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The acquisition of bio-signal from the human body requires a strict experimental setup and
ethical approvements, which leads to limited data for the training of classifiers in the era of
big data. It will change the situation if synthetic data can be generated based on real data.
This article proposes such a kind of multiple channel electromyography (EMG) data
enhancement method using a deep convolutional generative adversarial network
(DCGAN). The generation procedure is as follows: First, the multiple channels of EMG
signals within sliding windows are converted to grayscale images through matrix
transformation, normalization, and histogram equalization. Second, the grayscale
images of each class are used to train DCGAN so that synthetic grayscale images of
each class can be generated with the input of random noises. To evaluate whether the
synthetic data own the similarity and diversity with the real data, the classification accuracy
index is adopted in this article. A public EMG dataset (that is, ISR Myo-I) for hand motion
recognition is used to prove the usability of the proposedmethod. The experimental results
show that adding synthetic data to the training data has little effect on the classification
performance, indicating the similarity between real data and synthetic data. Moreover, it is
also noted that the average accuracy (five classes) is slightly increased by 1%–2% for
support vector machine (SVM) and random forest (RF), respectively, with additional
synthetic data for training. Although the improvement is not statistically significant, it
implies that the generated data by DCGAN own its new characteristics, and it is possible to
enrich the diversity of the training dataset. In addition, cross-validation analysis shows that
the synthetic samples have large inter-class distance, reflected by higher cross-validation
accuracy of pure synthetic sample classification. Furthermore, this article also
demonstrates that histogram equalization can significantly improve the performance of
EMG-based hand motion recognition.
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1 INTRODUCTION

Bio-signal analysis plays a crucial role in disease diagnosis, rehabilitation medicine, and even human-
machine interaction. Since the discovery of bioelectricity two hundred years ago, scientists have
begun to understand the human body’s movement response on a deeper level. 24-h ECGmonitoring
helps physicians better diagnose patients’ diseases and intervene in treatment; humans have already
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been able to use electrical signals from the brain for more precise
anesthesia; EMG describes the neuromuscular pathology, and it
has been used as muscle computer interfaces (MCIs) to interact
with extra devices (Chae et al., 2011; Yang et al., 2020). Surface
electromyography (sEMG) is also increasingly well-studied, and
pattern recognition has been well-used in this regard as well
(Jiang et al., 2019; Cheng et al., 2021; Liu et al., 2022). Cheng et al.
(2020) have proposed an sEMG system for 2D visualization. With
the development of machine learning, object detection
technology (Huang et al., 2022), and their progressive
application in biology, large-scale bio-signal datasets are
mandatory. Picking up the US medical community as an
example, the percentage of providers using electronic health
records (EHR) increased from 9.4% in 2008 to 83.8% in 2015
(Henry et al., 2016). However, it is difficult to obtain immense
bio-signal datasets due to the following reasons. First, the process
of extracting bio-signal data is quite cumbersome and requires a
strict ethical approval process (Alexiou et al., 2013). Second, both
equipment and volunteers have high requirements for high-
precision bio-signal acquisition. Therefore, building bio-signal
datasets is an extremely costly affair. In addition, the use of bio-
signal datasets may pose the problem of privacy breach, even if
the dataset is de-labeled, the hidden data can still be recovered by
linking to other identifiable datasets (El Emam et al., 2011; Erlich
and Narayanan 2014). In this case, the use of qualified synthetic
data instead of real data represents a great advantage. It greatly
simplifies the process of obtaining data and protects the privacy of
testers as much as possible.

Generative adversarial networks (GANs) have demonstrated
their power in data enhancement and image processing (Han
et al., 2018; Cherian and Sullivan 2019), which is proposed by
Goodfellow et al. (2014). To obtain better synthesis results, a large
number of GAN models are proposed. For example, conditional
GAN (Mirza and Osindero 2014) adds additional conditional
information to the generator and discriminator; Deep
Convolutional GAN (DCGAN) introduces Convolutional
Neural Networks (CNN) (Radford et al., 2015); Wasserstein
GAN (WGAN) uses the Wasserstein distance for
Jensen–Shannon (JS) divergence (Arjovsky et al., 2017), and so
on. In order to better process time series signals, some scholars
have devoted themselves to optimizing the network structure,
modifying the optimizer and convolution layer used, so that GAN
can be better used for time series signal generation (Jordon et al.,
2018; Yoon et al., 2019). Zhang et al. (2021) and Tian (2021) use
wavelet transformation and Fourier transformation to process
data in time series signals.

GANs have been applied in the generation of images and bio-
signals. Zhong and Zhao (2021) use the combination of short-
time Fourier transformation and GAN to extract fetal ECG;
Hartmann et al. (2018) study the application of WGAN in
electroencephalogram (EEG); Hazra and Byun (2020) used
bidirectional grid long- and short-term memory for the
generator network and constructed SynsigGAN for
synthesizing various types of bio-signals. The remarkable
ability of GAN makes it competent for other related
applications. Khan et al. (2021) propose an adversarial
Gaussian denoiser network that enables good Gaussian

denoising of images. Utilizing DCGAN, the accuracy of
grayscale ear image recognition is greatly improved (Khaldi
and Benzaoui, 2021; Khaldi et al., 2021). Fang et al. (2018)
utilize DCGAN to generate samples and train in an image
recognition model, and achieved satisfactory classification
performance in the radar profile as the dataset for
4 categories. Fang et al. (2019) proposed a new gesture
recognition algorithm based on the CNN and DCGAN, and it
becomes less susceptible to illumination and background
interference.

In recent three years, GAN has been used to process the EMG
signal. Chen et al. (2021) use a GAN-based separation framework
to separate the class-related EMG features for the detection of
trunk compensatory patterns in stroke patients. Anicet Zanini
and Luna Colombini (2020) take DCGAN and neural style
transfer to simulate each patient’s EMG tremor pattern with
different frequencies and amplitudes under different sets of
movements. Hu et al. (2019) propose a two-step pipeline
classification solution based on adversarial learning, achieving
better gesture classification accuracy for both sparse multi-
channel sEMG database and the high-density sEMG database.
These studies address bio-signals as one-dimensional time series
signals, and thus only one-dimensional convolutional layers are
adopted. The contributions of this study are as follows:

• This article proposes a method for generating synthetic data.
With a small amount of real EMG data, the proposed
method can transfer noise into synthetic EMG data by
DCGAN, and the generated data can enrich the dataset
to train classifiers more sufficiently.

• This article does not rely on any traditional EMG feature,
and only transfers the raw EMG data signal to images
through matrix formalization, normalization, and
histogram equalization. During the classification part, all
pixel values will be changed to vectors.

• Our experimental results prove that the synthetic data are
similar to the real EMG data; the synthetic samples have a
larger inter-class distance in comparison with the real
samples; image histogram equalization can significantly
enhance the performance of the proposed method.

2 METHODS

Figure 1 shows the general flow of the proposed method in this
article. The raw EMG data after matrix transformation and
normalization will be converted into image signals. After the
signal is equalized, the R-E dataset in Section 3.3 can be obtained.
After the raw image dataset is processed by the DCGAN, a
synthetic dataset can be obtained. It passes the image
equalization algorithm and will get the F-E dataset in Section 3.3.

2.1 Matrix Transformation and
Normalization
The data preprocessing consists of matrix transformation and
normalization. The dimensionality of the matrix transformation
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is in line with the experimental dataset. The specific dataset will be
introduced in Section 2.5.1. The matrix transformation reshapes
the size of matrices from 16 by 256 to 64 by 64.

B � T(A) (1)
where A is the original matrix, and B is the converted matrix. In
detail,

A � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a1,1 / a1,256
..
.

1 ..
.

a16,1 / a16,256

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

where ai,j is the EMG value, i and j indicate the channel and time
point, respectively. After transformation,

B � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a1,1 / a1,64
..
.

1 ..
.

a16,193 / a16,256

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

Normalization makes each value in each matrix range between
0 and 255 so that each matrix can be displayed as a grayscale
image. The normalization is

bi,j � 255
ai,j − amin

amax − amin
(4)

where

amin � min(A) (5)
and

amax � max(A) (6)
where min(A) and max(A) indicate finding the maximum and
minimum values in matrix A.

After preprocessing, an EMG sample becomes a 64 by
64 grayscale image. The reason for acquiring a grayscale image
is to facilitate the use of established computer vision and image
processing techniques, such as 2D convolutional networks.

2.2 Histogram Equalization
Since this article does not use methods, such as feature
extraction, a large amount of noise exists in both real and
synthetic images. Therefore, this article uses the histogram
equalization method to perform image enhancement
processing on the generated images.

If the probability density function of the known random
variable r is pr(r) , and the random variable s is a function of
r, that is, s=T(r), the probability density of s is ps(s) . So ps(s) can
be calculated from pr(r):

ps(s) � pr(r)
∣∣∣∣∣∣∣drds

∣∣∣∣∣∣∣ (7)

Combined with another important transformation in image
processing:

s � T(r) � (L − 1)∫r

0
pr(w)dw (8)

where L is the gray level of the image and w is the pseudo-integral
variable. Then ask for

ds

dt
� dT(r)

dt
� (L − 1) d

dr
⎡⎢⎢⎢⎢⎢⎣∫r

0
pr(w)dw⎤⎥⎥⎥⎥⎥⎦ � (L − 1)pr(r) (9)

Then bring in

ps(s) � pr(r)
∣∣∣∣∣∣∣drds

∣∣∣∣∣∣∣ � pr(r)
∣∣∣∣∣∣∣∣ 1

(L − 1)pr(r)
∣∣∣∣∣∣∣∣ � 1

(L − 1) (10)

FIGURE 1 | It briefly describes the methods used in this article including matrix transformation, normalization, histogram equalization, and DCGAN.

FIGURE 2 | It shows the grayscale images before and after equalization.
The top two images are synthetic images, and the bottom two are real ones.
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The histogram equalization formula can be obtained:

sk � T(rk) � (L − 1)∑k
j�0
pr(rj), k � 0, 1, . . . , L − 1 (11)

where rk is the grayscale of the input image, sk is the grayscale of
the output image. Moreover, in order to better judge the data
enhancement method proposed in this article, the real pictures
are also equalized to reduce the interference with the
experimental results.

Figure 2 shows the effect of equalization, and it can be seen
that the acutance is enhanced for both real and synthetic images.

2.3 Framework for Generative Adversarial
Networks
In the initial GAN, two models are simultaneously trained in
the whole framework: one is the generative model G that
obtains the data distribution, and the other is the
discriminative model D that determines whether the sample
comes from the training data. The training procedure for G is
to maximize the probability that D is wrong. G receives a
random noise z and generates a picture through this noise,
denoted as G(z). D is used to determine whether a picture is
“real” or not. The input is an image, it’s named x. The output
D(x) indicates whether x is a real image. In the training
process, the goal of generating network G is to try to
generate real pictures to deceive the discrimination network
D. The optimal objective of the GAN can be expressed
as V(D, G):

min
G

max
D

V(D,G) �x~pdata(x)[logD(x)]+z~pz(z)[log(1
−D(G(x)))] (12)

where pdata(x) is the distribution of real data, pz(z) is the
distribution of noise, and is mathematical expectation. The
calculation of the optimal discriminant network can be proved
as follows:

V(G,D) � ∫
x

pdata(x)log(D(x)) + pg(x)log(1 −D(x))dx

(13)
where pg(x) is the x distribution generated by z. In order to
simplify the writing of the equation, it may be assumed that

pdata(x) � a, pg(x) � b,D(x) � y (14)
Putting the assumptions into Eq. 8, the integral function f(y)

can be obtained as

f(y) � alog(y) + blog(1 − y) (15)
and then, according to the first and second derivatives of f(y) ,
can get y � a/(a + b) is the extreme point, the function takes the
maximum value at this time.

V(G,D) � ∫
x
f(y)dx≤ ∫

x
max

y
f(y)dx (16)

The calculation of the optimal generative network is as
follows:

C(G) � ∫
x
pdata(x)log(DG(G)) + pg(x)log(1 −Dp

G(x))
� −log4 + ∫

x
alog

a
a + b

2

+ alog
b

a + b

2

(17)

whereD*
G is the optimal generator. By adding numerator 2, two

Kullback–Leibler (KL) divergences are constructed, and the KL
divergence is greater than or equal to 0. And, assuming that
there are two distributions A and B, and the average
distribution of these two distributions C � A+B

2 , then the JS
divergence between them is the KL divergence of A and C and
the KL divergence of B and C One-half of the KL divergence, as
follows:

JSD(A||B) � 1
2
KL(A||C) + 1

2
KL(B||C) (18)

Provable

C(G) � −log4 + KL[a∣∣∣∣∣∣∣
∣∣∣∣∣∣∣a + b

2
] + KL[a∣∣∣∣∣∣∣

∣∣∣∣∣∣∣a + b

2

� −log4 + 2JS(a||b)
(19)

Therefore, the GAN is solvable, and the solution of the
optimal generator converges to 1/2. However, the original
GAN suffers from problems such as unstable training and
easy mode collapse.

This article chooses DCGAN as the network to generate
synthetic EMG signals. DCGAN is sourced from the original
GAN, but uses convolution and deconvolution instead of
pooling layers, and uses the Tanh activation function
instead of the output layer of the generator, etc. The
specific network framework is shown in Figure 3. The
network model has 9 layers in the generative network, and
10 layers in the discriminant network. In the generation
network, the first layer is a fully connected layer with an
input size is 16 by 16 by 128; the second and seventh layers
are Batch Normalization (BN) layers, making the optimization
space smoother; the third, sixth, and ninth layers are activation
layers with tanh activation function; the fourth layer is a
reshape layer; the fifth and eighth layers are deconvolution
layers, with kernel size and stride to 5 and 2, respectively. The
output is a 64 by 64 RGB image. In the first layer of the
discriminant network, the input size is 64 by 64 by 3. To follow
the input demand of DCGAN, the matrix A is copied 3 times to
the shape of [A, A, A]. This layer is similar to the third layer of
the convolutional layer, which sets the kernel size and step size
to 5 and 2, respectively. The second, fourth, and seventh layers
are all BN layers. The fifth layer is a flattened layer, which
converts the multi-dimensional output into one dimension.
The sixth layer is a fully connected layer with an output length
of 1024. The eighth layer is an activation layer with an
activation function of tanh. The ninth layer is a fully
connected layer. The last layer is a sigmoid-based activation
layer.
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2.4 Hyperparameter Determination
Feasibility and stability are important metrics for DCGAN.
60,000 RGB images with pixels of 64 by 64 by 3 in the toy
dataset are introduced to test the DCGAN model, and the
batch size is set to 128 to observe the output under
1000 epochs. The toy dataset is used to test the generative
effect of the constructed GAN and to help us experiment with
the choice of hyperparameter. Since the basis of this article is
still to take the advantage of GAN for image generation, the toy
dataset is also an image dataset. In the stage of network
construction, a dataset that can be visually inspected is
required to detect whether the most basic functions of the
network are feasible. Therefore, this article chooses the avatar
dataset from Kaggle as the toy dataset for evaluation. To verify
whether the GAN functions well on a small training dataset,

this article divides the toy dataset into minor ones. The result is
compared with that of the previous GAN for large sample
training, which helps us to roughly determine the setting of
hyperparameter. It allows us to quickly judge whether the
constructed DCGANmodel is stable. After confirming that the
network model has the initial ability to generate images, this
article reduces the number of samples to 200 and 80 to train the
DCGAN for small-size data evaluation. As shown in Figure 4,
the quality of the synthesized images decreases when the
number of samples is reduced. But it can still provide
acceptable performance as long as the number of epochs is
large enough. Therefore, it can be considered that the network
constructed is stable and feasible. Based on preliminary
experiments on the toy dataset, this article sets batch size to
32 and epoch to 1000.

FIGURE 3 | (A) is the construction of the generator, (B) is the construction of the discriminator.
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Figure 5 shows the synthetic EMG images generated by DCGAN
at different epochs, in which theDCGAN is trained by the EMGdata
of a gesture. It can be found that with the increase of epoch, the
quality of the image improves. In comparison with the real EMG
image, the synthetic one shows a very similar appearance at
1000 epochs. Thus, the last 100 synthetic images at
901–1000 epochs are selected as the synthetic dataset.

2.5 Evaluation
2.5.1 Electromyography Dataset
The dataset in this article is the target of one with sEMG signals,
which is initially proposed by Fang et al. (2021). It is measured
with a custom-built acquisition system. The system consists of
16 bipolar surface EMG channels. Each channel of the EMG
signal is filtered by a 50 Hz powerline filter, followed by an

FIGURE 4 | The first, second, and third rows show the synthetic images with sample numbers of 5000, 200, and 80, respectively. The first five columns show the
synthetic images at different epochs. The last column shows the real images.

FIGURE 5 | It shows the EMG synthetic images trained by 80 samples at different epochs and compares synthetic images at epoch 1000 with the real image.
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analog-to-digital converter with a sampling frequency of 1 kHz.
In this dataset, 16 channels of EMG signals are acquired from the
forearm when subjects are performing 13 hand gestures. Six
subjects are involved in the procedure of data acquisition. For
each subject, data are collected for 10 days, and twice each day in
themorning and afternoon. After data segmentation and labeling,
each gesture contains 100 samples, and each sample has
4,096 values. The 4,096 values consist of 16 channels of
256 sampling points. In our experiments, part of the dataset is
chosen to evaluate the proposed method, containing a total of
10 gestures in 4 days. More detailed information about the
experimental data will be given in Section 2.5.2.

The EMG signal acquisition scenario is illustrated in Figure 6,
where 13 specific hand gestures are demonstrated. The picture in
the upper left shows the EMG signal displayed on the screen. The
remaining parts show the instruments and equipment used in the
experiment, such as the EMG amplifier and the 16-channel
sensory sleeve.

2.5.2 Classification
The designed DCGAN is tested on part of the ISRMyo-I dataset.
The selected sub datasets are referred to as S1D1, S3D1, S5D1,
S1D2, S3D2, S5D2, S2D5, S4D5, S6D5, S2D3, S4D3, and S6D3.
S1D1 indicates the EMG data recorded from the first day of the
first subject. The first six sub datasets are selected from the

morning session with gesture labels 1, 3, 5, 9, and 10. The first
six sub datasets are selected from the afternoon session with
gesture label 2, 4, 6, 7, and 8.

For the training of DCGAN, one of the first 80 images out of
100 images is selected, and a separate model is trained for each
gesture. The synthetic images are generated along with the
training procedure, and thus 1,000 fake images are generated
after 1,000 epochs. In this article the last 100 synthetic images are
included in the synthetic dataset for further testing.

This article uses the Weka (University of Waikato,
New Zealand) packing classifiers (SVM and RF) with the
default parameters to evaluate the experimental results. This
article reconverts 64 by 64 image data into 1 by 4,096 vectors.
For better classification, all the values in the vector are normalized
to the range between 0 and 1. Adding the label to the vector, an
EMG sample contains 4,097 columns, which becomes the input of
Weka-based classifiers.

This article conducts two experiments to evaluate the effect of
DCGAN: similarity analysis and cross-validation analysis. In the
similarity analysis, 80% of the real data (80 samples per gesture in
each sub dataset), synthetic data (100 samples per gesture in each
sub dataset), and mixed data (containing 80% of the real data and
synthetic data) are used to train SVM and RF classifiers, and the
rest 20% of the real data (20 samples per gesture in each sub
dataset) are used for testing. The classification accuracy indicates

FIGURE 6 | It is a conceptual diagram of the experimental setup and data collection scenario. It describes the process of collecting EMG signals of 13 gestures
under 16 channels.
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whether the synthetic data is similar to the real data and whether
it can contribute to the enrichment of the dataset. If the classifier
trained by synthetic data can classify real data, it somewhat

indicates synthetic data has a certain similarity with the real
data. If the classifiers trained by a mixture dataset can achieve
higher classification accuracy, it implies that synthetic data can
enhance the data in a good manner for classifier training. In the
cross-validation analysis, a 10-fold cross-validation analysis is
performed on each dataset to judge the inter-class and intra-class
distance for each gesture. Higher classification accuracy can
somewhat indicate larger inter-class and less intra-class
distance. In the experiments, real data (R), fake data (F), real
data after equalization (R-E), fake data after equalization (F-E),
the mixture of fake data and real dataset (FR), the mixture of fake
data and real data after equalization (FR-E) are separately tested
under 10-fold cross-validation. For each subject, the R dataset
contains 500 samples (5 gestures, and 100 samples per gesture),
and the F dataset contains 500 samples as well, but these samples
are generated by DCGAN.

TABLE 1 | The classification accuracy is obtained by SVM and RF classifiers,
where 2-, 3, and 5-class gesture classification problems are considered. For
all the tests, 20 real samples in each gesture are used to test the classifiers trained
by real data (RR), synthetic data (FR), and both real data and synthetic data (MR).

Classification RR (%) FR (%) MR (%) Promotion (%)

SVM 2 class 63.93 60.00 65.36 1.43
SVM 3 class 46.25 45.62 49.17 2.92
SVM 5 class 32.50 29.25 33.50 1.00
RF 2 class 86.94 83.06 90.28 3.34
RF 3 class 71.67 67.61 76.90 5.23
RF 5 class 53.86 41.29 55.86 2.00
Average 59.19 54.47 61.85 2.66

FIGURE 7 | Experimental comparisons under different classifications, in which (A), (B), and (C) correspond to five-, three-, and two-class classification problems,
respectively. Each bar represents the classification accuracy, and the error bar represents the corresponding standard deviation. Real100 means cross-validation with
100 real images for each gesture. Fake 100 represents cross-validation with 100 fake images for each gesture. Fake100+Real100 means cross-validation with 100 fake
images and 100 real images mixed for each gesture.
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3 RESULTS

3.1 Similarity Analysis
Table 1shows the similarity analysis results by the index of
classification accuracy. It can be found that when the classifier is
only trained by synthetic data, the average accuracy decreases by
4.72%, from 59.19% to 54.47%. However, after mixing the real data
with synthetic data, the average accuracy increases to 61.85%, which is
2.66% higher than that of real data trained classifiers. It can be found
that the overall accuracy is not high, which is probably because all
classifiers are trained by 4,096-dimension samples which are directed
converted from images. It is also found that RF outperforms SVM in
all cases in our experiments.

3.2 Cross-Validation Analysis
From the experimental results in Figure 7, it can be seen that the
classification accuracy obtained from the synthetic dataset (Fake
100) is the highest in comparison with the other two, and the
classification accuracy obtained from the real dataset (Real 100) is
the lowest. After mixing the real data with the fake data (Fake 100 +
Real 100), it can also be found that the accuracy obtained is lower
than the Fake 100 test, but higher than that of the Real 100 test.

For SVM to classify five gestures, the average accuracy obtained
from real data, fake data, and mixed data are 33.32%, 66.07%, and
49.86%, respectively. For SVM to classify three gestures, the average
accuracy obtained from real data, fake data, and mixed data are
47.28%, 70.17%, and 59.90%, respectively. For SVM to classify three
gestures, the average accuracy obtained from real data, fake data, and
mixed data are 68.67%, 82.21%, and 75.52%, respectively. For RF to
classify five gestures, the average accuracy obtained from real data,
fake data, and mixed data are 61.10%, 94.47%, and 79.55%,
respectively. For RF to classify three gestures, the average
accuracy obtained from real data, fake data, and mixed data are
79.44%, 96.86%, and 96.86%, respectively. For RF to classify two
gestures, the average accuracy obtained from real data, fake data, and
mixed data are 90.46%, 96.44%, and 98.92%, respectively.

Overall, the data exhibited similar enhancement curves across all
experiments. It implies that the synthetic data have a larger inter-class
and smaller intra-class under-distance than the real data. That is the
reason why the cross-classification of synthetic data and mixed data
achieves much higher classification accuracy than the real dataset.

3.3 Histogram Equalization Enhancement
Analysis
Further experimental results are conducted on the effect of
histogram equalization on both similarity test and cross-
validation test. As seen in Figure 8 (similarity tests), the data
after equalization achieves better classification accuracy in both

FIGURE 8 | (A) compares the cross-validation accuracy across different datasets by SVM-based classification, and (B) compares the cross-validation accuracy
across different datasets by RF-based classification. R and F represent that only real data and fake data are used, respectively. R-E and F-E represent the real and fake
datasets after equalization, respectively. FR represents amixture dataset with equal amounts of real data and fake data. FR-E represents a mixture of equalized datasets
containing both real and fake data.

FIGURE 9 | 10-fold cross-validation accuracy with different datasets,
including real data (R), fake data (F), real data after equalization (R-E), fake
data after equalization (F-E), the mixture of fake data and real data (FR), the
mixture of fake data and real data after equalization (FR-E).
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SVM and RF classifiers. SVM classifier seems to be insensitive to
histogram equalization for the real dataset (R), and the classification
accuracy after histogram equalization for F and FR datasets is
substantially improved by 33.60% and 24.78%, respectively. Since
the original classification accuracy of the RF classifier is relatively
higher, the improvement rate of equalization is not that significant.
But the improvement is still evident in Figure 8B.

Figure 9 (cross-validation test) clearly shows that the
classification accuracy of the F dataset is much higher than
that of the R dataset, and the classification accuracy of the FR
dataset is slightly higher than their average. The equalization
approach is successful for almost all datasets and classifiers. It
makes the five-class accuracy of the FR dataset finally reach
74.63% and 89.52% in the SVM and RF classifiers, respectively.

4 DISCUSSION

This article investigates a DCGAN-based method for multi-channel
EMG signal enhancement and validates the results using two
classifiers packaged in Weka. The classification ability of the two
selected classifiers, SVM and RF, has been corroborated in several
ways. Among them, RF ismore suitable for the classification of high-
dimensional data, so in each group of experiments, the classification
accuracy of RF is better than SVM.However, since the dataset in this
experiment does not take feature extraction and classifier parameter
adjustment, the overall classification accuracy is not high.

In the similarity test, the mixed dataset containing synthetic
data maintains comparable classification accuracy to the real
dataset. The experiment using synthetic data for training and
real data for tests, does not result in a significant accuracy
drop. These results prove that the synthetic dataset has a
certain similarity with the real dataset, which can be effectively
enriched. In a cross-validation test, this article finds that synthetic
data can provide higher classification accuracy than real data,
which implies that the synthetic dataset may have larger inter-
class or smaller intra-class distances.

5 CONCLUSION

This article proposes a method to generate synthetic EMG data
for hand gesture classification by DCGAN, in which real multi-
channel EMG signals are converted to images for DCGAN
training, and histogram equalization is adopted in order to
process the image for better performance. Our experiment

proves that synthetic data can enrich the sample pool to
improve the classification accuracy to a certain extent.
Histogram equalization can further improve images quality of
both real and synthetic images. The reason may be the case that
histogram equalization enhances the global contrast of the
images, allowing better classification accuracy. In the future,
synthetic data will be further tested in deep learning networks,
to verify whether the addition of synthetic data can promote deep
learning network training. Additional GAN models and image
enhancement methods will also be tested to further enhance the
quality of synthetic EMG.
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