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Kinetic modeling has relied on using a tedious number of mathematical

equations to describe molecular kinetics in interacting reactions. The long

list of differential equations with associated abstract variables and parameters

inevitably hinders readers’ easy understanding of the models. However, the

mathematical equations describing the kinetics of biochemical reactions can be

exactly mapped to the dynamics of voltages and currents in simple electronic

circuits wherein voltages represent molecular concentrations and currents

represent molecular fluxes. For example, we theoretically derive and

experimentally verify accurate circuit models for Michaelis-Menten kinetics.

Then, we show that such circuit models can be scaled via simple wiring among

circuit motifs to represent more and arbitrarily complex reactions. Hence, we

can directly map reaction networks to equivalent circuit schematics in a rapid,

quantitatively accurate, and intuitive fashion without needing mathematical

equations. We verify experimentally that these circuit models are quantitatively

accurate. Examples include 1) different mechanisms of competitive,

noncompetitive, uncompetitive, and mixed enzyme inhibition, important for

understanding pharmacokinetics; 2) product-feedback inhibition, common in

biochemistry; 3) reversible reactions; 4) multi-substrate enzymatic reactions,

both important in many metabolic pathways; and 5) translation and

transcription dynamics in a cell-free system, which brings insight into the

functioning of all gene-protein networks. We envision that circuit modeling

and simulation could become a powerful scientific communication language

and tool for quantitative studies of kinetics in biology and related fields.
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1 Introduction

Kinetic modeling has been a powerful tool for studying

biological systems from simple enzymatic reactions to

metabolic pathways, drug kinetics in hosts, gene circuits in

synthetic biology, and host-pathogen interactions (Alves et al.,

2006; Resat et al., 2009; Bevc et al., 2011; Eshtewy and Scholz,

2020; Néant et al., 2021). Modeling molecular kinetics can

provide quantitative insights and mechanistic understandings

of biological systems. However, kinetic modeling of biological

processes relies on a substantial number of mathematical

equations to describe even simple biochemical reactions. The

heavy dependence on long and tedious differential equations

hinders many biologists from appreciating and taking advantage

of kinetic modeling as a powerful tool for studying biological

questions. In particular, for many biological researchers, the long

list of parameters and abstract terms that are used during the

process of mathematical derivation are exhausting and difficult to

follow. In addition, it can be challenging to resolve complex,

nonlinear, coupled differential equations that require

sophisticated algorithms/programs including numerical

approaches (Bevc et al., 2011) for simulating time-course

kinetics.

However, ordinary differential equations (ODEs), commonly

used to model biochemical reactions and processes, can be

represented by simple electronic circuits (Sarpeshkar, 2010;

Teo and Sarpeshkar, 2020) in a mathematically exact fashion.

We can thus take advantage of electronic design software to

design circuits in silico that represent the kinetics of the target

system and then run simulations in software without the need to

manufacture the physical circuits (Teo et al., 2019a; Teo and

Sarpeshkar, 2020). Therefore, not only can we visualize all the

math equations in one circuit but also solve them by just running

simulations on the circuit. Using virtual electronic circuits

enables one to do rapid kinetic modeling of biochemical

reactions without deriving tedious differential equations. In

addition, circuit simulation in electronic design software is

able to provide accurate time-course dynamics, not just

equilibrium solutions. Circuit software has built-in algorithms

to automatically solve underlying equations represented by the

circuits, which has evolved over 75 + years of circuit design for

multiple forms of design and analysis (Sarpeshkar, 2010).

The overall mechanism of the simulation is that, given some

preset parameters of a circuit, the voltage and current at any node

of the circuit at any time are readily available upon simulation;

these voltages and currents exactly represent the corresponding

molecular concentrations and molecular reaction flux rates,

respectively. For example, we have used electronic circuits to

model and simulate complex biological processes including

genetic circuits in synthetic biology (Daniel et al., 2013; Teo

et al., 2015; Zeng et al., 2018); kinetics of microbial growth and

energetics (Deng et al., 2021); tissue homeostasis (Teo et al.,

2019b); and virus-host interactions (Beahm et al., 2021).

However, there are gaps in biologists’ understanding of

electronic circuits and the underlying mathematics; and, in

their understanding of the analogy of circuit variables to

reaction kinetic parameters. These gaps have prevented many

researchers from understanding circuit models and using circuits

to do kinetic modeling in practice.

Therefore, an important goal of this work is to illustrate how

the mathematics describing the kinetics of biochemical reactions

can be exactly mapped to electronic circuits; and, to demonstrate

how to use such circuits to do rapid kinetic modeling without

deriving math equations. To demonstrate the circuit modeling

approach, we start with the basics of a simple resistor-capacitor

(RC) circuit and its use in representing the dynamics of a simple

biochemical reaction. We then illustrate how to use circuits to

model an enzyme-substrate reaction that is characterized by

Michaelis-Menten kinetics, one of the most fundamental

processes in biology. Next, we develop widely applicable

circuit motifs for biochemical reactions including different

types of enzyme inhibition, multi-molecular binding, multi-

substrate reactions, reversible reactions, and DNA

transcription and translation. Notably, these circuit models are

validated by good fits to our experimental data. These

fundamental circuit motifs can be easily used to construct

large-scale circuit models for complicated biological networks/

pathways without using cumbersome math equations; mature

circuit-simulation software can then automatically provide

accurate solutions including the time-course kinetics of

molecules. Large circuit models are useful in analyzing the

behavior of biological systems and to discover natural

algorithms and architectures in biology. In addition, our

approach provides mechanistic insights into fundamental

biochemical reactions, such as the kinetics of enzyme

inhibition and the kinetics of sequential binding reactions.

2 Results

2.1 Mapping a basic chemical reaction to a
simple electronic circuit

To help biologists understand the basic mathematics of

electronic circuits, we first derive, step-by-step, the basics of a

simple RC circuit that is foundational for kinetic modeling in

biological systems. The RC circuit consists of a resistor (R), a

capacitor (C), and an input current (Iin) that is generated by a

voltage-controlled current generator (a ‘transconductor’) that

converts the input voltage (Vin) into the current (Iin) (Figure 1).

In electronics, a current is denoted by I (measured in Amps, A),

a voltage is denoted by V (measured in Volts, V), a resistor has

a resistance of R (measured in Ohms, Ω), and a capacitor

has a capacitance of C (measured in Farad, F = A*s/V). As

shown in Figure 1, the input current (Iin) goes through the

capacitor and the resistor; the voltage (V) on the capacitor and

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Deng et al. 10.3389/fbioe.2022.947508

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.947508


the resistor keeps increasing until it reaches a steady state

wherein the capacitor is fully charged; thereafter, all the input

current (Iin) goes through the resistor. To describe how the

voltage (V) changes over time, we first calculate three currents in

the circuit as below:

According to Ohm’s law, the current (Id) going through the

resistor is defined by Eq. 1:

Id � V

R
(1)

The total charge on the capacitor is Q and thus the current

(Ic) through the capacitor is described as:

Ic � dQ

dt
� C*dV

dt
(2)

As mentioned above, the input current (Iin) is generated by a

voltage-controlled current source (the diamond-shaped device or

‘transconductor’ in Figure 1) that converts the input voltage (Vin)

into the current with a conversion factor (kcat), and thus we have:

Iin � Vin* kcat (3)

The input current is split into Ic and Id in the circuit. By

Kirchhoff’s current law, we have:

Ic � Iin − Id (4)

We substitute Eqs 1–3 into Eq. 4 and thus have Eq. 5 that

describes the voltage dynamics in the RC circuit:

C*dV
dt

� Iin − Id � Vin* kcat − V

R
(5)

The dynamics of the voltage (V) over the capacitor and

resistor are determined by the input current (Iin) and the current

through the resistor(Id). A simple analogy for the circuit is that

the product concentration in a reaction system is determined by

the production rate and the degradation rate. Given constant C

and kcat in Eq. 5, the voltage dynamics are thus determined by Vin

and R which can be translated into biological relevance, as we

discuss later. Eqs 1–5 describe the basics of a simple RC circuit

and are foundational for understanding the map between circuit

modeling andmathematical modeling of kinetic processes. So, we

have summarized their derivation in Figure 1.

With the voltage dynamics described by Eq. 5, we normalize

the equation by C such that the change of V over time is

described as:

dV

dt
� Vin*kcat

C
− V

RC
(6)

To simplify the equation, we normally set C = 1 (F) = 1 (A*s/

V) in circuit modeling and the above equation becomes:

dV

dt
� Vin* kcat − V

R
(7)

Eq. 7 describes the voltage kinetics in the RC circuit

(Figure 1) when C = 1. Setting C = 1 in circuit models

enables a direct map to the mathematics behind the

kinetics of a chemical reaction, as we illustrate in Figure 2.

In Figure 2A, substrate S is converted into a product P with a

production rate constant of kcat (1/s) and the product decays

with a rate constant of 1/r (1/s). The kinetics of this reaction

can be exactly described by an equivalent RC circuit fed by a

transconductor (Figure 2B) which is identical to the RC circuit

above (Figure 1). In the context of biological systems, we can

consider the same reaction taking place in a container or a cell

with a volume of C (liter, L) (Figure 2D). According to the law

FIGURE 1
The basics of a resistor-capacitor (RC) circuit fed by a transconductor input. The input current is generated by the transconductor (diamond
symbol), i.e., a voltage-controlled current generator that converts the input voltage (Vin) into the input current (Iin) with a conversion factor of kcat. The
dynamics of the voltage (V) over the capacitor (C) and the resistor (R) are determined by the input current (Iin) and the current (Id) through the resistor.
Electronic circuit symbols are shown in the green box.
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of mass action in chemistry, the production rate is

proportional to the concentration of S and thus is S*kcat
(M/s); similarly, the decay rate of the product is P * (1/r)

(M/s). The total amount of product P changes over time (mol/

s) in the container, and is thus described as below:

C*d[P]
dt

� C*[S]* kcat − C*[P]*1
r

(8)

where [S] and [P] are the concentrations (M); C is the

container volume (L); kcat and 1/r are rate constants (1/s).

Eq. 5 is physically parallel to Eq. 8, wherein the former

describes the change of the total charge of the capacitor

while the latter describes the change of the total amount of

product in a container. Then, we normalize Eq. 8 by the

container volume C and thus have the concentration

kinetics:

d[P]
dt

� [S]* kcat − [P]
r

(9)

Eq. 9 describes how the concentration of a product

changes over time in a container, a cell, or in any reaction

system. When comparing Eq. 9 to Eq. 7, we notice that they

become mathematically identical with the input voltage Vin

representing the substrate concentration [S]; the voltage V

representing the product concentration [P]; kcat, the

conversion factor for the current-generating

transconductor, representing a production rate constant;

and, the resistance R defining the time constant (or

lifetime, r) of the product. The side-to-side comparison

between electronic dynamics and chemical dynamics for

this foundational production reaction is summarized in

Figure 2C.

As in this production-reaction example, the dynamics in

electronic circuits can be translated into the kinetics of

biochemical reactions in more complex systems as well: the

voltage (V) corresponds to the concentration (M) of a reagent

in a chemical reaction; the current (A) is analogous to a reaction

flux (M/s); the resistor R (Ω) defines the degradation of a

product, with 1/(RC) corresponding to the degradation rate

constant and RC corresponding to the equivalent time

constant (lifetime); the capacitor with capacitance C = 1 (A*s/V)

corresponds to a volume-normalized container in a

biochemical system (per L). Unless otherwise mentioned, all

capacitors in our circuits have C = 1. The dynamics of P are

determined by the production flux and the degradation flux

(Figure 2D) while the dynamics of the voltage (V) in the RC

circuit (Figure 2B) are determined by the input source current

(Iin) and the sink current (Id).

FIGURE 2
The mapping of an elementary biochemical reaction to an equivalent electronic circuit. (A) An example of a simple biochemical reaction
wherein substrate S is converted to product P at a rate constant of kcat (1/s) while the product also decays at a rate constant of 1/r (1/s). (B) A simple RC
circuit in the context of the chemical reaction. (C) Translation of electronic variables into biochemical kinetics in a reaction. (D) The same
biochemical reaction taking place in a container or a cell with a volume of C. The capacitance of a capacitor is normally set C = 1 A*s/V, which
represents a volume-normalized container in a system (per L). Some important equations are summarized in this figure for comparison.
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2.2 Circuit modeling of Michaelis-Menten
kinetics

We next demonstrate how to use circuits to simulate

Michaelis-Menten kinetics for enzyme-substrate interactions.

For a general enzymatic reaction (Figure 3A), enzyme E binds

to a substrate S to form an intermediate enzyme-substrate

complex ES at a rate constant of kf; ES will then either

dissociate into E and S with a reverse rate constant of kr or

be converted to product P and free enzyme Efree with a rate

constant of kcat. From mass conservation, we have:

[Efree] � [E0] − [ES] (10)
[Sfree] � [S0] − [ES] − [P] (11)

where [E0] and [S0] are the initial concentrations of enzyme and

substrate, respectively. The enzyme-substrate complex is

converted into product P with a rate proportional to its

concentration [ES], such that:

d[P]
dt

� kcat*[ES] (12)

The kinetics of [ES] is determined by three fluxes: the

forward reaction rate, kf*[Efree][Sfree], the reversed reaction

rate, [ES]*kr, and the catalytic reaction rate [ES]*kcat. Therefore,
the dynamics of [ES] are described as below:

d[ES]
dt

� kf*[Sfree][Efree] − [ES]*kr − [ES]* kcat (13)

The circuit (Figure 3B) exactly represents the enzymatic

reaction (Figure 3A). In this circuit, voltages of the wires are

labeled with names corresponding to components of the

enzymatic reaction. The dashed lines are wires that don’t have

current going through them but still have the same voltage as the

wires or nodes that they originate from. We first derive equations

for currents and voltages in the circuit. Since there is no current

running through any of the dashed lines/wires, this circuit

(Figure 3B) is similar to the circuits we derived above (Figures

1, 2B), consisting of two RC blocks connected together, one with

two resistors and the other with no resistors. The dynamics of the

voltage [ES] are determined by three currents: If, Ir and Ip.

Because the voltage across the resistors and capacitor is [ES], by

Ohm’s law, the current through the resistor (R = 1/kr) is: Ir =

[ES]/R = [ES]*kr which represents the reverse reaction rate/flux;

similarly, given the other resistor (R = 1/kcat), the current

through it is: Ip � [ES]* kcat which represents the catalytic

flux; given that the current generator has a conversion factor

of kfand an input voltage [Efree]*[Sfree] that is calculated by the

FIGURE 3
Modeling Michaelis-Menten kinetics of enzymatic reactions by simple electronic circuits. (A) A general enzymatic reaction wherein the enzyme
E binds to the substrate S, forming an enzyme-substrate complex ES, which converts S to a product P. (B) The electronic circuit exactly describes the
kinetics of the enzymatic reaction in (A). All the math equations describing the voltages and/or currents of the circuit are indicated near the
corresponding nodes. The dashed lines are wires connecting the same voltage between two nodes/components in the circuit and have no
current running through them. The voltages labeled with the same names indicate that they have the same values. The voltages are mainly for math
calculations such as calculating themass conservation of a reagent via the adder/subtracter blocks, ormultiplying two concentrations via amultiplier
block. They are also used as inputs to voltage-dependent current generators (transconductors, the diamond symbols) to control their output
currents. (C) Electronic symbols used in the circuits in addition to the symbols from Figure 1. (D) The Michaelis-Menten circuit of (A), but with a
steady-state approximation such that the [ES] capacitor is removed. Since the capacitor has been removed, resistors are directly related to steady-
state Michaelis-Menten constants only and do not affect dynamic parameters like time constants. In this case, the resistor R = 1 /Km (Ω) and Km are in
the standard molar concentration unit, M.
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multiplier, we have the input current If = [Efree]*[Sfree]*kf. We

note that the latter three currents are mathematically exactly the

same as the three reaction fluxes in the enzymatic reaction (Eq.

13). Finally, the current through the capacitor is Ic � C*d[ES]
dt �

d[ES]
dt (when C = 1) (Figure 3B). According to Kirchhoff’s current

law, the current through the capacitor is given by:

d[ES]
dt

� Ic � If − Ir − Ip

� kf*[Sfree][Efree] − [ES]*kr − [ES]* kcat (14)

Eq. 14 describes the dynamics of the voltage [ES] in the RC

circuit (Figure 3B), which is the same as Eq. 13 that we derived

from the enzymatic reaction (Figure 3A). Just as in the enzymatic

reaction, the dynamics of [ES] are determined by one generation

reaction flux and two consumption fluxes (Eq. 13); the dynamics

of the voltage [ES] in the RC circuit are determined by one source

generation current and two sink consumption currents through

the resistors (Eq. 14).

Finally, the voltage [P] is determined by Ip which is

generated by a current generator with an input voltage [ES]

and a conversion factor of kcat. Since all current generated flows

into the capacitor (C = 1), we have:

I � C*d[P]
dt

� d[P]
dt

� Ip � kcat*[ES] (15)

Eq. 15 describes the dynamics of the voltage [P] in the RC

circuit, which is exactly the same as Eq. 12 that describes the

product kinetics in the enzymatic reaction.

In the circuit model (Figure 3B), two adders are used to

calculate [Efree] and [Sfree] based on the law of mass

conservation. The binding of enzyme and substrate is

represented by the multiplier symbol resulting in a signal,

[Efree]*[Sfree], which is the input voltage used to generate

current in the first transconductor in Figure 3B. Given the

conversion factor of kf, the resulting current is

[Efree]*[Sfree]*kf.
Since all the equations describing the electronic circuit and

the enzymatic reaction (Figures 3A,B) are mathematically

identical, we can directly use the electronic circuit to simulate

the kinetics of enzymatic reactions without deriving the

underlying equations. The changes of concentrations and

reaction fluxes over time are directly mapped to the

corresponding changes in voltages and currents, respectively.

Therefore, electronic circuits enable a powerful and intuitive

method for visualizing multiple math equations in one pictorial

schematic. Using these circuits is especially advantageous when

one wants to simulate complicated biological pathways/networks

where hundreds of differential equations can be represented in a

single circuit. To draw/construct and simulate such electronic

circuits, multiple electronic software packages are widely and

easily available, including Cadence (Cadence Design Systems,

Inc.), CircuitLab (https://www.circuitlab.com/), or MATLAB

Simulink/Simscape Electrical (The MathWorks, Inc.). Once

the circuits are constructed, we can simply run simulations

with these tools. The dynamics of the voltages and currents

then directly represent real-time changes in the concentrations

and reaction fluxes in biochemical reactions, respectively.

The circuit in Figure 3B is an exact circuit for representing

biochemical reactions without using any mathematical

assumptions/approximations; however, circuit simulation

requires known values of kf and kr which are not normally

available for most enzymatic reactions. To circumvent this

requirement and make the circuit more useful in practice, we

apply the same assumptions that Michaelis-Menten equation

uses to simplify dynamics: Under the quasi steady-state

assumption that enzyme-substrate binding is much faster than

the substrate-to-product conversion output reaction, the ES

concentration is assumed to reach a steady state almost

instantaneously. Therefore,

d[ES]
dt

� kf*[Sfree][Efree] − [ES]*kr − [ES]*kcat � 0 (16)

Normalizing the equation by kf and grouping the [ES] terms,

we have:

[Sfree][Efree] − [ES]*(kr + kcat)/kf � 0 (17)

Letting Km � (kr + kcat)/kf, we have the equilibrium

equation below:

[Sfree][Efree] � [ES]*Km (18)

where Km (M) is the Michaelis-Menten constant. Accordingly,

we can also modify the circuit of Figure 3B to reflect the

equilibrium Eq. 18. Since it is assumed that [ES] reaches a

steady state instantaneously, it means that the capacitor

connected to the [ES] voltage node is zero (Figure 3B),

architecting an effective RC time constant of zero.

Accordingly, we remove the capacitor for [ES] from the

circuit in Figure 3B. Next, to normalize both forward and

reverse reaction rates by kf, we set kf = 1 in the circuit.

Finally, since we have combined kf and kcat as in Eq. 17, we

merge the two currents, Ir and Ip, into one current

([ES]*(kr + kcat)/kf) through a resistor with resistance of

1/Km. Therefore, we have a simplified circuit (Figure 3D)

containing only the parameters Km, kcat, S0, and E0, which are

readily available from experiments.

We can easily confirm that the simplified circuit correctly

reflects Eq. 18; the forward current generated by the current

generator is If � [Sfree][Efree], and the current that goes into

the resistor is: I � [ES]*Km. These two currents are equal since all

generated current goes through the resistor. Therefore, we have

If � I � [Sfree][Efree] � [ES]*Km, which is Eq. 18 describing

[ES] in the reaction. This simplified circuit (Figure 3D) exactly

characterizes the kinetics of the enzymatic reaction (Figure 3A)

under the steady-state approximation and is theMichaelis-Menten
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equation in the circuit form. This Michaelis-Menten circuit is the

basic building block for enzymatic reactions and can be easily

extended into more complicated circuits for different mechanisms

of enzyme inhibition as we show below. It should be noted that

besides ensuring enzyme conservation, i.e., that [Efree] and [ES]
sum to [E0], the circuit of Figure 3D also ensures substrate

conservation: [Sfree] � [S0] − [ES]. Ensuring the conservation

of both the enzyme and substrate species allows the Michaelis-

Menten circuit to be more robust and accurate, especially under

scenarios where the enzyme concentration and substrate

concentration are comparable (discussed later).

2.3 Circuit modeling of a hydrolytic
reaction by beta-galactosidase

To validate the Michaelis-Menten circuit (Figure 3D), we fit

our circuit model to experimental data that we collected from an

enzyme-substrate reaction. We chose to use a hydrolytic reaction

wherein beta-galactosidase is the enzyme and ONPG is the

substrate (Figure 4A). We ran the circuit simulation with the

four necessary parameters (Km, kcat, S0 and E0), which were all

experimentally determined under our test conditions. As we

mentioned above, the reaction flux is given by the current Ip
in the circuit while the voltage [S0] reflects the initial substrate

concentration. As expected, the circuit model perfectly matches

the measured initial reaction rates when we varied the initial

substrate concentrations (Figure 4B). The predicted curve (V0 ~

S0) is a classic hyperbolic curve for an enzymatic reaction; as S0
increases the initial reaction rate also increases until it reaches the

maximal rate. For Lineweaver-Burk plotting, the circuit model

accurately predicts a straight line (1/V0 versus 1/S0) with Km =

0.167 mM (derived from the X-intercept in Figure 4C) and

Vmax = 0.00087 mM/s (derived from the Y-intercept in

Figure 4C) with an excellent fit to the experimental data.

The circuit model can also accurately simulate the time-

course dynamics. As shown in Figure 4D, the simulation curves

of [P] dynamics fit our experimental data closely under varying

initial substrate concentrations. In addition, when we changed

the initial concentration of the enzyme with a constant substrate

concentration, as expected, the circuit model predicts product

dynamics that are in good agreement with our experimental data

(Figure 4E). As more enzyme is added, the reaction consumes

substrate faster and reaches a plateau sooner. The circuit model

FIGURE 4
Circuit modeling of the kinetics of the beta-galactosidase reaction. (A) The enzymatic reaction scheme for E (beta-galactosidase) with its
substrate ONPG. (B)Circuit simulation curve of initial reaction rate (V0) versus initial substrate concentration [S0] fitted to the experimental data (when
E0 = 0.3 nM). (C) Lineweaver-Burk plot showing linearized curves of 1/V0~1/S0 with a Y-intercept of 1/Vmax and X-intercept of -1 /Km. (D) Circuit
simulation curves of product dynamics over time with varying initial S concentrations fitted to experimental data with E0 = 0.3 nM. (E) Circuit
simulation curves of product dynamics over time with varying initial enzyme concentrations (0.15–1.2 nM) fitted to experimental data with S =
1.2 mM. (F) Model-predicted curves of the dynamics of [Sf], [ES] and [P] over time with E0 = 0.6 nM and S0 = 1.2 mM. The data points for [P] are
experimental data while the data points for the free substrate [Sf] are calculated from stoichiometric conservation to be [Sf] = [S0] - [P]. All simulation
curves are obtained from theMichaelis-Menten circuit model with experimentally measured Km = 0.167 mM and kcat = 2903/s. Note that the resistor
R = 1/Km= 1/0.000167 = 5988 Ω. All data points aremeans of three independent replicates. The standard deviations are relatively small (less than 20%
of the corresponding mean) and are not shown.
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also accurately predicts the dynamics of [Sfree], [P], and [ES] over

time (Figure 4F).

2.4 Circuit modeling of competitive
inhibition and product-feedback
inhibition

With the basic Michaelis-Menten circuit validated, we

developed a circuit model for competitive inhibition. In the

classic competitive inhibition model, an inhibitor binds to an

enzyme at the substrate-binding site and competes with the

substrate for the free enzyme, as shown in the reaction

scheme (Figure 5A). To model the competitive inhibition in a

circuit, we only need to add an enzyme-inhibitor binding circuit

to the same Michaelis-Menten circuit (Figure 3D). Given the

assumption that inhibitor binding is also much faster than the

catalytic reaction and that the enzyme-inhibitor complex [EI]
also, therefore, reaches steady-state instantaneously, we have the

equilibrium condition:

[Ifree][Efree] � [EI]*Ki (19)

where Ki is the dissociation constant for the inhibitor. Eq. 19 is

similar to Eq. 18, so we make a similar circuit (the lower circuit of

Figure 5B) representing the equilibrium enzyme-inhibitor

binding as described in Eq. 19. In this circuit block, all we

need is to set R = 1/Ki to reflect the inhibitor binding

constant. The voltage [EI] in the circuit is then wired to the

[E0] adder to account for the consumption of free enzyme that

has been competitively bound by the inhibitor. Therefore, we

have a competitive inhibition circuit model (Figure 5B). We used

a competitive inhibitor of beta-galactosidase and experimentally

demonstrated that this circuit is identical to the classic equations

describing the kinetics of competitive inhibition. The circuit

model accurately predicts the relationship between initial

reaction rates and initial substrate concentrations (V0 ~ S0) in

the presence and absence of the inhibitor (Figure 5C). As [S0]

increases, the initial reaction rate V0 also increases and eventually

will reach the samemaximal rate Vmax even in the presence of the

inhibitor. The linearized curves (Lineweaver-Burk plot) show the

expected behavior of competitive inhibition where the inhibitor

increases the apparent Km but not the maximal reaction rate

(Vmax) (Figure 5D). In addition, the circuit model can also exactly

predict the product dynamics over time under different inhibitor

concentrations (Figure 5E). Thus, using our experimental data,

we have verified that the circuit model accurately describes the

kinetics for competitive inhibition.

The circuit for competitive inhibition is a useful building

block and can be used to construct circuits for complicated

FIGURE 5
Circuit model of competitive inhibition. (A) The classic reaction scheme for competitive inhibition. (B) The circuit model for competitive
inhibition. In this case, E is beta-galactosidase, S is ONPG, and the competitive inhibitor is phenylethyl beta-D-thiogalactopyranoside (PETG). (C)
Simulation curves of initial reaction rate (V0) versus initial substrate concentration [S0] fitted to experimental data in the absence and presence of
PETG (10 µM) when E0 = 0.3 nM. (D) Lineweaver-Burk plot showing linearized curves of 1/V0~1/S0 fitted to experimental data with or without
the inhibitor, which have the same Y-intercept, 1/Vmax. (E) The model curves of product dynamics over time with varying inhibitor concentrations
fitted to experimental data points (E0 = 1.0 nM, S0 = 0.6 mM). All simulation curves are obtained from the circuit model with experimentally measured
Ki = 2.33 µM, and the same Km and kcat from Figure 4. All data points are means of three independent replicates. The standard deviations are relatively
small (<20% of the corresponding mean) and are not shown.
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biological pathways when there are competitive inhibitors

involved. As an example, we now use the competitive

inhibition circuit (Figure 5B) to model the kinetics of

product inhibition in an enzymatic reaction. Product

inhibition is a common way to regulate reaction rates in

metabolic pathways. Based on previous reports that beta-

galactosidase can be competitively inhibited by a relatively

high concentration of its own product galactose (Portaccio

et al., 1998; Nguyen et al., 2006), we easily construct a reaction

scheme for the product inhibition wherein the product

galactose competes for the free enzyme (Figure 6A): In

Figure 5B, we simply replace the inhibitor I0 with product

[Gal0] that can be externally added to the reaction and also

wire newly produced [Gal] to the total product pool to

architect the feedback inhibition; the resultant circuit is

shown in Figure 6B.

It is worth noting that simple rewiring and reuse of circuit

building blocks avoids the need for any math equations, and

preserves physical and chemical intuition. We can directly

and rapidly map the reaction mechanism of Figure 6A to a

quantitatively accurate representation of its function and

dynamics in Figure 6B. The implicit (caused by subtractive

inputs from the “use-it-and-lose-it” mass conservation in

Figures 4–6) and explicit (due to product inhibition)

feedback loops are all evident and clearly represented.

We validated the product-inhibition circuit model by fitting

it to experimental data. The circuit model shows good fits to the

experimental data for product dynamics over time when varying

substrate concentrations were added but with constant galactose

concentration (Figure 6C). In another experiment, we compared

the reactions with and without the product galactose added

before starting the reaction. As expected, when the initial

amount of galactose is added, the reaction is inhibited and

takes a longer time to reach a plateau wherein all substrate

has been consumed (Figure 6D).

2.5 A generalized molecular-binding
circuit block for enzyme inhibition and
two-substrate reactions

We next sought to develop a generalized circuit model for all

types of enzyme inhibition including competitive, non-

competitive, and uncompetitive inhibition. In the generalized

reaction scheme (Figure 7A), the enzyme forms ES, EI, and ESI

complexes with the substrate, inhibitor, or both, respectively; the

specific reaction fluxes can be derived from the corresponding

rate constants. We can directly translate the reaction scheme into

an equivalent circuit (Figure 7B) that exactly describes all the

dynamics of each species in the reaction and has identical math

FIGURE 6
Circuit modeling of product feedback inhibition. (A) The scheme of product feedback inhibition based on competitive inhibition. Galactose [Gal]
is one of the products and is also an inhibitor to the enzyme, beta-galactosidase. (B) The circuit model for product feedback inhibition: [S0] is the
initial ONPG added to the reaction while [Gal0] is the initial galactose added to the reaction. (C)Model curves of product dynamics over time fitted to
experimental data with varying initial substrate concentrations (when [Gal0] = 40 mM, E0 = 0.7 nM). (D)Model curves of product dynamics fitted
to experimental data with or without galactose added to the reaction (when ONPG = 1 mM, E0 = 0.85 nM). All simulation curves are obtained from
the circuit model (B) with experimentally measured Ki = 13.7 mM, and the same Km and kcat from Figure 4. All data points are means of three
independent replicates with standard deviations less than 20% of the corresponding mean (not shown).
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equations, as we derive below. Based on the mass conservation

law, we have the following relationships for [S0], [E0] and [I0]
(Figure 7A):

[S0] � [Sfree] + [P] + [ES] + [ESI] (20)
[E0] � [Efree] + [ES] + [EI] + [ESI] (21)

[I0] � [Ifree] + [EI] + [ESI] (22)

Such mass conservation is represented in the equivalent

circuit (Figure 7B) by an adder block with a positive

conserved total species input (S0, E0, or I0); subtractive

(negative) inputs are caused by the use of the species (for

binding or product transformation) to generate other species

(P, ES, EI, or ESI); finally, free variables (Sfree, Efree, or Ifree) are the

resulting outputs of the adder blocks. The subtractive inputs

always cause the ‘use-it-and-lose-it’ implicit negative-feedback

loops in chemical reaction networks (Teo et al., 2015; Teo and

Sarpeshkar, 2020). As shown in Figure 7A, the dynamics of [ES]
are determined by five reaction fluxes, including two generation

fluxes and three consumption fluxes. Therefore, we have:

d[ES]
dt

� kf1*[Sfree][Efree] + [ESI]*kr2 − [ES]*kr1
− [ES][Ifree]*kf2 − [ES]*kcat (23)

Likewise, the voltage dynamics of [ES] in the circuit

(Figure 7B) are also determined by five currents/fluxes. The

two generation fluxes include the forward reaction flux,

kf1*[Sfree][Efree] for enzyme-substrate binding indicated by

the kf1 current source, and the reverse reaction flux (Ir2),

[ESI]*kr2 from [ESI], indicated by the Ir2 current source; the

three consumption fluxes include the dissociation reaction flux,

[ES]*kr1, indicated by the 1/kr1 resistor, the reaction flux for ES

and inhibitor binding (If2), [ES][Ifree]*kf2, indicated by the If2
sink current source, and the catalytic reaction flux, [ES]*kcat.

FIGURE 7
Generalized circuit models for enzyme inhibition. (A) A reaction scheme of general inhibition using rate constants without any approximation or
assumption. (B) A circuit model translated from the reaction scheme in (A) describes reaction dynamics. All symbols used in this circuit are the same
as the ones used in Figures 1, 3. The dependent current generators (diamond symbols) can provide input source currents (arrow up) or sink currents
(arrow down) at nodes that they are wired to. Voltages or currents labeled with same names indicate that they have the same values: in accord
with the reaction, the same current or voltage is appropriately re-used or regenerated atmultiple locations with the use of implicit rather than explicit
wiring to avoid clutter. (C) The reaction scheme of general inhibition in (A), but with a steady-state approximation (all complexes reach equilibria
instantaneously). Here, normalized kf parameters are set to 1, such that all kr parameters are mapped to their corresponding equilibria dissociation-
constant (Km or Ki) values. (D) The generalized circuit for enzyme inhibition translated from the reaction scheme in (C). Note that, in accord with the
steady-state approximation, the capacitors in (B) are removed in (D); and kinetic parameters in the reaction scheme (C) are mapped to equivalent
circuit parameters in (D). The latter circuit can simulate all common enzyme-inhibition mechanisms including competitive, noncompetitive,
uncompetitive, and mixed inhibition. (E) Kinetic parameter settings for different types of enzyme inhibition.
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The dynamics of [EI] are determined by two generation

fluxes and two consumption fluxes in the reaction scheme

(Figure 7A). Therefore, we have:

d[EI]
dt

� kf3*[Ifree][Efree] + [ESI]*kr4 − [EI]*kr3
−[EI]*[Sfree]*kf4 (24)

Similarly, in the circuit (Figure 7B), the voltage dynamics of

[EI] are also determined by two source currents and two sink

currents. Two supply currents include kf3*[Ifree][Efree],
indicated by the kf3 current source, and the dissociation flux

(Ir4), [ESI]*kr4, indicated by the Ir4 current source. The two sink
currents include the current through the resistor (1/kr3),

[EI]*kr3, and the current through the If4 current source,

which is [EI]*[Sfree]*kf4.
The dynamics of [ESI] in the reaction scheme (Figure 7A)

are quantified by two generation fluxes and two consumption

fluxes, so we have:

d[ESI]
dt

� kf2*[ES][Ifree] + kf4*[EI][Sfree] − [ESI]*kr2
−[ESI]*kr4 (25)

This equation is also exactly reflected by the voltage

dynamics of [ESI] in the circuit (Figure 7B), which are

determined by two source currents and two sink currents. As

shown in the circuit, the two source currents include one from

the kf2 current source, kf2*[ES][Ifree], and one from the kf4
current source, kf4*[EI][Sfree]. The two sink currents are

indicated by two resistors 1/kr2 and 1/kr4, with quantities of

[ESI]*kr2, and [ESI]*kr4, respectively (Figure 7B).

Finally, the product [P] dynamics that are described by Eq. 12

are also described by the dynamics of voltage [P] in the circuit

(Figure 7B). As illustrated above, Eqs 12 and 20–25 describing the

reaction kinetics/dynamics for the reaction scheme (Figure 7A)

are exactly mapped to a single circuit (Figure 7B). Given the rate

constants and initial conditions, these equations (Eqs 12 and

20–25) can be solved by running simulations of the circuit. In

short, this circuit not only accurately visualizes all differential

equations in one diagram but can also easily provide solutions to

these equations via simulations of the circuit.

Since we haven’t applied any assumptions while deriving the

equations or in developing the circuit (Figures 7A,B), this circuit

is very general and can be used to model the kinetics of any

reaction with the same topology. However, we need to know the

values of all the rate constants to run the simulation of this

circuit, which is not very convenient. To make the circuit more

useful in practice, we simplified the reaction by applying the

steady-state approximation (Figure 7C), which is also used in the

derivation of enzyme inhibition kinetics from the Michaelis-

Menten equation. Under this approximation, substrate binding

and inhibitor binding to an enzyme are viewed as instantaneous

(much faster than the catalytic reaction) and thus all intermediate

complexes reach quasi-steady states. Therefore, we have the

equilibrium equations below:

[Efree]*[Sfree] � [ES]*Km (26)
[Efree]*[Ifree] � [EI]*Ki (27)
[EI]*[Sfree] � [ESI]*Km2 (28)
[ES]*[Ifree] � [ESI]*Ki2 (29)

Similar to the tactics used to derive the Michaelis-Menten

circuit (Figure 3D), these equilibrium equations are reflected in

the circuit (Figure 7D) by removing all capacitors, setting all four

kf values equal to 1, and combining currents for each complex

into one or two resistors. We thus achieve a parameter-reduced

circuit generalized for enzymatic reactions with inhibition

(Figure 7D). Note that ESI has two production fluxes, one

from ES and the other from EI, and two consumption fluxes,

dissociation from ESI to EI and to ES, respectively. We can sum

Eqs 28, 29, and have Eq. 30 which determines the steady state

of [ESI]:
[EI]*[Sfree] + [ES]*[Ifree] � [ESI]*(Km2 +Ki2) (30)

Accordingly, Eq. 30 is also reflected in the circuit (Figure 7D)

for the voltage of [ESI], which is determined by two source

currents and two sink currents through the two resistors. The two

source currents are provided through the kf2 current source and

kf4 current source; the two sink currents are realized by the

1/Km2 resistor and 1/Ki2 resistor, respectively.

Based on the mathematical derivations above, we have

developed a parameter-reduced circuit (Figure 7D) generalized

for all four kinds of enzyme inhibition including competitive,

non-competitive, uncompetitive, and mixed inhibition. By

default, the generalized circuit (Figure 7D) can be viewed as a

circuit model for mixed inhibition while the other three types of

inhibition are just special cases. For competitive inhibition, since

there is only one [EI] reaction (Figure 7C), setting the

parameters kf2 � kf4 � 0 gives [ESI] � 0 and the circuit

(Figure 7D) becomes the same circuit in Figure 5B for

competitive inhibition. For non-competitive inhibition, the

inhibitor binds to the enzyme at a different site from the

catalytic site and this binding is independent of the substrate

binding, resulting in Km2 � Km and Ki2 � Ki in the reaction

scheme (Figure 7C). Consequently, using those same settings in

the circuit (Figure 7D), we have the circuit for non-competitive

inhibition. Since non-competitive inhibition is a special case of

mixed inhibition, when there are no special requirements on Ki2

and Km2, the circuit (Figure 7D) by itself is a model for mixed

inhibition. For uncompetitive inhibition, there is only one

production flux for ESI (from ES), meaning that kf3 � kf4 � 0

in the circuit (Figure 7D). As a result, there is only one

consumption flux for [ESI] in the uncompetitive inhibition

circuit, such that there is only current through the resistor

(R = 1/Ki), achieved by either removing the other resistor
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R = 1/Km or setting its resistance to a huge value such that the

current running through it can be ignored. In summary, we have

developed a generalized circuit for four types of enzyme

inhibition. Its simulation requires five parameters (Km, kcat,

Ki, Km2 and Ki2) for modeling mixed inhibition and only

three kinetic parameters, Km, kcat, and Ki, for modeling

competitive, non-competitive, or uncompetitive inhibition.

The generalized circuit (Figure 7D) consists of two parts: a

binding block and a catalytic reaction block. The binding block is

the circuit representing the binding of enzyme-substrate (ES),

enzyme-inhibitor (EI), and enzyme-substrate-inhibitor (ESI) in

Figure 7D. Since the binding circuit can fundamentally simulate

different bindings among biomolecules, it is a useful building

block for modeling more complicated interactions. Therefore, we

extracted the binding block and rearranged the generalized

circuit (Figure 7D) into a more concise schematic symbol

(Figure 8A) for easy visualization. The new circuit consists of

a binding block (blue box) and a catalytic reaction block

(Figure 8A), describing exactly the same kinetics/dynamics as

in the original circuit (Figure 7D). This binding block has three

inputs ([E0], [S0], and [I0]) and three outputs ([ES], [EI], and

[ESI]), which are the same as those in Figure 7D. The reaction

block is separated; hence there is product [P] feedback to the

substrate input to maintain mass conservation of S as shown in

Figure 8A.With all the underlying schematic circuits built within

it (Figure 7D), our binding-block circuit motif symbol is

convenient to use: As in highly complex electronic integrated-

circuit design with hierarchical building blocks, it provides a

useful visualization aid; it can be repeatedly instantiated to create

ever-more complex biochemical reaction networks.

To verify that our generalized circuit can accurately simulate

all enzyme inhibition types, we ran simulations with the circuit

using the same kinetic parameters (Km, kcat, and Ki) and initial

concentrations of enzyme, substrate, and inhibitor for all of its

special cases, i.e., for competitive, noncompetitive, and

uncompetitive inhibition. As expected, our circuit model

predicted the characteristic curves for the relationship between

[S0] and initial reaction rate V0 for all three inhibition types

(Figure 8B). Lineweaver-Burk plotting further confirmed that

our circuit model is accurate (Figure 8C): For competitive

inhibition, the apparent Km increases but Vmax remains the

same upon the addition of the inhibitor; for non-competitive

inhibition, the Vmax decreases but apparent Km remains the

same; for uncompetitive inhibition the apparent Km and Vmax

both decrease with the same proportion such that the curve’s

slope (Km/Vmax) without inhibitor (NT, the blue line in

Figure 8C) is identical to that with inhibitor (Un, the orange

line in Figure 8C). Furthermore, this circuit can also simulate

mixed inhibition where Km, Km2, Ki, and Ki2 are independent of

each other, the most general case. As an example, when using the

FIGURE 8
Generalized circuit simulations of enzymatic reactions with different inhibition types. The kinetic parameters used in the simulations are Km =
2 mM, Ki = 3 mM, kcat = 500/s, E0 = 10 nM, I0 = 3 mM, with varying amounts of substrate S. (A) The simplified circuit schematic for the generalized
inhibition circuit from Figure 7D with a binding block (blue box) and a catalytic reaction. The binding block is the same circuit used for the binding of
enzyme, inhibitor, and substrate in Figure 7D, with a separated catalytic reaction block. (B) Simulation curves of initial reaction rate V0 versus
initial substrate concentration S0 for enzymatic reactions without inhibitor (NT), with an uncompetitive inhibitor (Un), with a noncompetitive inhibitor
(Non), and a competitive inhibitor (Comp). (C) Lineweaver-Burk plot plotting 1/V0 versus 1/S0. The inserted table corresponds to parameters derived
from the X- and Y-intercepts of the corresponding line. These derived parameters exactly match the input parameters. (D,E) Predicted product
dynamics over time with S = 5 mM (D) and S = 20 mM (E) for all inhibition types listed.
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same Km and Ki values as in Figure 8 but setting Ki2 = 6 mM and

Km2 = 4 mM, we obtain a typical curve for mixed inhibition with

different X- and Y-intercepts on the Lineweaver-Burk plot

(Supplementary Figure S1).

Remarkably, this circuit shows that the time-course

dynamics of the product differ greatly amongst the three

inhibition types (Figures 8D,E) and that the difference

depends on substrate concentration: When S = 5 mM, the

product dynamics of uncompetitive inhibition are similar to

that of competitive inhibition (Figure 8D), while when S =

20 mM the product dynamics of uncompetitive inhibition are

closer to that of noncompetitive inhibition (Figure 8E). Non-

competitive inhibition usually has the strongest inhibition among

the three types, with the slowest product production (Figures

8B,D,E). Our simulation results suggest that, to obtain accurate

molecular kinetics, it is important to choose the right inhibition

mechanism when constructing models. Choosing the right type

of inhibition is especially critical for cascade reactions such as in

metabolic pathways where there are many steps with feedback

inhibition caused by the final product and/or intermediate

metabolites.

The binding block circuit motif (Figures 7D, 8A) is very

useful and versatile for different applications. As another

example, we used the same binding block and made a circuit

to simulate reactions with two substrates binding to the same

enzyme. There are three possibilities of binding order: Enzyme

binds to A and then to B; Enzyme binds to B and then to A;

Enzyme binds to A and B randomly. We called the first two

“ordered-binding reactions” and the last one “random-binding

reaction”. The reaction schemes and a circuit model for a

generalized reaction are demonstrated in Supplementary

Figure S2. Our circuit simulations clearly show that the

binding order can cause different reaction dynamics.

Normally, the random-binding reaction has the slowest rate

while the rate for ordered-binding reactions depends on the

substrate-to-Kd ratio (S/Kd) (Figure 9). Given the same

concentration of substrate A and B, the reaction is faster

when the enzyme first binds to B (greater Kd and thus smaller

S/Kd) while given the same Kd for both substrates, the reaction is

faster when the enzyme first binds to A (lower concentration and

thus smaller S/Kd) (Supplementary Figure S3). Indeed, when we

vary the S/Kd ratio for both substrates, the reaction is always

faster when the enzyme first binds to the substrate with the

smaller S/Kd (Figure 9). It is interesting to point out that given the

same S/Kd ratio (1:1 in Figure 9D), the rates are initially similar

for both ordered-binding reactions but as two substrates are

consumed to cause one to have smaller S/Kd (substrate A in

Figure 9D), the reaction (with A binding first) is eventually faster

FIGURE 9
Comparison of the reaction kinetics of two-substrate reactions with random binding and ordered-binding. (A) The concise circuit
schematic for the generalized reaction circuit from Supplementary Figure S2D, with a binding block (blue box) and a catalytic reaction. The
binding block circuit motif (blue box) is the same circuit used in Figure 7D for ESI binding but with substrates A and B replacing S and I.
Depending on parameter settings, this circuit can also simulate ordered-binding reactions as mentioned in Supplementary Figure S2E.
(B–D) Product dynamics for the random- and ordered-binding reactions with different substrate-to-Kd (S/Kd) ratios. Random: random-
binding reaction; EA + B: enzyme binds to A then B; EB + A: enzyme binds to B then A. The parameters used in the simulations are listed in the
inserted table in each graph. The two common parameters used are: E0 = 10 nM, kcat = 500/s.
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than the reaction with the opposite binding order. Given that the

binding order matters for reaction kinetics, modelers may need

to carefully select which binding order best approximates the

reaction they are modeling.

2.6 Circuit modeling of non-competitive
inhibition

We have now verified in theory that the generalized circuit

(Figure 8A) is accurate in predicting kinetics for all enzyme

inhibition types. This circuit is also convenient to use; with inputs

of Km, kcat and Ki as well as experimental initial conditions,

running simple simulations can provide all kinetic data, which

can be compared to experimentally measured data. As an

example, we now use our circuit to model the noncompetitive

inhibition wherein lactate oxidation by lactate dehydrogenase is

inhibited by a noncompetitive inhibitor, oxamate (Powers et al.,

2007). In this redox reaction (Figure 10A), we varied the

concentration of lactate while keeping a constant NAD+

concentration. As expected, the circuit-predicted curves

capture the experimental data nicely. The initial reaction rate

increases as substrate concentration increases, but, in the

presence of the noncompetitive inhibitor, the reaction rate

never approaches the Vmax of the reaction when without the

inhibitor (Figure 10B). Linearized curves from Lineweaver-Burk

plots show that noncompetitive inhibition has the same Km as the

reaction without the inhibitor, but a smaller Vmax (i.e., greater

1/Vmax) (Figure 10C). The generalized circuit can also simulate

the time-course kinetics of NADH production for the initial

period (the first 360s) (Figure 10D) where the catalytic reaction

can be largely viewed in the forward direction.

2.7 Circuit modeling of reversible
reactions

We developed a circuit to simulate reversible reactions because

they are very common in metabolic pathways. Since the kinetic

mechanism for the reversible reaction of alcohol dehydrogenase

(ADH) is well studied with all rate constants known (Dickinson

and Dickenson, 1978; Ganzhorn et al., 1987; Plapp, 2010), we

developed a circuit model for this reversible reaction with ethanol

and NAD+ both as substrates. The kinetics of this reaction by yeast

ADH follow the ordered Bi-Bi mechanism, resulting in a five-step

reversible reaction (Ganzhorn et al., 1987) as shown in Figure 11A.

First, NAD+ binds to the enzyme ADH and forms an E-NAD

complex; the substrate ethanol then binds to E-NAD and forms an

FIGURE 10
Circuit modeling of non-competitive inhibition of LDH by oxamate. (A) The reaction scheme of non-competitive inhibition against LDH, where
the inhibitor I is oxamate. For simplification, the initial catalysis can be viewed as a directional reaction, though the LDH reaction is known to be
reversible; the fast binding step of NAD+ to enzyme is neglected in this reaction scheme. (B) Simulation curves of V0 versus S0 fitted to measured
experimental data in the absence and presence of oxamate (7.6 mM), when E0 = 5.0 nM. (C) Lineweaver-Burk plot showing linearized curves of
1/V0 versus 1/S0 with andwithout the inhibitor, which have the same X-intercept of -1 /Km. (D) Themodel curves of product dynamics over time with
varying inhibitor concentrations fitted to experimental data points (when S = 80 mM, E0 = 3.3 nM). All simulation curves are obtained from the circuit
model (Figures 7D, 8A) with experimentally measured Km = 17.1 mM, kcat = 215.5 (1/s), and Ki = 3.66 mM. All data points are means of three
independent replicates with standard deviations less than 20% of the corresponding mean (not shown).
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E-NAD-S complex; this complex turns into a new complex

E-NADH-P and then the first product aldehyde (P) releases,

resulting in an E-NADH complex; the last step is the

dissociation of NADH from the enzyme. The total reaction

consists of five reversible steps, each with forward and

reverse rate constants as indicated in the reaction scheme

(Figure 11A).

To mathematically simulate the dynamics/kinetics of all

species in this multi-step reaction would require a long list of

differential equations as well as many mass conservation

equations. Instead, we can simply translate the reaction

scheme into a single circuit (Figure 11B) without deriving

differential equations. The circuit model is constructed by

using a circuit block similar to the one for the enzyme-

substrate circuit (Figure 3B). The difference is that each

intermediate complex (blue text) including E-NAD, E-NAD-S,

E-NADH-P, and E-NADH in steps 1–4 has two production

fluxes and two consumption fluxes (Figure 11B), instead of only

three fluxes for the [ES] complex in the circuit (Figure 3B) for

classic Michaelis-Menten kinetics without a reversible catalytic

reaction. It should be noted that the product aldehyde [P] is

produced in proportion to [E-NADH-P] with a rate constant of

k4 while it is consumed by binding back to [E-NADH], forming

[E-NADH-P] with a rate constant k-4, resulting in a reaction rate

of I-4 = k-4*[P]*[E-NADH]. Similarly, another product [NADH]

is produced in proportion to [E-NADH] with a reaction rate of

k5*[E-NADH] while it is also consumed by binding back to the

enzyme, forming [E-NADH] with a rate of I-5 = k-5*[NADH]*

[Efree]. Another important note is that the conservations of

enzyme, NAD+, and ethanol (S) during the reaction are

indicated by adder and subtraction symbols in red in the

circuit (Figure 11B).

To verify the accuracy of our circuit model, we fit

experimental data for [NADH] produced from ethanol

oxidation by ADH for varying amounts of alcohol and a fixed

concentration of initial NAD+. Given that the 10 rate constants

for the whole reaction are known from previous studies

(Dickinson and Dickenson, 1978; Ganzhorn et al., 1987), we

used these kinetic parameters as input to our circuit model. We

were able to get a good fit with only some adjustments

(Supplementary Table S1) relevant to our specific

experimental conditions. Our circuit model can accurately

simulate the product dynamics over time with varying

amounts of ethanol input (Figure 11C). Importantly, our

circuit model also correctly predicts the classic relationship

between initial reaction rates (V0) and initial ethanol

FIGURE 11
Circuit modeling of a reversible reaction catalyzed by yeast alcohol dehydrogenase (ADH). (A) Themechanistic scheme for a five-step reversible
reaction for yeast ADH, where E is ADH enzyme, S is ethanol, and P is the acetaldehyde produced. (B) Circuit model that exactly matches the kinetics
of the reaction scheme in (A). [E0] is the initial ADH concentration (3.9 nM), [NAD0

+] is the initial NAD+ concentration (4 mM), [S0] is the initial ethanol
concentration. Arrows along solid lines or in current generators (diamond symbols) indicate the direction of the corresponding current
(reaction flux). Voltages or currents labeled with the same names indicate the same values. All circuit symbols are shown in Figures 1, 3. (C) Model
curves of product [NADH] dynamics over time fitted to experimental data points with varying ethanol concentrations. (D) Simulation curves of initial
reaction rates V0 versus initial alcohol concentrations S0 fitted to experimental data. (E) Lineweaver-Burk plot showing a straight curve of 1/V0 versus
1/S0. All data points are means of three independent replicates with standard deviations less than 20% of the corresponding mean (not shown).
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concentrations (S0) based on modeling the initial 60 s of the

reaction (Figure 11D). The Lineweaver-Burk plot shows a

straight line for 1/V0 versus 1/S0, which captures our data

closely (Figure 11E). From the X- and Y-intercepts, we

calculated a Km of 14.3 mM for ethanol and kcat of 483/s,

which agrees well with previous reports (Ganzhorn et al., 1987).

2.8 Circuit modeling of transcription and
translation in a cell-free system

Circuits can be used to model any biological system, not

just enzymatic reactions (Sarpeshkar, 2010; Teo and

Sarpeshkar, 2020). Here, we sought to model transcription

and translation (TXTL) kinetics regulated by TetR in an E.

coli-based cell-free system. In this system, the DNA insert

region (a hybrid T7 promoter regime) on a plasmid (DA313)

has a T7 RNAP binding site and a TetR binding site (tetO) that

is 5-bp downstream; given the relatively small sizes of

T7RNAP and TetR, the DNA region acts like an enzyme

capable of binding both the “substrate” (T7 RNAP) and the

inhibitor protein (TetR) at two different sites. Since T7 RNAP

and the inhibitor TetR bind to the DNA regime (“enzyme”) at

two different sites, we can assume their interactions to

architect noncompetitive binding (Figure 12A). Such

transcriptional binding is similar to the noncompetitive

binding/reaction scheme (Figures 7C,D, 8A) but with the

difference that none of the “substrate” (T7 RNAP) is

consumed or converted into products. The free DNA-

RNAP complex turns on the transcription followed by the

translation of GFP (Figure 12A). The dynamics of mRNA are

determined by production and degradation, with rate

constants of kTX (1/s) and d (1/s), respectively. Ribosomes

then bind to the ribosome binding site (RBS) of the mRNA

and turn on the translation of GFP_dark with a rate constant

of kTL (1/s). GFP_dark undergoes folding and maturation with

a rate constant of kmat (1/s), resulting in fluorescent GFP

(Figure 12A). In this study, we focused only on the initial

TXTL reactions in the first ~4000 s, wherein the reactions

reach their maximal production rates (steady states) and are

not limited by the available amino acids, energy sources, and/

or other components. Since TetR forms stable homodimers

(Krafft et al., 1998), TetR in this model represents its

homodimer. With these simplifications and assumptions,

FIGURE 12
Circuit modeling of cell-free transcription and translation regulated by TetR. (A) The scheme for molecular binding and associated reactions of
TXTL in the cell-free system with repression by TetR. The TXTL is turned on by a hybrid T7 promoter (DNA) and T7 RNA polymerase (RNAP) and
repressed by TetR via non-competitive inhibition. The free RNAP-DNA complexes turn on transcription followed by the translation of GFP. The TetR
used in the model is its homodimer. Ki represents the dissociation constant (Kd) of the homodimer binding to the DNA (tetO). (B) The circuit
model exactly describes the kinetics of molecular binding and associated reactions in (A). In the non-competitive binding block (blue box), DNA acts
in a manner like an enzyme where both the substrate (RNAP) and the inhibitor (TetR) bind to it. Only free [DNA-RNAP] turns on transcription. (C)
Model curves of GFP dynamics fitted to experimental data points with varying DNA concentrations when TetR = 0 nM. (D) Model curves of GFP
dynamics fitted to experimental data points with varying TetR concentrations at constant DNA concentration (6 nM). All data points are means of
three independent replicates with standard deviations less than 20% of the corresponding mean (not shown).
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we thus have the reaction scheme for TXTL regulated by TetR

in the cell-free system (Figure 12A).

Based on the binding and reaction scheme (Figure 12A), we

used the general binding block (Figure 8A) and designed a circuit

(Figure 12B) that exactly describes the kinetics of the binding

interactions and reactions for the regulated TXTL in the cell-free

system. In this circuit (Figure 12B), the binding block (blue box)

has voltage inputs of initial [DNA0] for total plasmid

concentration, [RNAP0] for total T7 RNAP concentration,

and [TetR0] for total TetR concentration, via the pins of E, S,

and I, respectively; free [TetR] and [RNAP] bind to DNA

noncompetitively, exactly described by the same circuit as

Figures 7D, 8A; among the three outputs, only the [DNA-

RNAP] turns on the transcription; the mRNA is then bound

by ribosomes, which results in GFP production. Since several

RNAP molecules can bind to one DNA molecule during

transcriptional elongation, the average number of T7-RNAP

bound in each DNA-RNAP complex would be 1 + kTX*Lm/

Cm where 1 is the one RNAP binding to the promoter, kTX is the

transcription rate (1/s), Lm is the length of mRNA (nt), and Cm

is the average RNAP velocity during elongation (nt/s) (Bremer

et al., 2003; Marshall and Noireaux, 2019). Therefore, for each

DNA-RNAP complex the number of RNAP, 1 + kTX*Lm/Cm,

has to be subtracted from the total [RNAP0] pool. Similar to the

counting of RNAP copy numbers on each DNA-RNAP complex,

for each Ribo-mRNA complex, there are 1 + kTL*Lp/Cp

ribosomes, where 1 is the one ribosome binding to the

ribosome binding site, kTL is the translation rate (1/s), Lp is

the GFP coding length of mRNA (nt), and Cp is the ribosome

velocity during elongation (nt/s). The last part of the circuit is the

GFP production where GFP_dark is produced with a rate

constant of kTL and consumed to make fluorescent GFP with

a rate constant of kmat.

All the kinetic parameters (Supplementary Table S2) used in

this model were obtained either from previous studies (Újvári

and Martin, 1996; Kamionka et al., 2004; Skinner et al., 2004;

Marshall and Noireaux, 2019) under similar conditions or from

fitting to our experimental data. The simulation curves fitted our

experimental data closely as shown in Figures 12C,D. As

expected, as more plasmid was added to the cell-free system

more GFP was produced until saturation was reached (up to

~12 nM DNA in our experiments) (Figure 12C), where adding

more plasmid would not increase GFP production. In another

experiment, when varying amounts of TetR were added to the

cell-free system with a constant DNA concentration, GFP

production was increasingly repressed by more TetR addition.

3 Discussion

We have shown that the ordinary differential equations used

to describe the dynamics of voltages and currents in relatively

simple electronic circuits are exactly the same as the ODEs

describing molecular kinetics in chemical reactions and

biological systems. Voltages faithfully represent molecular

concentrations while currents faithfully represent reaction

fluxes. Furthermore, we have built Michaelis-Menten circuits

and validated them by using well-defined parameters and by

fitting experimental data from enzymatic reactions. Based on the

MM circuits, we then developed circuit models for more

complicated reactions including various enzyme inhibition

types, product feedback inhibition, reversible reactions, two-

substrate reactions, and regulated TXTL in a cell-free system.

These circuits provide foundational building blocks for kinetic

modeling of complex chemical and biological networks in the

fields of synthetic biology (such as different types of oscillators),

metabolism, and cellular signaling.

Taking advantage of circuit models, we are able to translate

reaction schematics directly into circuits and to directly perform

rapid kinetic modeling for biochemical reactions/networks

without the need for deriving math equations or writing code.

Using electronic circuits as a new modeling language can thus

enable faster and easier modeling of molecular kinetics than

using ODEs and numerical solvers. Importantly, circuit

modeling is also very effective for scientific communication.

Circuit modeling is not only accurate but also very concise

because all the underlying equations and parameters/terms

describing molecular kinetics, and the detailed

interconnectivity between species/components are visualized

and clearly labeled in one circuit.

It is worth noting that our circuit models are made of active

transconductor-resistor-capacitor circuits that are more general

than the passive-only resistor-based circuits used previously in

biogeochemical modeling (Domingo-Félez and Smets, 2020;

Tang et al., 2021). Our circuits can simulate steady-state and

nonlinear dynamic evolution including loading and non-

modularity between arbitrary interacting reactions, stochastics

at low molecular copy number, and directly map physical

parameters in the molecular domain (e.g., concentrations and

rates) to equivalent physical circuit parameters (e.g., voltages and

currents) (Sarpeshkar, 2010; Teo and Sarpeshkar, 2020). Thus,

our circuits are designed mechanistically even at the molecular

level and are flexible for use in a variety of applications. For

example, circuit modeling allows us to simulate fundamental

biochemical mechanisms such as different types of molecular

binding and inhibition between enzyme and substrate/inhibitor/

activator (Figures 8, 9). Such models otherwise are challenging to

obtain without using many assumptions and mathematical

derivations.

It should also be noted that our circuit models are more

general and accurate than classic MM kinetics because we don’t

need the free ligand assumption where [S0] is assumed to be

much greater than [E0]. Instead, subtraction of [ES] and [P] from

[S0] in all of our circuits always ensures exact mass conservation.

Similarly, if present, automatic subtraction of [EI] and [ESI]

ensures exact mass conservation. These subtractions may not
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necessarily improve the model accuracy for normal enzymatic

reactions that are run under conditions of [S0] >> [E0] and/or

[I0]>>[E0]. However, under some circumstances where the

concentrations of substrate and/or inhibitor are close to the

enzyme concentration, such as the case of our TXTL modeling

in the cell-free system (Figure 12), the concentrations of

complexes including [ES], [EI] and/or [ESI] account for

considerable portions of the total concentrations of [S0], [I0]

and/or [E0]. Thus, with built-in accounting for the

concentrations of these complexes, we can apply circuits

more accurately and conveniently than MM equations that

may not be accurate under all conditions.

Our circuit modeling approach is unique because it allows for

a biological system to be both intuitively visualized and

quantitatively simulated within a single interactive and

graphical software program (e.g., Cadence, CircuitLab).

Professional circuit-design software directly enables model-

order reduction, hierarchy, modular scalable design, and 25 +

forms of sophisticated built-in mathematical analysis, including

transient, steady state, frequency response, parametric variation,

noise, Monte-Carlo, and other analyses automatically (Teo et al.,

2019a; Teo and Sarpeshkar, 2020). Sophisticated adaptive Runge-

Kutta and other numerical convergence tools are built into the

circuit software preventing the user from having to focus on

them. Although many useful tools exist for creating models in

systems biology, such as SBML (Hucka et al., 2003) and

BioCRNpyler (Poole et al., 2022), these tools require coding

skills and are not as convenient to use as circuit design tools that

fully take advantage of pictorial and architectural design.

Therefore, we believe that our circuit approach will be

significantly easier to use for experimental biologists. Synthetic

biologists, who are typically more mathematically inclined, will

also appreciate the quantitative design aspects and great

flexibility that directly port from electronic circuit design to

biological circuit design.

Our approach leverages the scalability and modularity of

electronic circuit design with built-in hierarchy and circuit

motifs. Circuit modeling enables modularity without

sacrificing accuracy (e.g., due to the built-in use-it-and-lose-it

feedback loops that automatically incorporate the ‘loading’ of one

reaction module on another reaction module in our approach),

which is also essential in scalable design. Circuit modeling also

makes model-order reduction or expansion very easy such that

the impact of a simple or complex model of any portion of a

system on outputs can be evaluated with a few keystrokes. Circuit

models are therefore scalable to the design of vast complex circuit

networks. Furthermore, our circuit modeling approach directly

maps physical parameters to physical parameters such that it is

easily generalizable. Consequently, it is also more accurate and

flexible even in extreme cases such as when concentrations of

enzyme and substrate are comparable, enabling detailed models

of molecular binding and enzymatic inhibition (Figures 8, 9).

With such scalability and flexibility, we anticipate our circuit

modeling approach will become a powerful tool to analyze the

behaviors of large biological networks and to mine useful natural

algorithms in such systems.

Computational time is an important issue for modeling

complicated systems. Since our circuit modeling approach

uses similar numerical algorithms (built into the circuit design

software) as traditional ODE modeling, we do not expect

advancement in computational time between the two

modeling methods. Circuit software has some overhead in it

to enable graphical design and multiple forms of analysis so it

typically leads to a slight increase in simulation time, especially

for small networks. For example, depending on the complexity

and scale of circuits, the simulation takes a few seconds for small

circuits (most circuits in this work) and a few minutes or longer

for very large circuits. Running an ODE solver in MATLAB gave

identical results to those obtained by circuit simulations in

Cadence (Supplementary Figure S4). The MATLAB ODE

solver was found to be faster than Cadence in that case

(several tenths of a second vs. several seconds) due to the

overhead being more significant for a small network. For

large-scale models, hardware integrated circuits, namely,

cytomorphic chips can run simulations of the “virtual” circuit

models at speeds orders of magnitude faster than normal

computers (Sarpeshkar, 2010; Woo et al., 2015; Woo et al.,

2018). Cytomorphic chips integrate many fundamental

biochemical reaction motifs, whose parameters and

connectivity can be programmed to run simulations of

arbitrary chemical networks. On such integrated circuit chips,

the voltages (concentrations) and currents (rates) are emulated in

a parallel fashion, even for highly stochastic simulations, rather

than simulated. They are almost instantaneously accessible in a

MATLAB interface that both programs and reads data from the

chips. The computation time of the cytomorphic chips is

independent of the reaction network’s size and complexity

even for stochastic simulations, which cannot be parallelized

to represent Poisson noise in digital simulations (Kim et al.,

2018). For example, models of computation time can be

significantly reduced by several orders of magnitude for

circuit models including oscillatory repressilators and more

complex networks in cancer (Woo et al., 2015; Teo and

Sarpeshkar, 2020) or in SARS-COV2 infection (Beahm et al.,

2021).

4 Conclusion

Circuit modeling is advantageous for rapid design and

accurate kinetic modeling of chemical and biological systems.

Circuit models visualize all math equations and their

relationships in one circuit, which is very concise and

convenient for effective communication. This approach takes

advantage of the high scalability in circuit design and has wide

applicability. We envision that circuit modeling could be adopted
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as a new language for kinetic modeling and promote scientific

communication in the fields of biochemistry, systems biology,

biogeochemistry, and synthetic biology.

5 Methods and materials

All enzymes and chemicals were purchased from Sigma

Aldrich unless otherwise mentioned. Three enzymes used in

this study were beta-galactosidase from E. coli (cat# G5635),

rabbit muscle lactate dehydrogenase (cat# L2500), and yeast

alcohol dehydrogenase (cat# A7011).

5.1 Enzymatic assays

All enzymatic assays were run in 96-well plates (Costar,

cat#3595) with 100 μl of reaction mixture per well and

reactions were monitored in real time by using a microplate

reader (Molecular Devices Inc.).

Beta-galactosidase (beta-Gal) assays were performed using

o-nitrophenyl-β-D-galactopyranoside (ONPG) as substrate. All

reagents were prepared in PBS buffer (pH7.2) with 5 mM

Dithiothreitol (DTT) and 4 mM MgCl2. The reactions (100 μl/

well) with varying concentrations of ONPG were monitored by

measuring the absorbance of the product, 2-nitrophenol, at

420 nm in real time for over 20 min. The concentrations of

the product were determined by a calibration curve that was

made by using a freshly prepared 2-nitrophenol solution under

the same condition. Initial reaction rates were calculated from the

slopes of each reaction curve normally within the first 6–8 min.

For competitive inhibition, phenylethyl beta-D-

thiogalactopyranoside (PETG), a known competitive inhibitor

of beta-Gal (Xu and Ewing, 2004), was added to the reactions

under the same condition. For the product feedback inhibition,

galactose at varying concentrations was added to the reaction

mixture before running the enzymatic assay.

The lactate dehydrogenase (LDH) assay was performed in

96-well plates using a constant concentration of 2 mMNAD+ and

varying the concentration of lactate as substrate. All reagents

were prepared in 0.5 M glycine buffer (pH9.5). The end product

NADH concentration was determined by measuring absorbance

at 350 nm with a calibration curve pre-established under the

same condition. All the reactions (100 μl/well) were monitored in

real time in 96-well plates by a microplate reader. For modeling

non-competitive inhibition, oxamate was used as a non-

competitive inhibitor of LDH, in the lactate oxidation

direction (Powers et al., 2007). The alcohol dehydrogenase

(ADH) assay was performed in 40 mM Tris buffer (pH8.3) by

using a constant concentration of 4 mM NAD+ and varying the

concentration of ethanol as substrate. The reactions were

monitored similarly to the LDH assay.

All experiments were done with three replicates unless

otherwise mentioned. Control reactions without any enzyme

were also included in each experiment as blanks. The kinetic

parameters including Km, Ki, Vmax, and kcat, were derived from

Lineweaver-Burk plotting. These experimentally obtained kinetic

parameters and initial concentrations were put into the

corresponding circuit models before running simulations.

5.2 Transcription and translation in the
cell-free system

The cell-free E. coli protein synthesis system was purchased

from New England BioLabs (cat# E5360). The T7 RNA

Polymerase (NEB, cat# M0251S) and RNase Inhibitor (NEB,

cat#M0314S) were added to the reaction mixture. The

transcription and translation reactions (15 μl/each) with

varying concentrations of plasmid DA313 and purified TetR

were run in a 384-well plate (ThermoFisher Scientific, cat# 12-

566-2). The reactions were monitored in real time by measuring

GFP fluorescence at Ex485/Em528 in a microplate reader

(Molecular Devices Inc.). The plasmid DA313 was made by

fusing fragments of a hybrid T7 promoter with a tetO binding

site (Jung et al., 2020), 5′UTR sequence, and a superfolder GFP

(sfGFP) gene into the backbone of pJBL7010 (Silverman et al.,

2019) by Gibson assembly (NEB, cat# E2621L). The 5′UTR
sequence includes an mRNA stability hairpin (Carrier and

Keasling, 1999; Silverman et al., 2019) and a ribosome binding

site that was designed by the RBS calculator (Salis, 2011). The

plasmid DA313 was purified by Monarch plasmid miniprep kit

(New England BioLabs, cat# T1010S) and its concentration was

determined by a fluorometric assay with a DNA-specific dye

EvaGreen (Ihrig et al., 2006). The sfGFP concentration was

estimated by a pre-established calibration curve using a pure

EGFP (BioVision, cat#4999-100) with a conversion factor of

1.6 to account for different fluorescent brightness between sfGFP

and EGFP (Fluorescent Protein Database, https://www.fpbase.

org/). All experiments were performed with three independent

replicates.

The recombinant TetR with 6xHis tag was over-expressed

in E. coli JM109 (DE3) with plasmid DA303 and purified using

Nickel-NTA agarose resin (ThermoFisher Scientific, cat#

88221). The purity of the recombinant TetR was analyzed

by SDS-PAGE gel and the concentration was measured by

BCA assay (ThermoFisher Scientific, cat#23252). Since TetR

forms stable homodimers (Krafft et al., 1998) its

concentration is then converted to the molar concentration

of the homodimer. The plasmid DA303 was made by fusing

TetR into the pQE80 backbone by Gibson assembly. All

plasmids used were confirmed by Sanger sequencing and

their maps are provided in the supplemental material

(Supplementary Figure S5).
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5.3 Circuit design and simulation

All circuits were designed and simulated in sophisticated

circuit software including Cadence Virtuoso (version

IC6.1.6–64b.500.6, Cadence Design Systems, Inc.) and an

online tool, CircuitLab (https://www.circuitlab.com/). To

design circuits, electric components such as capacitors,

resistors, grounds, voltage sources, current sources/

generators, and math functions (adders, subtractors,

multipliers) were chosen directly from the library in the

software and placed into the design window. All

components were then wired together to make a circuit

according to the system being modeled. Parameters and

initial conditions were assigned to each component before

running the simulations in the software. As examples, three

circuits designed in this work are provided on the CircuitLab

website via the links below:

Enzyme inhibitions: (https://www.circuitlab.com/circuit/

5jsn32mbt42d/enzyme-inhibition/); Two-substrate enzymatic

reactions: (https://www.circuitlab.com/circuit/fk2rya5d6s2p/

eab-reaction/); Cell-free system: (https://www.circuitlab.com/

circuit/5n6sug25t29j/cell-free-simulation/).

Parameters may need changes to fit the specific condition

of the simulation. Other circuits were designed and simulated

in Cadence. The design files (schematics) and simulation

settings (cellview simulation states) for the Cadence circuits

are included in the Supplementary Material. For comparison

of ODE coding and circuit modeling, the MATLAB (R2020a,

Mathworks) ODE solution code used to simulate the

reversible reaction is also included in the Supplementary

Material.
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