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Polar bears can live in an extremely cold environment due to their hairs which possess
some remarkable properties. The hollow structure of the hair enables the bear to absorb
energy from water, and the white and transparent hairs possess amazing optical
properties. However, the surface morphology function of bear hairs has been little-
studied. Herein, we demonstrate that the micro-structured scales distributed
periodically along the hair can absorb maximal radiative flux from the Sun. This polar
bear hair effect has the ability for the hair surface not to reflect radiation with a wavelength of
about 500 nm. Mimicking the polar bears’ solar performance in the fabrication of
nanofibers will certainly stimulate intelligent nanomaterials for efficient solar energy
absorption. Therefore, a new technology is discussed in this work for the fabrication of
periodic unsmooth nanofibers toward solar energy harvesting.

Keywords: biomimetic, polar bear hair, energy absorption, selective light absorption, moth-eye effect, bubble
electrospinning

INTRODUCTION

Recently, various devices have been developed for energy harvesting, such as the nanofluids (He and
Elazem, 2022), the spring-pendulum systems (Wu et al, 2018; He et al., 2022a), and the low-
frequency vibration systems (Zhang and Cai., 2012; He C.-H. et al,, 2021; He et al, 2022b). In
addition to the abovementioned methods, the nanotechnology for solar energy harvesting
(Satharasinghe et al, 2020) is totally new and is quite promising. Though solar energy
harvesting has attracted much attention due to the inexhaustible green energy, its efficiency is
relatively low. Interestingly, some natural animals have a special ability to absorb solar energy with
extremely high efficiency, benefiting from the amazing surface morphology of their hairs, for
example, the wolverine (gulo-gulo) hair (Liu et al., 2018).

The polar bear (Ursus maritimus) is the largest predator in the Arctic region. As a kind of marine
mammal, the animal is born on land but spends most of its time in the sea to absorb energy from
water through its hairs (He et al., 2011; Jia et al., 2017). In order to survive in a harsh environment as
low as —50°C in the Arctic, this huge animal has an extensive fat layer of up to 10 cm and bulky furs,
which help protect against the cold surrounding. Polar bear fur consists of a layer of dense underfur
and an outer layer of guard hairs, which are transparent and white in color (Bechshoft et al., 2012;
Dietz et al., 2013). The white hairs contribute to camouflaging the bear in the snow and ice-covered
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environment (Ferguson et al., 1998; Stegmaier et al., 2009). As a
protein fiber, the polar bear hair is not much different in
appearance from other protein fibers such as the wool fiber
(Fan et al, 2019) and down fiber (Yang et al, 2011). Much
attention has been paid to the optical properties (Lavigne and
Qritsland, 1974bib_Lavigne_and_Qritsland_1974; Grojean et al.,
1980 and 1981; Koon, 1998) and chemical properties of polar bear
hairs, and many biomimetic designs were proposed, including
thermally insulating fabrics (Cui et al., 2018), textile solar light
collectors (Bahners et al., 2008), and polar bear hair-based solar
sensors (Tributsch et al., 1990). Many researchers have studied
hair cortisol concentration (Mislan et al, 2016), which is
considered a biomarker. Furthermore, the morphology and
structure, especially the hollow structure of polar bear hairs,
have also been studied extensively (Zhang et al., 2009). The
fractal theory is a useful tool to reveal its biomechanism
(Wang et al, 2015; Wang et al, 2018). However, energy
absorption with regards to the scale distribution on polar bear
hairs has not been studied yet, and this study intends to state its
energy absorption based on the hair’s morphology. Many
research studies have revealed that the graphene distribution
in a composite affected its properties greatly (Zuo and Liu, 2021;
Zuo, 2021). Geometry is always the main factor affecting
materials’ properties (He, et al, 2021b) so that the energy
absorption property of the polar bear hair.

MATERIALS AND METHODS

Nano-scale surface morphology greatly affects a surface’s
chemistry property (Marmur, 2004; Li X.-X. et al, 2021),
friction property (Cao et al, 2021; Bains et al, 2020), and
reflection property (Selkowitz 2021). According to the
geometric potential theory (Peng and He, 2020; Han and He,
2021), a nano-scale surface can produce high geometric potential.
It was reported that Fangzhu’s nano-scale surface can collect
water molecules from the air (He and El-Dib, 2021; Wu et al.,,
2021). Gecko adhesion and the mimicking smart adhesion can
also be explained by its nano-scale spatulas (Wang et al., 2019; Li
et al., 2020). Here, an experiment is designed to study the nano-
scale surface morphology of polar bear hairs.

Experimental Materials

The hair was obtained from a 2-year-old male polar bear in the
Laohutan Pole Aquarium in Dalian, China. Polyvinyl alcohol
(PVA, 1750 + 50) was purchased from Sinopharm Chemical
Reagent Co., Ltd. (Shanghai, China).

Experimental Instruments

The JEOL JSM-5600LV scanning electron microscope (SEM)
with a magnification of 18-300,000 (Japan Electronics Co.
Ltd) and the S-4800 field emission scanning electron
microscope (FE-SEM) (Hitachi Ltd., Japan) with resolutions of
1.0 nm (15kV), 2.0 nm (1kV), and 1.4 nm (1 kV, Deceleration
mode) were used in our experiment. The scale density (scale/mm)
and scale thickness on the hair surface were measured through
the SEM images.

Biomimetic Nanomaterials for Solar Energy Harvesting

Experimental Process
First, we rinsed the samples with distilled water to remove debris from

their surface. Second, the samples were washed with 0.1 M phosphate
buffer three times (15 min per time). Third, the samples were fixed on
the sample stage and sprayed in the ion sputter instrument. Finally,
the samples were evaluated under the SEM and FE-SEM. In the
electrospinning process, the PVA was dissolved in an aqueous
solution (8 wt%) at 98°C for 4 h. The spinning parameters were as
follows: the voltage was 20 kV, and the collector distance was 25 cm.
After the spinning process, the resulting membrane was stretched
with a draw ratio of 1.5 times. The draw process was carried out using
a universal testing machine (Instron 3,365, Instron, Norwood, MA)
(gauge length: 20 mm and cross-head speed: 0.2 mm/s) at 25 + 0.5°C
and 60 + 5% relative humidity.

Nanoscale Surface Morphology

Before studying the polar bear hair effect, we give a brief
introduction to the moth-eye, which can absorb all night light
(Wilson and Hutley, 1982). This property is important for the
nocturnal insect to escape from predators.

Figure 1 is the schematic diagram of the moth-eye effect. The
height of protuberances is about / = 220 nm, and the diameter of
the microtrichia is about d = 200 nm.

It was reported that the reflectance is very low for wavelengths
2d <A <2.5h (Nosonovsky and Bhushan, 2013), meaning that the
wavelengths between 440 and 550 nm are all absorbed by the
nocturnal insect.

The surface geometry of the moth eye is periodic, and it was
used for the biomimetic design of an optically transparent
microwave absorber with a periodic array of properly shaped
glass caps (Kwon et al., 2021). A similar phenomenon occurs in
the polar bear hair, and we carried out an experiment to study the
morphology of the hair surface.

RESULTS AND DISCUSSION

Figure 2 shows the morphology of the polar bear hair surface structure.
Figures 2A-C are SEM images of the same hair at the magnifications x
1,000, x 2,000 and x 5,000, respectively. Figure 3 shows the FE-SEM of
the polar bear hair surface structure. As we can see from Figures 2 and
3, the surface of polar bear hair fibers is not smooth, and there is a scale
structure similar to the surface of wool fibers. Meanwhile, these figures
also show that the polar bear hair fibers were covered with periodic
scales in regular shapes. Scale density was relatively small, 70-90 scales/
mm, and the scale edges seemed to be wavy or serrated. The scales are
thicker at the top, and the scale thickness is about 0.5 pm.

Similar to the moth effect (Nosonovsky and Bhushan, 2013),
polar bear hair enables the animal to absorb as much energy as
possible from natural light. According to Figures 2 and 3, polar
bear hair can be geometrically illustrated, as shown in Figure 4.

The periodicity of the surface morphology of polar bear hair is
similar to that of the moth eye and also shows a similar optical
property to absorb light energy. Polar bear hairs are white and
transparent to convert light energy to its body. The hair surface
morphology (Figure 4) can increase transmission and reduce
reflection. If the thickness of the scales is almost equal to the
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FIGURE 1 | Schematic diagram of the moth-eye effect (Nosonovsky and Bhushan,2013).

FIGURE 2 | Polar bear hair surface structure by SEM with different magnifications (A) x1,000, (B) x2,000, and (C) x5,000.

" 50.0um | 001 5.0kV x1.00k

001 5.0kV x1.00k

FIGURE 3 | Polar bear hair surface structure by FE-SEM (A-C) different locations on the hair surface.

light wavelength (Nosonovsky and Bhushan, 2013), the light will not
be reflected. Our experimental data reveal that the scale thickness is
about 500 nm, corresponding to the spectrum of 500nm
wavelength. According to the laws of radiative heat transfer, the
radiative flux from the Sun maximizes at a wavelength of about
0.5 um (Scamarcio et al., 1997; Thuillier et al., 2003) (Figure 5). The
polar bear hair effect is the ability of a micro-structured optical
surface not to reflect light with the highest energy.

The general approaches to fabricating smooth nanofibers are
electrospinning (Gao et al.,, 2021; Liu et al., 2021) and bubble
electrospinning (He and Qian, 2022; Qian and He, 2022).
However, Lin, et al., 2021 suggested a general strategy for the
fabrication of unsmooth nanofibers. Yao and He (2020) used the
geometric potential theory to control the surface morphology of
nanofibers. These references suggested that the unsmooth
nanofibers can be fabricated by the electrospinning method.
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FIGURE 4 | Schematic diagram of the polar bear hair effect.
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FIGURE 5 | Maximal solar spectral irradiance at 500 nm wavelength.

with a periodic unsmooth surface after being stretched (Figure 6A).
The bulges with a diameter of about 80nm were successfully
constructed and periodically spread along the nanofiber axis
(Figure 6A), exhibiting a similar appearance to natural bamboo
(Figure 6B). The mutational surface morphology from a smooth
surface to a bamboo-like unsmooth surface by the stretching method
suggests a promising strategy to mimic the polar bear’s solar
performance in the fabrication of intelligent nanomaterials for
efficient solar energy-absorption.

The nanofibers with a periodic unsmooth surface are
potentially of great technological interest for the development
of solar energy absorption, and their other applications include
invisibility devices, electronic sensors, applied surface science,
photonics, physics, microelectronics, nanomaterials, advanced
textile, photothermo-promoted nanocatalysis, photothermal
semiconduction, photoactivatable cancer immunotherapy, and
environmental science (Li et al., 2019; Li X. et al., 2021; Li J. et al.,
2021; Yang et al., 2021). We anticipate that this article will be a

1l

FIGURE 6 | (A) Morphology of the periodic unsmooth PVA nanofiber. (B) Schematic diagram of the periodic bamboo-like unsmooth PVA nanofiber.

Here, inspired by the natural polar bear, a new technology is
discussed for the fabrication of periodic unsmooth nanofibers for
solar energy harvesting (Liu et al,, 2015). As shown in Figure 6, the
resulting PVA nanofibers were endowed with peculiar morphology

starting point for more sophisticated studies of intelligent
nanomaterials for solar energy harvesting for solar cells
(Pavlovic et al., 2021; Alshikhi and Kayfeci 2022) or solar
collector systems (Al-Rabeeah et al, 2022). The periodic
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structure of nanomaterials via bioinspiration for energy gives
many promises and great challenges (Gong et al., 2019).

CONCLUSION

Similar to the moth-eye effect, polar bear hair characteristics
along the longitudinal direction were studied by means of
SEM and FE-SEM, respectively. The result shows that the
micro-structured scales distributed periodically along the hair
can absorb maximal radiative flux from the Sun. Mimicking
the polar bear’s solar energy harvesting property, we
fabricated nanofibers with a periodic unsmooth surface,
which exhibits the potential of stimulating intelligent
nanomaterials for efficient solar energy absorption. The
bio-mimic design of solar energy materials by bubble
electrospinning can be wused in the infrared stealth
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technology. Polar bear hair-inspired biomaterials with
selective light absorption will attract much attention in the
future.
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