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Technical evaluation of swimming performance is an essential factor in

preparing elite swimmers for their competitions. Inertial measurement units

(IMUs) have attracted much attention recently because they can provide

coaches with a detailed analysis of swimmers’ performance during training.

A coach can obtain a quantitative and objective evaluation from IMU. The

purpose of this studywas to validate the use of a newphase-based performance

assessment with a single IMU worn on the sacrum during training sessions.

Sixteen competitive swimmers performed five one-way front crawl trials at their

maximum speed wearing an IMU on the sacrum. The coach recorded the lap

time for each trial, as it remains the gold standard for swimmer’s performance in

competition. Themeasurement was carried out once aweek for 10 consecutive

weeks to monitor the improvement in the swimmers’ performance. Meaningful

progress was defined as a time decrease of at least 0.5 s over a 25 m lap. Using

validated algorithms, we estimated five goal metrics from the IMU signals

representing the swimmer’s performance in the swimming phases (wall

push-off, glide, stroke preparation, free-swimming) and in the entire lap. The

results showed that the goal metrics for free-swimming phase and the entire lap

predicted the swimmer’s progress well (e.g., accuracy, precision, sensitivity, and

specificity of 0.91, 0.89, 0.94, and 0.95 for the lap goal metric, respectively). As

the goal metrics for initial phases (wall push-off, glide, stroke preparation)

achieved high precision and specificity (≥0.79) in progress detection, the

coach can use them for swimmers with satisfactory free-swimming phase

performance and make further improvements in initial phases. Changes in

the values of the goal metrics have been shown to be correlated with

changes in lap time when there is meaningful progress. The results of this

study show that goal metrics provided by the phase-based performance

evaluation with a single IMU can help monitoring swimming progress.

Average velocity of the lap can replace traditional lap time measurement,

while phase-based goal metrics provide more information about the

swimmer’s performance in each phase. This evaluation can help the coach

quantitatively monitor the swimmer’s performance and train them more

efficiently.
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Introduction

Swimming coaches aim to improve the performance of

swimmers in intensive training sessions and prepare them for

competition. Depending on the event, the swimmer completes

multiple sets, each of which includes several swimming phases: a

dive or wall push-off, a glide underwater, a stroke preparation,

free-swimming to the end, and a turn to continue the next round

with the same sequence of phases. Coaches should focus on each

phase because a flawless performance by the swimmer in every

phase is necessary to win (Mooney et al., 2016b). They mostly

rely on observation and personal experience to monitor and

evaluate a swimmer’s performance. A coach expects swimmers to

improve their performance by 1%–10% during a training season,

depending on swimmer’s level (Zacca et al., 2020; Ferreira et al.,

2021), and usually tracks this progress by measuring lap time

over different swimming distances (most commonly 400 m, as it

is used to evaluate the swimmer’s aerobic performance).

However, lap time can only reflect the swimmer’s overall

progress and not their phase-based performance. The use of

biomechanical parameters such as stroke rate, stroke length, and

stroke index (product of average velocity and stroke length)

(Morais et al., 2013) or body composition (Thng et al., 2022) are

other methods proposed by researchers to track swimmer’s

progress.

The complexity of extracting performance-related

parameters has led coaches to use technological tools to

obtain an objective and quantitative analysis (Payton and

Adrian Burden, 2017). Swimming coaches use a variety of

analysis systems such as 2D and 3D cameras (Mooney et al.,

2015), inertial measurement unit (IMUs) (Guignard et al., 2017),

or physiological parameters such as heart rate (Crowcroft et al.,

2017), or lactate monitors (Smith et al., 2002) to investigate the

technical aspects of swimming. Although video-based systems

are still the gold standard for swimming analysis, they generally

suffer from several limitations in aquatic environments, such as

cumbersome installation and calibration, water splashes and

reflections, or limited recording volume (Callaway et al.,

2010). As a result, there is still a need in the coaching

community for supportive analysis systems (Mooney et al.,

2016a). Improvements in the accuracy, scalability, and cost of

Micro-electromechanical systems (MEMS) have led to IMUs

becoming a credible option for swimmer motion tracking, as

they can provide quick and easy-to-use feedback on detailed

performance-related metrics (Ramos Félix et al., 2019).

Several studies have investigated the analysis of swimming

with IMUs by extracting kinematic parameters in different

phases and techniques such as stroke rate and stroke count

(Davey and James, 2008), instantaneous velocity (Dadashi

et al., 2012), tumble turn spatio-temporal parameters (Slawson

et al., 2012) or wall push-off maximum velocity (Stamm, 2013).

Although these studies have demonstrated the application of

IMUs for swimming analysis, they have not related the obtained

kinematic parameters to the swimmer’s performance-related

metrics. In our previous study, we used IMUs to

automatically segment each swimming lap into wall push-off

(Push), glide (Glid), stroke preparation (StPr), free-swimming

(Swim), and turn phases (Hamidi Rad et al., 2021b). The

algorithms developed in this study take a macro-micro

approach by swimming bouts detection, lap separation, and

swimming style identification at the macro level, and then

divide each lap into phases by detecting spatio-temporal

events on IMU acceleration and angular velocity data at the

micro level. Subsequently, a variety of kinematic parameters were

extracted from each phase and used to estimate phase-based goal

metrics (Pushmaximum velocity, Glid end velocity, StPr average

velocity, Swim average velocity and lap average velocity) for the

swimmer’s performance evaluation (Hamidi Rad et al., 2021a),

indicating how well the swimmer performed the corresponding

phase. However, to fully utilize the IMU sensor for training,

assessing the sensitivity of IMU-based goal metrics to

performance progress is of utmost importance.

Therefore, the main objective of this study was to validate the

use of IMU-based goal metrics to monitor swimming

performance during training sessions. Using the macro-micro

approach to swimming analysis to separate the swimming phases

(Push, Glid, StPr, and Swim) and the phase-based performance

assessment on sacrum IMU, we estimated the goal metrics of

each phase. We then analyzed the sensitivity of goal metrics in

relation to the swimmer’s progress across multiple training

sessions. We assumed that 1) lap time is the most important

representative of performance level and can be used to define

meaningful progress, and 2) the goal metrics change in

association with lap time when the swimmer makes

meaningful progress.

Materials and methods

Measurement setup and protocol

Sixteen competitive swimmers from a swimming team

participated in this study, and their characteristics are shown

in Table 1. A waterproof band (Tegaderm, 3MCo., United States)

was used to attach an IMU (Physilog® IV, GaitUp, CH.) to the

swimmer’s lower back on sacrum bone. The sensor recorded 3D

angular velocity (±2000°/s) and 3D accelerometer (±16 g) at a

sampling rate of 500 Hz. After installation of the sensor,
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functional calibration was performed with simple out-of-water

movements (upright standing and squatting) to make the data

independent of the sensor exact position on swimmer’s sacrum

(Dadashi et al., 2013).

After a brief warm-up, swimmers were asked to swim five

times one swimming pool length (one lap) in the same direction

at maximum velocity, beginning with a 5-s upright stance before

wall push-off in the water (Figures 1A). During a full lap, the

swimmer went through all swimming phases so that we could

analyze the goal metrics of each phase (Figures 1B). The coach

recorded the lap time of all swimmers with a stopwatch during

each attempt (Figures 1C). Each swimmer had 5 min rest

between trials to avoid fatigue. To track the swimmers’

progress, the same measurement was repeated once a week for

ten sessions. Prior to participation, the measurement procedure

was explained to each swimmer and they provided written

informed consent. The measurement protocol of this study

was approved by the EPFL Human Research Ethics

Committee (HREC, No. 050/2018).

Lap segmentation and phase-based
performance evaluation

First, swimming bouts and laps were determined during each

training session according to the validated algorithms of our

macro-micro approach and then divided into four swimming

phases of Push, Glid, StPr and Swim (Hamidi Rad et al., 2021b).

Push phase begins with the forward movement of the swimmer’s

trunk and ends when the feet leave the wall. Glid phase lasts until

the beginning of the dolphin kicks in front crawl style. StPr phase

is the next phase that ends with the first arm stroke, which is the

beginning of the Swim phase, and Swim phase ends when the

swimmer’s hand touches the wall. The method uses motion

biomechanics to identify the events corresponding to the

beginning and end of each phase for lap segmentation.

Subsequently, based on our phase-based performance

evaluation method (Hamidi Rad et al., 2021a), a set of spatio-

temporal parameters reflecting various aspects of swimmer’s

performance were extracted from each phase. These

parameters are categorized as propulsion, posture, efficiency

and duration/rate to represent the most important aspects of

performance. They were fed into LASSO (Least Absolute

Shrinkage and Selection Operator) regression models to

estimate five phase-based goal metrics that quantify the

performance within each phase: Push maximum velocity, Glid

end velocity, StPr average velocity, Swim average velocity, and lap

average velocity respectively for phases of push, glide, stroke

preparation, swim and the entire lap. These goal metrics were

tracked during the measurements to assess their sensitivity to

swimmer progress during weeks of training.

Sensitivity analysis

Sensitivity analysis was performed to assess how phase-based

goal metrics react to swimmer’s progress in two steps. In the first

step, we considered all sessions of each swimmer with a

significant change in lap time, as lap time is considered

representative of swimming performance (Robertson et al.,

TABLE 1 Statistics of the swimmers. The values are presented as mean ± standard deviation.

Male Female Age (yrs) Height (cm) Weight (kg) 50 m Front
crawl record
(s)

9 7 14.6 ± 0.8 171.6 ± 6.9 55.9 ± 10.1 28.60 ± 2.04

FIGURE 1
Measurement protocol with IMU (red box) attached to the sacrum. After functional calibration, the swimmer starts in the water with an upright
posture (A) and performs all swimming phases atmaximum speedwhile swimming to the other side in front crawl (B). The coach records the lap time
with a stopwatch during each lap (C).
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2009). Using the data from the weekly measurements, we

compared the swimmer’s performance in each session to

other sessions to find significant progress. According to the

measurement protocol, five values (for each goal metric and

for lap time) are obtained from each participant per session.

Because the sample size for comparison between two sessions is

small, we used Cliff’s Delta (d) effect size analysis as a

nonparametric method (Macbeth et al., 2011). This method

allowed us to determine whether the achieved lap times and

goal metrics differed significantly from one session to another.

Each comparison set is assigned an effect size value to quantify

the change (Eq. 1).

d � #(xi > xj) − #(xi < xj)
n1n2

(1)

Where the cardinality symbol # indicates counting, xi and xj are

the lap time or goal metric values of sessions i and j, respectively.

n1 and n2 are the sizes of the two data sets, both equal to five in

our study (i.e., the number of laps). The value of d estimates the

probability that a value selected from the ith session is greater

than a value selected from the jth session, minus the inverse

probability. This can be referred to as a measure of dominance,

indicating the degree of overlap between values from two test

sessions. The d value is generally within the closed interval of [-1,

+1] indicating the degree of overlap between the values from two

sessions (effect size of +1.0 or −1.0 for no overlap and 0 for

complete overlap). The effect size is considered significant if the

confidence interval (CI) does not include zero. The upper and

lower bounds of the asymmetric CI (range of δlower to δhigher) for

Cliff’s d are constructed based on Eqs 2–4 as a more robust and

conservative method (Feng and Cliff, 2004). tα/2 is the critical

value of the t-distribution for the corresponding confidence level.

di �
#(xi >xj) − #(xi < xj)

n1
, dj �

#(xj >xi) − #(xj < xi)
n2

(2)

s2d �
n21∑

n1
i�1(di − d)2 + n22∑

n2
j�1(dj − d)

2 + n22∑
n1
i�1∑

n2
j�1(dij − d)

2

n1n2(n1 − 1)(n2 − 1)
(3)

δlower, δhigher � d − d3 ± tα/2sd(1 − 2d2 + d4 + t2α/2s
2
d)

1/2

1 − d2 + t2α/2s
2
d

(4)

Thus, the effect size values along with the CI ranges were

calculated for comparing the five values of goal metrics or lap

time between every two sessions using Eqs 1–4 and the significant

pairs were separated. However, all significant changes in lap time

should not be considered as meaningful progress. This is because

the lap time value itself is subject to recording errors (using the

stopwatch). Based on the training plan, the coach expected to see

real progress in the swimmers after at least 3 weeks of training.

Therefore, a meaningful lap time change (MLTC) was defined as

the minimum threshold for meaningful progress. It is indeed

similar to the concept of smallest worthwhile enhancement

which is defined for competitions to estimate the minimum

amount of improvement that is beneficial for athletes to win a

race (Hopkins et al., 1999). However, we tend to compare

swimmers only with themselves and not with others in

training sessions. So we calculated the median lap time of

comparisons that were 3 weeks apart (session 1 and session 4,

session 2 and session 5, etc.). MLTC is then calculated by taking

the average of the differences of all these comparison pairs over

all swimmers.

In the second step of the sensitivity analysis, among all

significant differences identified in step one between test

sessions, only those with a median change more than MLTC

were retained as meaningful progress. The entire process of the

two steps for detecting significant pairs and then selecting the

pairs with meaningful progress is explained by the following

pseudocode, where m and n are two different session numbers

that vary across all sessions with two loops and LTi,j is ith lap time

of jth session.

After obtaining all the pairs with meaningful progress, the

relationship between changes of goal metrics and changes in lap

time was examined for these pairs to analyze the sensitivity of

goal metrics to progress by answering three questions:

(i) “Do the goal metrics predict meaningful progress, as does

lap time?”

(ii) “How well do the goal metrics represent the swimmer’s

performance compared to the lap time?”

(iii) “What is the contribution share of each goal metric to

swimming progress?”

To answer the first question, we analyzed the correspondence

between progress detection by each goal metric and lap time. For

each pair of sessions, we calculated whether the change

(i.e., improvement) in the values of goal metrics was

significant (i.e., true) or not significant (i.e., false) and then

compared it to the meaningfulness of the change in lap time.

The performance of goal metrics in predicting meaningful

progress (i.e., a significant lap time more than MLTC) was

assessed using the following association rules:

• True positive (TP): goal metric shows a significant change

when there is a meaningful progress.
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• True negative (TN): no significant change is observed with

goal metric when there is no meaningful progress.

• False positive (FP): no meaningful progress, while the goal

metric changes significantly.

• False negative (FN): meaningful progress, while the goal

metric does not show significant change.

The values for accuracy, precision, specificity, and sensitivity

to predict meaningful progress are calculated for each goal metric

using Eqs 5–8.

Accuracy � TP + TN

TP + TN + FP + FN
(5)

Precision � TP

TP + FP
(6)

Sensitivity � TP

TP + FN
(7)

Specificity � TN

TN + FP
(8)

To answer the second question, how well the goal metrics

represent swimming performance, effect size values were

estimated for each significant change in the goal metric and

compared to the effect size of lap time if there was a meaningful

progress. The third question is about the relationship between the

magnitude of change in each goal metric (i.e., change of Push

maximum velocity (ΔPush), Glid end velocity (ΔGlid), StPr

average velocity (ΔStPr), Swim average velocity (ΔSwim), and

lap average velocity (ΔLap)) and the change in lap time

(ΔLapTime) when there is a meaningful progress. This

analysis is performed by calculating the Pearson correlation

(Benesty et al., 2009) between the changes in goal metrics and

lap time values.

Results

A post-hoc sample size analysis was performed (Jones

et al., 2003) considering the lowest acceptable sensitivity and

specificity of 0.90 and 0.80, respectively, with a confidence

interval of 90%, resulting in a sample size of 107 for this study.

This means that at least this number of meaningful

comparisons are needed to make a valid comparison

between the change in goal metrics and the change in lap

time. During the ten measurement sessions, there were seven

absences due to swimmers being unavailable, and a total of

750 swimming laps were recorded. Each swimmer is compared

to themselves during all measurement sessions, and

642 comparisons were made for all swimmers. 272 of the

comparisons showed statistically significant progress (based

on Cliff’s delta analysis at a 95% confidence level). The

accuracy, precision, sensitivity, and specificity of each of

the goal metrics used to detect this significant change in

lap time (i.e., the first step of the sensitivity analysis) can

be found in the Supplementary Figure SA1. Next, comparison

of sessions 3 weeks apart for the second step of the analysis

yielded an MLTC value of 0.5 ± 0.2 s, resulting in 122 pairs of

sessions with meaningful progress which is higher that the

sample size. Each swimmer showed at least four comparison

pairs with meaningful progress. The slower the swimmer was

during the first test session (higher median of lap time), the

higher the number of comparison pairs with meaningful

progress (significant correlation coefficient of 0.70), because

the swimmers who swim relatively slower have more room for

performance improvement. The accuracy, precision,

sensitivity, and specificity of each goal metric for detecting

meaningful progress are shown in Figure 2.

Among the five metrics, lap and Swim average velocity

achieved the highest values for accuracy, sensitivity, precision,

and specificity (≥0.87). For the three metrics related to the

initial phases of Push, Glid and StPr, precision and specificity

were relatively high (≥0.79), whereas sensitivity was low

(0.45–0.65). For the comparisons in which both meaningful

progress in lap time was detected and the goal metric was

significant, the effect size values and confidence interval were

calculated (Table 2). Comparison of the effect size values for

each goal metric and lap time shows lap average velocity and

Swim average velocity are the best ones for progress detection

(difference of 0.04 between effect size values). However, the

other three goal metrics achieved lower effect size values than

lap time.

The final set of results addresses the correlation analysis

between the magnitude of changes in the goal metrics (ΔPush,
ΔGlid, ΔStPr, ΔSwim, and ΔLap) and in lap time (ΔLapTime)

across all comparisons with meaningful progress. Histograms of

the changes in the goal metrics are displayed in Figure 3. The root

mean squared error (RMSE) for the estimation of each goal

metric is extracted from our previous study (Hamidi Rad et al.,

2021a) and shown specifically for each goal metric in vertical red

lines in Figure 3. The delta values lying inside the range of RMSE

(±RMSE range) are too small to be valid as they might happen

due the model errors and should be removed. After removing the

invalid delta values for each goal metric, we analyzed the

contribution of each metric to the progress of swimming

performance. Table 3 shows the average, standard deviation,

and range for the changes in the goal metrics, as well as their

correlation coefficient (r) with ΔLapTime. Of the five goal

metrics, ΔStPr shows the highest standard deviation (0.40 m/

s). With the exception of ΔPush, the change values of all goal

metrics were significantly correlated with ΔLapTime, however

with weak correlation coefficients (Table 3).

Discussion

In this study, a single IMU, worn on sacrum, was used to

identify the four major phases of a swimming lap and
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calculate a performance-based goal metric for each of these

phases and the entire lap. These goal metrics were then used

to follow the swimmers’ progress over ten training sessions.

The results obtained confirmed our hypothesis of association

between the phase-based goal metrics and swimmers’

progress, but with varying sensitivity and degree of

association in each phase.

As shown in Figure 2, lap average velocity and Swim average

velocity achieved the highest accuracy, precision, sensitivity,

and specificity (≥0.87) among all goal metrics to predict

meaningful progress. Because lap time is used as a

representative of performance, lap average velocity was

expected to be highly associated with it. This goal metric

could replace traditional lap time because it is not affected

by human recording error. Furthermore, since the Swim phase

is the longest phase of a lap, it should contribute more to lap

time compared to other phases. Although the sensitivity of Push

maximum velocity, Glid end velocity, and StPr average velocity

are low, their specificity and precision are either at or above

0.80. Considering Eqs 6–8, the high specificity and precision is

mainly due to a low number of false positives. It can be

concluded that the three initial goal metrics are less good at

detecting meaningful progress than the other two metrics.

However, when they do detect progress, it is correct,

indicating that they are relevant to progress assessment

despite their low sensitivity.

Compared with similar results using goal metrics to detect

significant (and not meaningful defined by MLTC) progress

shown in Supplementary Figure SA1, using meaningful

progress improved the results. The accuracy, precision,

sensitivity, and specificity of all five goal metrics for

detecting significant progress were lower because the

procedure was affected by the lap time recording error.

However, the sensitivity of the goal metrics for the initial

phase remained low for the same reason. Overall, it appears

that all phases are important for improving overall

performance and progress is the result of mastering all

phases of swimming. The coach can use the three metrics of

the initial phases to provide an additional quantitative

assessment. However, this argument does not apply in

reverse, and a change in lap time is not essentially the result

of better performance in the initial phases. It increases the

number of false negatives and lowers the sensitivity of the

initial phases goal metrics to overall progress.

In terms of effect sizes and confidence interval ranges, Table 2

shows that the effect size values of the goal metrics for lap average

velocity and Swim average velocity are closest to the effect size of

lap time, such that these two metrics are as strong as lap time in

FIGURE 2
Accuracy, precision, sensitivity and specificity of goal metrics for detecting a meaningful progress (lap time change).

TABLE 2 Effect size and confidence interval of all goal metrics and lap time for the comparisons with both meaningful progress and significant goal
metric change.

Goal metric Push maximum
velocity

Glid end
velocity

StPr average
velocity

Swim average
velocity

Lap average
velocity

Effect size [CI] Goal metric 0.67 [0.26, 0.85] 0.78 [0.30, 0.90] 0.75 [0.26, 0.89] 0.92 [0.25, 0.96] 0.93 [0.27, 0.97]

Lap time 0.96 [0.25, 0.98]
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indicating progress. However, the effect size values of the goal

metrics Push maximum velocity, Glid end velocity, and StPr

average velocity are lower than lap time because they cannot

represent the overall performance of the swimmers as well as lap

time. It can be argued that if the swimmer is not making more

progress in the Swim phase, there is still room for improvement

in the initial phases and the coach should focus on these goal

metrics to make further progress.

Figure 3 shows that among the five changes in the goal

metric, only ΔStPr has worsened in some cases, while there is

a meaningful progress on lap performance (negative values of

the histogram). Due to the coaching strategy at this period of

the season, the coach did not emphasize working on this

phase for the swimmers with weak performances, and asked

them to focus on other phases to compensate. Most of the

change values of all goal metrics are outside the range of the

FIGURE 3
Histograms of changes in the five IMU goal metrics (ΔPush, ΔGlid, ΔStPr, ΔSwim, and ΔLap) for the comparisons with meaningful progress. The
estimation RMSE range of each goal metric is displayed with red dashed lines.

TABLE 3 Average, standard deviation, and range of each goal metric change and its correlation coefficient (r) with ΔLapTime for all meaningful
progress comparisons. The change values that are below RMSE of each goal metric are removed.

Goal metric
change

ΔPush ΔGlid ΔStPr ΔSwim ΔLap

Average (m/s) 0.49 0.33 0.50 0.14 0.13

Standard deviation (m/s) 0.09 0.06 0.40 0.02 0.03

Range (m/s) 0.52 0.44 1.89 0.16 0.17

Correlation coefficient (r) with ΔLapTime −0.04 −0.21** −0.17** −0.29*** −0.31***

*p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001.
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RMSE of the goal metric estimation. The correlation

coefficients of the changes of all goal metrics with

ΔLapTime are weak (<0.4) (Table 3). Since the change

values of the goal metrics are reliable after removing the

samples lying inside the ±RMSE range (Figure 3), the main

reason for the weak correlation is the error in recording the

lap time, since it is recorded by the coach with a handheld

stopwatch, while this analysis requires a more precise

method. However, since the correlations are significant,

we can conclude that improving goal metrics contributes

to swimmer’s progress and the coach should use all of these

metrics in the training sessions.

In order to obtain a larger, more varied data set, both

male and female swimmers were used to generate our results,

and comparison based on individual differences is beyond

the scope of this study. For technical reasons, only front

crawl technique is examined here. However, based on our

previous research (Hamidi Rad et al., 2021a), similar goal

metrics can be extracted from other main swimming

techniques (backstroke, butterfly, and breaststroke) to

perform the same study. The lap time was recorded using

stopwatch which is prone to human error and using more

precise measurement methods such as cameras can increase

the quality of this analysis. Since we had only one-way laps in

the measurements, the turn phase was not evaluated in this

study. The number of lap repetitions per swimmer was

limited to five to avoid a fatigue effect that could affect

the assessment of progress. However, collection of a larger

data set would be required to perform a more powerful

statistical analysis.

This study shows that the goal metrics calculated from a

single sacrum IMU can provide valuable information about

performance in different swimming phases. Coaches can forgo

measuring lap time with a stopwatch and use the goal metric

for lap average velocity, which can be automatically estimated

based on IMU as a substitute for traditional lap timing. They

can then focus on the goal metric for each phase to get a more

detailed analysis of the swimmer’s performance. Compared to

other studies monitoring swimmers’ performance that focused

mainly on either overall performance or free-swimming phase

parameters (Morais et al., 2013, 2015), our proposed goal metrics

allow the coach to track swimming performance in each phase

separately. Furthermore, tracking progress using conventional

methods such as video-based systems or heart rate and lactate

monitors is very time-consuming and only possible at selected

times during a season (Ferreira et al., 2021), whereas IMUs have

the least impact on swimmers’ training and can be used on a daily

basis.

The dominance of coaching philosophy and qualitative

analysis in training sessions invariably leads to subjective,

inaccurate assessments (Mooney et al., 2016a). Therefore,

providing phase-based goal metrics serves as an assistant to

the coach, allowing him or her to quantitatively monitor each

swimming phase and track a swimmer’s progress during

training sessions. Using this information, the coach can

customize training strategies for each swimmer, which

usually takes a lot of time and effort. Although wearables

induce more drag on the swimmer’s body (Magalhaes et al.,

2015), they require an extremely small amount of

preparation and analysis from the coach to provide

personalized feedback. The coach can access performance

evaluation reports for the entire team after each training

session and plan further training for each swimmer based on

their phase-specific progress.

Conclusion

By using IMU based goal metrics to monitor the

performance of a team of swimmers, we have

demonstrated the possibility of objective evaluation of

swimmers’ progress during training sessions. Of the goal

metrics considered in this study, lap average velocity and

Swim average velocity had the highest accuracy, precision,

sensitivity, and specificity (≥0.87) to predict swimmers’

progress. The goal metrics related to Push, Glid and StPr

achieved high specificity and precision (≥0.79) for progress,
confirming the role of initial phases in overall swimming

performance. Lap average velocity and Swim average velocity

are as sensitive as lap time to swimming progress and can be

used as precise performance-related indicators. Other goal

metrics provide additional quantitative information about

the swimmer’s phase-related performance that is not

available in traditional coaching approaches. It is

illustrated that the value of changes in goal metrics also

correlates with swimmer progress. In summary, the coach

can use the phase-based report to obtain a comprehensive

view of the swimmer’s performance. This study opens new

training horizons in swimming by providing objective

feedback based on goal metrics and analyzing the effects

of feedback on the swimmer’s performance.
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