637 2,567.4314 7.8 9
Std. 3.0430E+02 7.7962E+01 7.3287E+00 3.1478E+01 3.2333E+02 1.4162E+02 1.4384E+02 2.2890E-10 5.2156E+01 5.7799E-01 9.3 12
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The time complexity of QLSMFO is the sum of the time
complexity of the above seven parts, as shown below:

T � O(nd) + O(t)O(nd) + O(t)O(nd) + O(t)O(nd)
+O(t)O(nd) + O(t)O(n2) + O(t)O(n2)

� O(nt(n + d))
(29)

The time complexity of the original MFO algorithm is
O(MFO) � O(nt(n + d)) (Mirjalili, 2015a). The computational
complexity of the proposed algorithm is the same as the original
MFO algorithm.

5 EXPERIMENT RESULTS

All experiments in this paper were implemented on MATLAB
R2018(b), running on a desktop computer with Windows
10 operating system, Intel(R) Core(TM) i7-9700 CPU, running
frequency of 3.00 GHz and 16 GB of memory.

5.1 Parameter Settings
With the purpose of validating the performance of QLSMFO, the
improved algorithm is compared with K-means (MacQueen,
1967) and thirteen current mainstream optimization
algorithms. They are the artificial bee colony (ABC) algorithm
(Karaboga and Basturk, 2007), ant lion optimizer (ALO)
(Mirjalili, 2015b), cuckoo search (CS) algorithm (Yang and
Deb, 2009), DE (Storn and Price, 1997), flower pollination
algorithm (FPA) (Yang, 2012), GWO (Mirjalili et al., 2014),
Moth-flame optimizer (MFO) (Mirjalili, 2015a), multi-verse
optimizer (MVO) (Mirjalili et al., 2016), PSO (Kennedy and
Eberhart, 1995), whale optimization algorithm (WOA)
(Mirjalili and Lewis, 2016), SFLA (Eusuff et al., 2006),
quantum encoding bat algorithm (QBA) (Luo et al., 2017),
Gaussian quantum behaved particle swarm optimization
(GQPSO) (Coelho, 2010). The parameter settings of the
above-mentioned comparison algorithms are reported in
Table 1.

The largest value of generations for each algorithm isMax_it =
200, and the number of moth swarm is N = 50. The dimensions
are the same as the number of attributes in the benchmark
dataset. The datasets used in this paper include two artificial
datasets and eight UCI classic datasets. The specific
characteristics of the dataset will be further introduced in
Section 5.2. All algorithms will be independently executed
20 times.

5.2 Datasets
Among the 10 benchmark datasets, Artificial Datasets I and II are
artificial datasets selected from the literature (Niknam and Amiri,
2010), and the remaining 8 datasets are related to life and physics
from UCI. Table 2 summarizes the number of attributes, clusters,
and instances and the application areas of ten benchmark
datasets.

5.3 Results Analysis
Table 3 reports the statistical results of the experiments
performed by QLSMFO and K-Means algorithms and otherT
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thirteen metaheuristics algorithms on ten test datasets. The
data in the table are presented in the form of four decimal
places, except for Std., which uses scientific notation to retain
two decimal places. In the table, Best indicates optimal fitness
value, Worst indicates the worst fitness value, Mean indicates
average fitness value, and Std. indicates standard deviation.
The four indicators are the statistics obtained by each

algorithm in 20 independent runs. Friedman test is applied
to the four indicators in Table 3. The penultimate column FAR
indicates the Friedman’s average ranking, and the last column
Rank indicates the final ranking. It can be observed through
Table 3, that compared with other comparison algorithms,
QLSMFO ranks the best on the four indicators (Best, Worst,
Mean, and Std.) on all datasets except the seed dataset.

FIGURE 6 | ANOVA simulation results of all algorithms on the
10 datasets. (A) Artificial Dataset I. (B) Artificial Dataset II. (C) Iris dataset. (D)
Glass dataset. (E) Wine dataset. (F) Cancer dataset. (G) CMC dataset. (H)
Seeds dataset. (I) Heart dataset. (J) Survival dataset.

FIGURE 5 |Convergence curves of all algorithms on the 10 datasets. (A)
Artificial Dataset I. (B) Artificial Dataset II. (C) Iris dataset. (D)Glass dataset. (E)
Wine dataset. (F) Cancer dataset. (G) CMC dataset. (H) Seeds dataset. (I)
Heart dataset. (J) Survival dataset.
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QLSMFO achieves second place in the Std. index on the seed
dataset. These data show that QLSMFO possesses excellent
precision and reliability.

The convergence curves of all algorithms on the 13 datasets
are presented in Figure 5. The data of the curves are the
average fitness values calculated by running each algorithm
20 times independently with 200 iterations. Figure 6 shows the
ANOVA plot. A low median, few outliers, and a narrow height
in the variance plot indicate better stability. It is clear and
obvious from Figures 5 and 6 that QLSMFO possesses the
advantages of rapid convergence, excellent accuracy, and
outstanding stability. The specific analysis of each dataset is
shown below.

5.3.1 Artificial Dataset I
For Artificial Dataset I, QLSMFO won first place in all
algorithms in the four indicators. ALO, PSO, SFLA, and
QBA reach the same level as QLSMFO at the optimal value.
It is clearly observed that the worst value of QLSMFO
outperforms the optimal results derived from other
algorithms. It revealed that QLSMFO has high precision
and good algorithm performance. Figure 5A shows that
the speed of the convergence curve of QLSMFO decreases
significantly more quickly when compared with
other methods. The standard deviation of QLSMFO from
Table 3 is better than all algorithms by eight orders of
magnitude. It can also be observed in Figure 6A that the
graph of the improved algorithm is the narrowest and the
median line is the lowest, indicating that the algorithm has
high robustness.

5.3.2 Artificial Dataset II
QLSMFO achieves the best performance on Best, Worst, Mean,
and Std.Table 3 shows that ALO, DE, SFLA, and QBA is the same
as QLSMFO on the best indicator. Then MFO and PSO have the
same good performance as QLSMFO on Best, Worst, and Mean
indicators. However, the standard deviation of QLSMFO is
superior to theirs, which is seven and five orders of magnitude
better than MFO and PSO, respectively. From the convergence
curve in Figure 5B, although the proposed algorithm fails to
converge as rapidly as SFLA in the early iterations, after
30 generations, QLSMFO converges significantly quicker than
the other algorithms and is ultimately the best in accuracy.
Compared with other algorithms in Figure 6B, QLSMFO has
no outliers, and the box is the narrowest, so the stability of the
algorithm is better.

5.3.3 Iris Dataset
QLSMFO achieved the greatest performance on Best, Worst,
Mean, and Std., except PSO, DE, and QBA. They achieve the
same results as QLSMFO in Best indicators. However, the
values of Worst, Mean, and Std. are not as good as the
results of QLSMFO. From Figure 5C, it can be seen that DE
has a small number of outliers, and it can be seen from the box
shape that the variance of PSO is large. QLSMFO has the
smallest variance and no outliers, indicating that the
algorithm has high stability. Table 3 reflects that QLSMFOT
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outperforms the other algorithms by at least eight orders of
magnitude in terms of Std. indicators, which shows that the
algorithm is robust.

5.3.4 Glass Dataset
QLSMFO acquired the optimum value on Best, Worst, Mean, and
Std. among eleven algorithms. The worst value of QLSMFO

outperforms the optimal values of the other algorithms except
for the K-means algorithm. In Figure 5D, it is clearly visible that
QLSMFO has the fastest rate of convergence, and the final
convergence accuracy has obvious advantages over other
algorithms. In Table 3, the Std. index of QLSMFO has no
obvious advantage compared with other algorithms, but in
Figure 6D, it can be seen that the height of the box of

FIGURE 7 | Clustering process of QLSMFO on Art 1 dataset at iteration is 0, 5, 10, and 20. (A) Zeroth iteration. (B) Fifth iteration. (C) Tenth iteration. (D) Twentieth
iteration.

FIGURE 8 | Clustering results of MFO on the Art 1 dataset at iteration is 10 and 20. (A) Iteration = 10. (B) Iteration = 20.
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QLSMFO is lower than that of other algorithms, indicating great
robustness.

5.3.5 Wine Dataset
Table 3 displays that QLSMFO obtains the optimum value on
Best, Worst, Mean, and Std. The figures for PSO are very close to
those of QLSMFO in terms of optimal and average values.
However, it is observed from Figure 5E that QLSMFO

converges faster. The higher stability of QLSMFO than PSO is
observed in Figure 6E.

5.3.6 Cancer Dataset
It is shown that the values of Best,Worst,Mean, and Std. of QLSMFO
are optimum inTable 3. The Best indicators of CS and PSO are close
toQLSMFO, at the same time, SFLA andQBA reach the same level as
QLSMFO at the optimal value, but the other three indicators are not

FIGURE 9 | Clustering results of QLSMFO and other algorithms on different datasets at iteration 20. (A) MFO for Art 2 dataset. (B) PSO for Art 2 dataset. (C)
QLSMFO for Art 2 dataset. (D) MFO for Iris dataset. (E) CS for Iris dataset. (F) QLSMFO for Iris dataset. (G) MFO for CMC dataset. (H) PSO for Iris CMC dataset. (I)
QLSMFO for CMC dataset.
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as good as the improved algorithm. QLSMFO has a significant
improvement on Std. metrics, at least five orders of magnitude of
excellence over other algorithms. It is observed that the worst value
obtained by QLSMFO is superior to the optimum value derived from
comparison algorithms. The convergence curve of QLSMFO is
displayed in Figure 6F, although it is not as fast as QBA in the
initial 20 generations of iteration, the convergence rate in the later
period is the fastest among all algorithms.

5.3.7 CMC Dataset
It is observed in Table 3 that QLSMFO achieves the best
performance for all metrics compared with the comparative
algorithms. Although the performance of PSO is close to that
of QLSMFO, the data provided in Table 3 demonstrates that the
Std. index of QLSMFO is three orders of magnitude superior to
PSO, and QLSMFO has higher stability and robustness.
Figure 6G shows that the convergence rate of QLSMFO
decreases quicker than other methods.

5.3.8 Seeds Dataset
Table 3 shows that QLSMFO all obtained the optimal values on Best,
Worst, and Mean except for Std. The performance of SFLA reaches
the same level as QLSMFO, although the stability of QLSMFO is not
as good as that of SFLA, the gap between them is not big. And the
convergence speed of QLSMFO is significantly faster than that of
SFLA.Moreover, the value of its Std. the indicator is at least six orders
of magnitude outperformed by other algorithms. It appears from
Figure 6H that the stability of QLSMFO is higher. The convergence
curve ofQLSMFOdrops the fastest, and the accuracy at the end of the
iteration is the highest, as can be observed from Figure 5H.

5.3.9 Heart Dataset
The data in Table 3 shows that QLSMFO achieves optimal values
for Best, Worst, Mean, and Std. From Figure 6I, the heights of the
boxes of CS, PSO, and QLSMFO are all short, indicating high
stability, but the position of QLSMFO is lower, so the robustness
of QLSMFO is higher than that of CS and PSO.

5.3.10 Survival Dataset
QLSMFO attained the best performance in Best, Worst, Mean, and
Std. from Table 3. Best metric of ABC, ALO, CS, DE, MFO, PSO,

SFLA, and QBA all reach the same level as QLSMFO, and the worst
and average values of CS and PSO are the same as QLSMFO.
However, the standard deviation of QLSMFO is five to six orders of
magnitude preferred over CS and PSO. As seen in Figure 6J that CS
and PSO have outliers, but QLSMFO does not. So the stability of
QLSMFO is higher than these two algorithms. From Figure 5J,
although SFLA has the fastest convergence speed in the early stage,
the final accuracy is not as high as that of QLSMFO.

5.4 Wilcoxon’s Non-Parametric Test
The Wilcoxon rank-sum test is a non-parametric statistical
technique that is introduced in this research to accurately validate
the experimental results of this investigation and to verify that the
effect of QLSMFO is statistically significant and does not occur by
coincidence. The twenty best fitness values yielded in twenty
independent runs of each method were used in Wilcoxon’s non-
parametric statistical test. The p-value shown inTable 4 is calculated
from the eleven pairs of data through theWilcoxon rank-sum test. In
this study, fourteen pairs of data are formed by QLSMFO vs. ABC,
QLSMFO vs. ALO, QLSMFO vs. CS, QLSMFO vs. DE, QLSMFO vs.
FPA, QLSMFO vs. GWO, QLSMFO vs. MFO, QLSMFO vs. MVO,
QLSMFO vs. PSO, QLSMFO vs. WOA, QLSMFO vs. SFLA,
QLSMFO vs. QBA, QLSMFO vs. GQPSO and QLSMFO vs.
K-means. If p≤ 0.05 means that the null hypothesis does not
hold, indicating that there is a significant difference between the
algorithms. In Table 4, p-values are all less than 0.05, except that
SFLA has a p-value of 0.572 in the Survival dataset and QBA has a
p-value of 0.273 in the Cancer dataset. These results show that the
proposed algorithms have statistically significant differences.

5.5 Visual Analysis of Clustering Results
After the above experiments, Tables 3, 4, and Figures 5, and 6
demonstrate that the QLSMFO algorithm is characterized by high
accuracy, rapid convergence, and reliable stability of performance.
For the purpose of showing the clustering capability of the proposed
algorithm more vividly, this section will show the process of
clustering in a graphical way.

5.5.1 Clustering Process of QLSMFO
Artificial Dataset I will be applied to visualize the process of
clustering in QLSMFO during this section. Artificial Dataset I

TABLE 5 | Numerical results of improved algorithms with different strategies on 10 clustered data.

Datasets MFO Std. QMFO1 Std. QMFO2 Std. QLSMFO Std.

Mean Mean Mean Mean

Art I 2.1549E+03 3.5595E+02 1.9008E+03 2.9446E+02 1.8755E+03 2.7818E+02 1.7183E+03 5.4772E-06
Art II 5.1390E+02 1.9986E-06 5.1390E+02 5.5624E-06 5.1390E+02 4.6172E-07 5.1390E+02 1.1664E-13
Iris 9.8798E+01 4.3183E+00 9.7550E+01 3.1493E+00 9.6658E+01 8.9730E-03 9.6655E+01 1.6264E-08
Glass 2.7702E+02 1.6129E+01 2.6647E+02 1.2987E+01 2.4773E+02 1.2168E+01 2.2098E+02 9.2425E+00
Wine 1.6332E+04 5.3271E+01 1.6317E+04 3.3197E+01 1.6297E+04 2.3583E+00 1.6293E+04 7.8681E-01
Cancer 2.9819E+03 2.6386E+01 2.9690E+03 1.1290E+01 2.9683E+03 1.0190E+01 2.9644E+03 2.9443E-07
CMC 5.6509E+03 1.1345E+02 5.5692E+03 4.1229E+01 5.5612E+03 3.4173E+01 5.5322E+03 9.5136E-04
Seeds 3.1926E+02 1.3420E+01 3.1911E+02 8.6249E+00 3.1269E+02 1.5788E+00 3.1180E+02 9.8831E-07
Heart 1.0648E+04 2.4114E+01 1.0634E+04 1.3657E+01 1.0624E+04 8.2164E-01 1.0623E+04 2.1012E-04
Survival 2.5684E+03 6.1684E+00 2.5670E+03 1.6420E-10 2.5671E+03 2.5730E-01 2.5670E+03 5.8086E-13

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org August 2022 | Volume 10 | Article 90835615

Cui et al. Quantum-Inspired Moth-Flame Optimizer

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


has three attributes and five clusters. The x, y, and z axes
correspond to three attribute values, respectively. Different
types of clusters are marked by green, blue, red, magenta, and
cyan. The clustering situation of QLSMFO on Artificial
Dataset 1 when the number of iterations is 0, 5, 10, and
20 are presented in Figure 7. The initial distribution of the

Art I dataset is presented in Figure 7A. When the number of
iterations is 5, as shown in Figure 7B, there is confusion in the
data classification between the green and red clusters. During
the classification process, there is a misassignment of a class to
the class represented by magenta and red, such as the part
where magenta and red are mixed. Only blue is classified
correctly. As the iterations continue, Figure 7C shows the
clustering results with an iteration number of 10. Cyan, red,
blue, and magenta are classified correctly, but the part of the
data that mixes blue and magenta is classified incorrectly.
Figure 7D demonstrates the clustering effect at 20 iterations. It
is obvious from the figure that five classes are correctly
classified, and there is no data confusion between classes.

The four graphs in Figure 7 vividly show the clustering process of
QLSMFO on Artificial Dataset 1, and the correct classification effect
is achieved in the 20th generation, which illustrates the effectiveness
of the algorithm and the fast classification speed.

5.5.2 Comparison of the Clustering Process with Other
Algorithms
The comparison results of QLSMFO and other algorithms in
Artificial Dataset 1, Artificial Dataset 2, Iris dataset, and CMC
dataset will be presented in this section.

Figure 8 shows the clustering results of MFO on Artificial
Dataset 1 with iterations of 10 and 20, respectively. In
Figure 8A, the data is not successfully divided into five
categories, and there is data confusion within each category
cluster. Although Figure 8B divides the classes into five classes.
However, most of the data in magenta are misclassified to red, and
there is a small amount of data misclassification between blue and
green. Compared with Figures 7C and D in Section 5.5.1, It is
observed that QLSMFO has high efficiency and high precision in
solving clustering problems compared to the original MFO.

To make a comparison of the results of QLSMFO with other
algorithms on Artificial Dataset II, the original MFO and an
algorithm ranked second to QLSMFO are selected for further
comparison.

Table 3 illustrates that PSO has reached the same level as
QLSMFO on Best, Worst, and Mean. PSO algorithm is selected
for further performance comparison with QLSMFO since the Std.
of PSO is second only to QLSMFO. The maximum iteration value
is given as 20. Figures 9A–C exhibit the clustering outcomes of
the 20th generation on Artificial Dataset II for MFO, PSO, and
QLSMFO, respectively. It is seen from Figure 9A that the blue,
magenta, green, and red in the MFO are classified incorrectly. In
Figure 9B, the classification result of the PSO is better than that of
the MFO, and the data has been successfully divided into four
categories, but there are still some data confusions between
magenta and blue that have not been successfully separated.
From Figure 9C, QLSMFO is observed, the classification effect
is the best, there is no data confusion between clusters, and the
classification is correct. It can be clearly shown that the
classification effect of QLSMFO is better.

The data inTable 3 shows that the values of CS on Best,Worst,
Mean, and Std. on the Iris dataset are closest to QLSMFO. In
order to further show the performance difference between
QLSMFO and CS in the clustering effect, the clustering results

FIGURE 10 | Convergence curves of MFO, QMFO1, QMFO2, and
QLSMFO on the 10 datasets. (A) Artificial Dataset I (B) Artificial Dataset II. (C)
Iris dataset. (D)Glass dataset. (E)Wine dataset. (F) Cancer dataset. (G) CMC
dataset. (H) Seeds dataset. (I) Heart dataset. (J) Survival dataset.
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with 20 iterations are selected for comparison. Figures 9D–F
show the classification results of MFO, CS, and QLSMFO on the
20th generation of attribute 1 and attribute 3 of the Iris dataset. In
Figure 9D, the red and blue data appear chaotic. In Figure 9E the
green and red appear chaotic. In Figure 9F, green and red achieve
a good balance, and the data are correctly separated.

Figures 9G–I indicate the clustering effect of the 20th
generation of MFO, PSO, and QLSMFO on attributes 1, 2,
and 4 of the CMC dataset. It is observed that the blue, red,
and green borders in Figure 9I are clear and there is nomixing. In
Figures 9G and H, there is a situation where the intermediate
data and the data on both sides are stuck, so the effect of
QLSMFO is better.

5.6 Verify the Effectiveness of the Three
Strategies in QLSMFO
In order to verify the effectiveness of the three improved strategies
added to the QLSMFO algorithm, the proposed QLSMFO is
compared with the original MFO, QMFO1, and QMFO2. Firstly,
QMFO1 represents an improved algorithm with quantum
initialization and QRG strategy added to the original MFO.
Secondly, the improved algorithm formed by adding the Levy
flight strategy based on the QMFO1 algorithm is named QMFO2.
Finally, the algorithm that combines the three strategies is the
QLSMFO. The four algorithms were tested on 10 UCI clustering
datasets. The algorithm parameters and simulation experiments are
consistent with the previous content. In addition, the bold in the table
indicates the optimal value. The experimental data in Table 5
compares the mean and standard deviation of the original MFO,
QMFO1, QMFO2, and QLSMFO to measure the performance
improvement of the algorithm. The effect of the added strategies
on the convergence speed of the algorithm is observed in Figure 10.

The experimental results in Table 5 show that in terms of
algorithm accuracy and stability, QMFO1 has a certain
improvement over the original MFO algorithm on 10 datasets,
and achieves the same accuracy as QLSMFO on Art II and
survival datasets. After adding quantum initialization and QRG
in the original MFO algorithm, due to the increase in the
diversity of the moth population, the search range is expanded
and the exploration ability of the algorithm is enhanced. The
QMFO1 algorithm achieves a better average value than the
original MFO on all ten datasets. Since QRG can adaptively
guide the algorithm to search in a more desired search direction,
the stability of the algorithm is improved. It can be seen fromTable 5
that the accuracy and stability of QMFO2 have been further
improved on the basis of QMFO1. When implementing the Levy
flight strategy, the moth population needs to be assessed to identify
the poor moths and update their positions. Levy flight improves the
searchability of the moth. From the convergence curves in Figures
10A–J, it can be seen that the QMFO2 algorithm has significantly
improved the convergence speed. Both Table 5 and Figure 10 show
that the local search strategy has the greatest contribution to
improving the accuracy, stability, and convergence speed of
QLSMFO, the average value, and standard deviation are both
optimal, and the convergence speed is also the fastest. This is due
to the superior exploitation capability of the local search strategy

based on SFLA. By observing the experimental results of the four
algorithms, the multi-strategy effectively improves the performance
of the algorithm due to a single strategy. The quantum initialization
and Levy flight strategy, both improved the performance of the
original algorithm to a certain extent, and the local search strategy
has greatly contributed to the accuracy, stability, and convergence
speed of the algorithm.

6 CONCLUSION AND FUTURE WORKS

A quantum-inspired moth-flame optimizer with an enhanced local
search strategy (QLSMFO) is introduced to address clustering
analysis in this research. Quantum coding is used for the coding
of individuals in the moth population to enrich the population
diversity and thus boost the exploration capacity of the algorithm.
The addition of the quantum revolving gate guides the population to
evolve towards a better solution, bringing the two phases of
exploration and exploitation into a state of balance. The local
search strategy based on SFLA enhances the mining capability of
standard MFO. Finally, the Levy flight is used to update the poor
solutions in the population. This mechanism improves the
population quality and accelerates the rate of convergence. To
confirm the effectiveness and practical performance of QLSMFO
in clustering analysis, we compared it with eleven algorithms
including ABC, ALO, CS, DE, FPA, GWO, MFO, MVO, PSO,
WOA, SFLA, QBA, GQPSO, and K-means on two artificial
datasets and eight famous UCI datasets. Experimental results
show that QLSMFO significantly outperforms comparison
algorithms with regard to the accuracy, convergence speed, and
robustness. Future research will try to use QLSMFO to solve
higher latitude cluster analysis problems. Try to expand the
application scope of QLSMFO.
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