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A SYNTHETIC BIOLOGY PLATFORM FOR EMBODIED
CHEMICAL AI

The exciting sci-tech arena of synthetic biology (SB) provides concepts, tools, and approaches
for fundamental revolutions in basic and applied research. SB plays a key role when it is
conceived as one of the branches of the “sciences of the artificial” (Cordeschi, 2002; Damiano
et al., 2011), together with artificial intelligence (AI) and robotics. In particular, SB contributes to
the wetware approaches, which are complementary to the software and hardware ones that
characterize the other two most well-known branches. In this perspective, SB offers the unique
opportunity of devising novel chemical versions of AI, whose main feature is embodiment,
i.e., forms, systems, networks that compute through physical interactions (not based on the
abstract representations typical of AI), and that potentially display autonomous adaptive/plastic
dynamics (in contrast to mechanical robots).

SB, then, can be seen as an experimental platform for unconventional computing, based on
(bio)chemicals, organized structures, and reactions. Operations, even when interpreted by
observers in terms of logical representations, actually lie in the material domain. As such,
operations (reactions, interactions, synthesis and degradation of the operators) and the
operators themselves (the molecules performing or subjected to the operations) are truly
interwoven, and definitely cancel the distinction between hardware and software, typical of
non-chemical machines.

In this opinion paper, we aim at sketching a possible implementation of embodied, chemical
AI by means of SB tools. In particular, we will focus on bottom-up approaches and on the so-
called synthetic (or artificial) cells (SCs or ACs) (Luisi 2002; Salehi-Reyhan et al., 2017; Göpfrich
et al., 2018; Guindani et al., 2022), Figure 1A. In the past few years, indeed, the worldwide
community of SC practitioners has generated a very relevant momentum, promoted by the onset
of numerous consortia and projects (Schwille et al., 2018; Frischmon et al., 2021). The question
we would like to deal with is the following: is it possible to devise minimal forms of perceptive
chemical AI in SCs? Because of its widespread relevance since the beginning of AI, the system we
look at is a chemical perceptron (a chemical neural network), and we will discuss its possible
implementation inside SCs.

We will first introduce the motif of “phospho-neural networks” (Hellingwerf et al., 1995) and a
plan for implanting such networks in SCs, calling for a specific design that would address both
experimental feasibility, detailed modeling, and non-trivial behavior. We also suggest that the
exploration and the interpretation of chemical networks’ dynamics, especially when they are based
on macromolecular elements, is best pursued according to fuzzy logic. Finally, a short comment on
the theoretical relevance of these approaches on the more general problem of embodying AI in the
chemical domain will complete the paper.
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FIGURE 1 | Phospho-neural network inside SCs and fuzzy logic modeling. (A) Synthetic (or artificial) cells (SCs) can be considered cell-like chemical systems designed and
constructed in order to model some aspects of cellular behavior, such as gene expression, morphological transformations, biochemical energy production, nucleic acid duplication,
signalling, cell-cell communication, etc., At this aim, a proper chemical/biochemical network (which can include membrane components) is realized within microcompartments such
as lipid vesicles (liposomes), polymeric vesicles, fatty acid vesicles, coacervates,water-in-oil droplets and alike. Importantly, synthetic cells can interactwith the externalworld (the
“environment”) and exchange chemicals and energy (e.g., light), and behave accordingly, building up a stimulus-response dynamics. Current SCs are not alive, but recent progress
allowed the construction of systems of ever-increasing complexity. (B) Schematic representation of a typical two-component signaling (TCS) system and the information flow. A
transmembrane sensor S made of an input domain and kinase domain detects an outside signal X, resulting in the auto-phosphorylation of a conserved His residue in the kinase
domain ofS (at the expensesof ATP).Next, the sensor transfers thephosphoryl group to theconservedAsp residueon the receiver domain of a cognate response regulatorR. In turn,
the functional activity of the output domain is regulated, ultimately leading to an appropriate change in cellular physiology (typically, in gene expression pattern). (C)Distinct sensors (S1,
S2) react differently to different inputs. From the viewpoint of fuzzy logic, sensors behave as fuzzy sets, which granulate the space defined by the chemical inputs. In this illustration, the
input X belongs to the two molecular fuzzy sets at two different degrees (x1, x2) that are proportional to the interaction strength between the input X and the sensors. (D) Neural
network-like line diagram representing possible cross-talks in artificial (engineered) TCS systems engrafted into SCs. In this diagram, a single input X can activate two sensors S1 and
S2 (with different weights x1 and x2), which in turn activate two response regulators R1 and R2. The latter modify the gene expression pattern of genes G1 and G2. Dashed lines
correspond to cross-talks, with weights w12, w21, u12, u21. More details in the text.
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“PHOSPHO-NEURAL NETWORKS”

There have been several attempts to design chemical neural
network (for a concise list, see (Blount et al., 2017)). Actually,
most of them refer to hypothetical models—such as the Okamoto
(Okamoto et al., 1987) and Ross (Hjelmfelt et al., 1991)
approaches, while experimental results have been reported
only recently, for example by exploring the DNA strand
displacement strategy (Lakin and Stefanovic, 2016) or non-
linear chemical systems communicating through UV-visible
radiations (Gentili et al., 2017; Proskurkin et al., 2020) or
reservoir computing (Nakajima and Fischer, 2021). The field
of biochemical systems with neural network features is instead
richer of examples, and has inspired several modeling studies
(Fernando et al., 2009). Here we will focus on the potential neural
network-like properties of signal transduction machineries in
bacteria, and in particular of two-component signaling (TCS)
systems (Figure 1B). We have been inspired by an enlightening
and lucid report published some decades ago by Hellingwerf and
collaborators (Hellingwerf et al., 1995), who also dubbed these
networks as “phospho-neural networks”.

Indeed, the phosphorylation pathways that determine signal
transduction and intracellular response in bacteria resemble a
system of elements that are interconnected as neural networks.
This can happen because, although TCS systems typically
function in specific, parallel way, these information “channels”
are far from being insulated, and information can cross-flow
among them, giving rise to convergent or divergent branched
pathways. While certain branched pathways are obligate in some
cases (e.g., Escherichia coli chemotaxis systems, Vibrio harveyi
quorum sensing signaling), being actually mandatory for a
correct signalling (Agrawal et al., 2016), unwanted cross-talk
can also happen (considered as noise), and cells evolved
physiological mechanisms to prevent it.

However, the very tendency of cross-talking among these
signalling channels implies the possible use of TCS sets as
neural network—thus rising interest toward their potential use
in SCs. The plan, thus, becomes the construction of intra-SC
chemical neural networks, of minimal complexity, based on
cross-talking TCS. Because bottom-up SCs have the advantage
of well-defined chemical compositions, it is conceivable that
conditions can be found in order to avoid cross-talk reducing
processes, typically occurring in vivo. In vitro experiments have
shown, indeed, that cross-talk phosphorylation reactions of the
TCS elements spontaneously occur, and differ in reaction rates
and specificity; moreover, convergent and divergent paths exist in
some cases (Ninfa et al., 1988; Yamamoto et al., 2005; Agrawal
et al., 2015).

It is worth noting that typical operations carried out by
artificial neural networks (those operating in the logical
domain of computers), such as “(machine) learning”, will not
be easily exported to chemical neural networks. Concepts as the
thresholds and weights, well-known to software developers
working with neural networks, become intermolecular forces,
rates of reaction, binding affinity when translated into the
chemical domain. Biological phospho-neural networks,
literally, have been learning during evolution of the

organism(s) they belong to. On the other hand, current
knowledge about TCS systems and technical capabilities in
molecular biology offers intriguing opportunities for their
rewiring and reprogramming, so to generate somehow novel
(engineered) networks.

AN INTRIGUING AROUND-THE-CORNER
SCENARIO

Hellingwerf et al. (1995) referred to phospho-neural network in
bacterial cells. Today we ask new questions, which have both
practical and theoretical perspectives: is it possible to engraft
chemical neural networks, e.g., phospho-neural networks based
on TCS, in SCs? Can they be a tool for implementing, in the
wetware domain of the “sciences of artificial”, a sort of minimal
chemical perceptron (McCulloch and Pitts, 1943)? Would it
constitute a relevant example/outcome in terms of chemical
embodied AI?

We believe that phospho-neural networks are approachable
within current SC technology, although it is not an easy target.
Therefore, we will cautiously speak about it as an around-the-
corner scenario, something that is still unavailable right now, but
can become affordable in the next few years. We will engage, then,
in a speculative discussion about possible realizations of such
systems. Our goal is to raise interest toward intra-SC chemical
neural networks as an option for the design of next-generation
cognitive SCs.

Two-Component Signaling Systems
Engrafted Into Synthetic Cells
Is it possible to engraft TCS systems into SC, for neural network-
like operations? TCS systems mediate bacteria response to a wide
range of signals and stimuli, such as nutrients, cellular redox state,
pH, light, temperature, dissolved gases, quorum signals,
hormones, osmolarity, antibiotics, etc. (Laub and Goulian
2007; Stock et al., 2000). Each TCS system consists of three
elements (i.e., the three neuron-like elements): a sensor (histidine
kinase) (S), a response regulator (R), and a gene (G) (Figure 1B).
The sensor, which is a transmembrane protein, detects an
environmental stimulus by its N-terminal domain, triggering
the (auto)phosphorylation of a histidine residue in its kinase
domain at the expenses of cellular ATP. In turn, the
phosphorylated sensor reacts with its cognate response
regulator, transferring the phosphate group to an aspartate
residue of the regulator (phosphotransfer reaction). The typical
final step is the control of gene expression by the phosphorylated
response regulator, or—more in general—the control of cell
physiology. Such systems have received many attentions in
recent years and many topologies (connectivities) are known.
We are interested, for the moment, to show that a minimal neural
network based on TCS systems can be implemented in SCs. At
this aim, a possible design could be based either on 1) TCS sets
that are per se branched (e.g., one-to-many and many-to-one
systems), such as the sporulation phosphorelay of Bacillus subtilis
and theM. tuberculosis hypoxia sensing (Agrawal et al., 2016), or

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org June 2022 | Volume 10 | Article 9271103

Gentili and Stano Neural Networks Inside Synthetic Cells

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


2) TCS sets designed ad hoc, by rewiring TCS or enhancing the
cross-talk in otherwise orthogonal TCS systems.

Engineering connectivity in TCS systems is considered within the
experimental reach. Recent reviews are the good starting point for an
up-to-date discussion about the technical possibilities and strategies
(Laub and Goulian, 2007; Capra and Laub, 2012). For example, the
substrate specificity of S can be reprogrammed bymutating as few as
three residues (Skerker et al., 2008), and similar achievements have
been obtained by mutating response regulators (Capra et al., 2010;
Bell et al., 2010). Examples based on directed evolution are available
(Siryaporn et al., 2010). The use of chimeric molecules (Wang et al.,
2013) is encouraged by themodular structure of response regulators.
In addition, downstream information flow can be engineered by a
proper swapping of the response regulator DNA-binding domains
(Schmidle et al., 2018), or by constructing proper promoters-ORFs
(Open Reading Frames) combination.

Promoting cross-talk is also possible as summarized by
another recent review (Agrawal et al., 2016) proposing
different mechanisms, based on S/S or R/R heteromerization,
on non-cognate S/R phosphorylation, on coregulation of the
same gene by two different R, or on introducing auxiliary
proteins that favour cross-talk. Another possibility relies on
the simultaneous presence of wild-type and mutant S (and/or
R), in order to display different kinetic preference toward their
cognate elements. As mentioned, knowledge about TCS has
grown considerably since the Hellingwerf et al. (1995) report.
The issue of kinetic preference of an S for its cognate R could be
somehow tuned or compensated by an appropriate design (easily
realized in SCs, much less in vivo), which relies on the altered
concentration of the various components or on kinetic
counteractions (compensations) based on downhill processes
(e.g., gene transcription, playing with concentrations of DNA
or RNA polymerases; or at the level of mRNA availability).

The goal of implementing a chemical neural network inside
SCs somehow mirrors its function in vivo, i.e., the integration of
different signals into a gene expression pattern in specific manner,
via convergent and divergent signaling that characterizes the
neural networks. This will be considered as the first desired
outcome, but a far-looking goal will be instead aimed at self-
regulatory dynamics, possibly resulting in compensatory/
adaptive/plastic dynamics. This could be achieved if the
products of gene expression are elements of the phospho-
neural network itself or effectors that change its behavior (so
to achieve a sort of closed causal loop).

As mentioned, implanting a chemical neural network in
current SCs will be technically challenging. The frontier
components, i.e., the sensors S are integral membrane
proteins, and thus their embedment in the SC membrane is
not at all trivial, as it must face several issues like the optimal lipid
composition of SC membrane (in order to favour their
functionality), as well as their orientation. Membrane proteins
can be embedded in SC membranes by reconstitution. Previous
reports show that sensors of TCS systems have been successfully
reconstituted in liposomes. For example, MtrB is involved in the
osmostress response of Corynebacterium glutamicum and it has
been reconstituted in functional way, by employing liposomes
made of E. coli phospholipids (Möker et al., 2007). Similarly,

PhoQ Mg2+-sensor from Salmonella typhimurium has been
reconstituted in liposomes (Sanowar et al., 2005). CpxA, the
sensor of an E. coli TCS that detects envelop perturbation and it is
also involved in biofilm formation, has been reconstituted in
E. coli phospholipid nanodiscs (Hörnschemeyer et al., 2016). In
all cases, the functionality of TCS systems was positively assessed,
carrying out the phosphorylation pathway in vitro. Therefore,
current knowledge could be employed as a guidance to 1) select
systems that have been proved to function in liposomes; 2) reason
about the best strategy for practical implementation of somehow
similar “promising” systems. Alternatively, it could be attempted
the direct in situ synthesis-and-insertion strategy of membrane
proteins in SC membrane, from inside—typical of bottom-up
autopoietic constructions (Kuruma et al., 2009; Altamura et al.,
2017; Amati et al., 2020). Combinations of these approaches
should be taken into consideration, recalling, however, that either
detergent-based reconstitution either ribosomal synthesis-and-
insertion require a careful design of the lipid composition of SC
membrane, that must fulfil some requirements (form stable
vesicles, be compatible with encapsulation procedure, allow the
correct protein folding, do not interfere with protein synthesis
and other intra-SC processes). Finally, the in situ synthesis of
sensors and response regulators that require post-translational
modifications can represent a further obstacle.

Despite these potential difficulties, we believe that implanting
“minimal” phospho-neural networks in SCs is experimentally
accessible, and that such plan would correspond to a major
advancement in the field because it significantly adds to SC
technology, especially from the viewpoint of developing
artificial cognitive systems. Moreover, it contributes to
merging SB and AI in a novel and potentially fruitful manner.

Chemical Fuzzy Neural Networks
To complete the discussion, let us make a further step in the
direction of chemical embodiment, by commenting on how
chemical neural network could be modeled. We reasoned that
in order to keep into account the real chemical nature of the
neural network elements, which are proteins and thus can display
conformational diversity, one needs to move from dichotomic
two-state (yes/no) logic, as specified by sentences like “the sensor
(or the response regulator) is/is not activated”, to the continuum
case (gray-scale), typical of fuzzy logic. Thus, we further expect
that intra-SC chemical neural network could become a useful
study case of fuzzy logic application to complex chemical systems,
and consequently allowing accurate modeling, insightful
conclusions, and the departure from idealized binary logic.

We have emphasized that S and R elements of two different
TCS systems can be specific or cross-talk (Agrawal et al., 2016),
but, by the same reasoning, it is also possible that a single input
signal can activate (at different degree) two similar sensors (e.g.,
nitrate activate, in E. coli, the two sensors NarX and NarQ
(Noriega et al., 2010)). The schemes shown in Figures 1C,D
describes both specificity and cross-talk. Note that it represents
just a simple example of the neural network-like architectures we
propose for SCs.

Firstly, it should be specified how parameters that are typically
employed in neural networks are related to well-known
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physicochemical constants. Referring to Figures 1C,D, for
instance, the degrees of membership x1 and x2 are related to
the association constants of the chemical inputs to the two sensor
proteins, S1 and S2; the weight coefficients wij are related to the
kinetic constants (kcat, KM) of the phosphorylation reactions; the
weight coefficients uij are related to the association constants of
the phosphorylated R to the DNA. Examples of neural networks
that map to chemical reactions have been reported, based on
fundamental chemical laws (e.g., mass action, Arrhenius law) (Ji
and Deng, 2021). The neural network “activation functions”,
which is often a key parameter for the properly functioning of
neural networks, should be based on physicochemical laws when
referring to neural networks in the chemical domain. It would
refer, therefore, to hyperbolic or sigmoidal isothermal binding
curves, or to Michaelis-Menten profiles. Smooth analog input-
output relationships are the most appropriate functions for
processing the infinite-valued fuzzy logic. On the other hand,
steep sigmoid functions are adequate for processing discrete
logics, as it is Boolean binary logic (Gentili, 2011). The
necessity of realistic modeling of chemical neural networks
generates a set of constraints with respect to their operations
and performance. Thus, what a chemical neural network can (and
cannot) do, when compared to artificial neural network,
represents one of the open questions that need to be
addressed in future.

A fuzzy logic perspective starts from the consideration that
each sensor (both S1 and S2) exists, in general, as a collection of
conformers (Kenakin, 2011). Such conformational pluri-states
confer every sensor the power of being sensitive to more than one
input. However, distinct sensors react differently to different
inputs. From this point of view, each sensor kinase behaves as
a fuzzy set (Gentili 2014, 2018). Figure 1C shows that S1 and S2,
being two molecular fuzzy sets, granulate the space defined by the
chemical inputs. Distinct chemical inputs belong to the two
molecular fuzzy sets at two different degrees. As an example,
the figure shows that the input, represented as a chemical species
X, belongs to both S1 and S2, but with two distinct degrees, which
are x1 and x2. Each degree of membership xi (i = 1 or 2) is
proportional to the interaction strength between the input X and
Si. The combination of the two-degree-of-membership values, x1
and x2, is transduced into a peculiar set of values for the neural
network weights shown in Figure 1D. We have cross-talk
whenever both degrees of membership, x1 and x2, are not null.
Then, it might also be that:

w12 ≠ 0 and/orw21 ≠ 0

u12 ≠ 0 and/or u21 ≠ 0

The vector of network weight coefficients (w11, w12, w21, w22, u11,
u12, u21, u22) is a function of the degrees of membership of the
input to the two molecular fuzzy sets, which are the sensor
proteins (i.e., S1 and S2):

(w11, w12, w21, w22, u11, u12, u21, u22) � f(x1, x2)
Specificity occurs when either

(x2 � 0) ∧ (w12 � 0) ∧ (u12 � 0)

or when

(x1 � 0) ∧ (w21 � 0) ∧ (u21 � 0)
It is worthwhile noticing that even the response regulators R

and the genes G exist as collections of conformers. Therefore, they
can exhibit an ensemble of reactivities, one for each conformer. It
means that even R and G are fuzzy sets, and the network weight
coefficients, wij and uij (i, j = 1 or 2), can assume—potentially—as
many values as the number of reactive conformers. Clearly, the
TCS systems are examples of chemical fuzzy neural networks.
The possibility of processing fuzzy logic at the molecular level will
simulate, in minimal way, some elementary yet fundamental
features of biological intelligence (common to all organisms,
from bacteria to human) to SCs such as that of making
decisions in an environment of uncertainty, partiality and
relativity of truth (Zadeh, 1973; Gentili, 2021) and that of
recognizing variable patterns. In other words, SCs will become
able to face complex scenarios and quickly adapt to an ever-
changing environment.

CONCLUDING REMARKS

The “performances” of chemical neural networks, especially when
referred to minimal ones, cannot be compared to the very complex
dynamics of artificial neural networks developed in the software
domain, i.e., those on which the bright success ofmachine learning is
based. Implications and relevance, instead, refer to the potential
development of minimal cognitive SCs. In the wetware domain of
the “sciences of the artificial”, indeed, it is possible to design and
implement operations and circular dynamics that are instead
unavailable/unproductive in the hardware and software domains.
In particular, becausemolecules can act at the same time as operators
(catalysts) and operands (substrates), chemistry blurs the traditional
distinction between program and data, allowing self-modifying
machines following a (closed) circular organization—the one that
characterizes all living systems, from bacteria to humans. Although
SCs with or without chemical neural networks do not realize such
type of “closure”, reaching intermediate milestones such as those
depicted in this article still adds to current knowledge, due to the
“organizational relevance” of such artificial constructs (Damiano
et al., 2011; Damiano and Stano, 2020).
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