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Cells are inherently dynamic, whether they are responding to environmental

conditions or simply at equilibrium, with biomolecules constantly being made

and destroyed. Due to their small volumes, the chemical reactions inside cells

are stochastic, such that genetically identical cells display heterogeneous

behaviors and gene expression profiles. Studying these dynamic processes is

challenging, but the development of microfluidic methods enabling the

tracking of individual prokaryotic cells with microscopy over long time

periods under controlled growth conditions has led to many discoveries.

This review focuses on the recent developments of one such microfluidic

device nicknamed themothermachine.We overview the original device design,

experimental setup, and challenges associated with this platform. We then

describe recent methods for analyzing experiments using automated image

segmentation and tracking. We further discuss modifications to the

experimental setup that allow for time-varying environmental control,

replicating batch culture conditions, cell screening based on their dynamic

behaviors, and to accommodate a variety of microbial species. Finally, this

review highlights the discoveries enabled by this technology in diverse fields,

such as cell-size control, genetic mutations, cellular aging, and synthetic

biology.
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1 Introduction

Genetically identical cells can display strikingly different phenotypes within a fixed

environment. In multicellular organisms, this is evident through cell differentiation and

specialization. Unicellular organisms can also perform specialized behaviors within a

group, such as distinct metabolic states (Rosenthal et al., 2018) or discrete roles in biofilm

formation (Arnaouteli et al., 2021; Dar et al., 2021). In addition, some species prepare for

changing environmental conditions on a population level by keeping a small fraction of

OPEN ACCESS

EDITED BY

Burak Okumus,
XCellCure, United States

REVIEWED BY

Sumitra Debina Mitra,
Independent researcher, Amsterdam,
Netherlands
Taejoon Kwon,
Ulsan National Institute of Science and
Technology, South Korea

*CORRESPONDENCE

Laurent Potvin-Trottier,
laurent.potvin@concordia.ca

†These authors have contributed equally
to this work

SPECIALTY SECTION

This article was submitted to
Nanobiotechnology,
a section of the journal
Frontiers in Bioengineering and
Biotechnology

RECEIVED 13 June 2022
ACCEPTED 21 September 2022
PUBLISHED 12 October 2022

CITATION

Allard P, Papazotos F and
Potvin-Trottier L (2022), Microfluidics
for long-term single-cell time-lapse
microscopy: Advances and applications.
Front. Bioeng. Biotechnol. 10:968342.
doi: 10.3389/fbioe.2022.968342

COPYRIGHT

© 2022 Allard, Papazotos and Potvin-
Trottier. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Review
PUBLISHED 12 October 2022
DOI 10.3389/fbioe.2022.968342

https://www.frontiersin.org/articles/10.3389/fbioe.2022.968342/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.968342/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.968342/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.968342/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2022.968342&domain=pdf&date_stamp=2022-10-12
mailto:laurent.potvin@concordia.ca
https://doi.org/10.3389/fbioe.2022.968342
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2022.968342


the population ready for such changes, a phenomenon referred to

as “bet-hedging” (Veening et al., 2008; Morawska et al., 2022).

Because biochemical reactions depend on physical interactions

between low-abundance molecules, these reactions are inherently

stochastic, which results in heterogeneous gene expression

between genetically identical cells exposed to the same

environment (Elowitz et al., 2002; Paulsson, 2005; Raj and van

Oudenaarden, 2008). For these reasons, techniques that can

measure single-cell properties rather than population averages

have revealed important information about many cellular

processes, from cell-size control to differentiation. For

example, the ability to measure the mRNA profile of single-

cells through techniques such as single-cell RNA-seq (scRNA-

seq) has advanced many fields, as evidenced by the breadth and

the number of publications in recent years (Karaayvaz et al.,

2018; Kinker et al., 2020; Peyrusson et al., 2020). While such

techniques have proven to be very useful, they are typically

limited to static snapshots and cannot follow gene expression

in individual cells over time. Instead, this is typically achieved

using single-cell time-lapse fluorescence microscopy, which for

microbes has traditionally involved tracking the growth of single

bacteria into microcolonies on agar pads. While technically

simple and very useful, agar pads only support growth for a

short period of time before cells start competing for nutrients,

limiting observation to a few cell divisions (Young et al., 2011;

Moffitt et al., 2012). Due to limitations in using wide-field

fluorescence microscopy (i.e., the point spread function has a

long tail), cellular crowding can impact the fluorescence imaging

measurements, meaning that the presence of many cells can bias

the measured fluorescence of a cell far away (Hardo and Bakshi,

2021). Finally, it can be difficult to change the environmental

conditions in this setup, which is important for studying

processes such as stress responses. These limitations motivated

the development of microfluidic platforms for single-cell analysis

that enables single-cell tracking over many generations under

precisely controlled conditions.

The first iterations of microfluidic devices for imaging

bacteria utilized closed linear trenches (Balaban et al., 2004)

or mono-layer chambers (Cookson et al., 2005) to trap cells. The

mono-layer chamber devices (Cookson et al., 2005; Ullman et al.,

2013) enable the growth of microcolonies while flushing extra

cells and continuously providing growth media, and have been

particularly useful for studying group behaviors such as quorum

sensing (Danino et al., 2010; Prindle et al., 2011; Din et al., 2016;

Scott and Hasty, 2016; Miano et al., 2020). Continuous culture

devices were then developed to enable long-term imaging of

bacterial cells undergoing steady-state growth while facilitating

the tracking of single cells without crowding limitations, making

them ideal for measuring single-cell gene expression (Wang et al.,

2010; Moffitt et al., 2012). A configuration nicknamed the

“mother machine” (MM) traps bacteria at the end of single-

cell-width dead-end trenches (Wang et al., 2010). Newborn cells

are flushed out of the device by the constant flow of growth

media, thereby allowing single-cell lineages to be followed for

hundreds of generations (Figure 1). The name “mother machine”

refers to the fact that the cells trapped at the end of the trenches

are tracked growing and dividing throughout an experiment, and

are thus referenced as “mother” cells. A similar layout named the

chemostat (Moffitt et al., 2012) has trenches open on both sides,

thus providing better feeding through convective flow. This

device enables long-term time-lapse microscopy while keeping

cells that renew both poles and has been used to quantify the

maturation time of fluorescent proteins (Balleza et al., 2017).

In this review, we focus on the technical developments of the

MM and its applications in the study of bacteria. We start by

describing the original design and the constraints that motivated

further technical developments. We then overview recent image

analysis tools that enable segmentation and tracking of cells in

the device using phase contrast images, and modifications to the

device that enables the precise control of environmental

conditions, screening and isolation of cells, and cultivation of

a variety of microbial species. Finally, we highlight how the MM

enabled discoveries in a wide range of fields inmicrobiology, such

as cell-size control, genetic mutations, cellular aging, stress

responses, cell-fate determination, antibiotic tolerance/

persistence, and synthetic biology. For more details, we refer

the interested reader to previous reviews that have

comprehensively described device fabrication and setup

(Weibel et al., 2007; Hol and Dekker, 2014; Eland et al.,

2016), discussed challenges associated with single-cell analysis

(Yang et al., 2016; Hardo and Bakshi, 2021), and reviewed

different microfluidic devices (Weibel et al., 2007; Bennett and

Hasty, 2009; Wessel et al., 2013; Vasdekis and Stephanopoulos,

2015; Potvin-Trottier et al., 2018; Scheler et al., 2019).

2 Technical developments of the
mother machine

2.1 Original design and challenges

Performing experiments with the MM requires the following:

designing and fabricating a mold for the device, building a

microfluidic chip, performing the time-lapse microscopy, and

analyzing the images to create time traces. Here, we start with an

overview of the original MM design and the challenges that

motivated recent technical developments.

2.1.1 Device design and fabrication

The original MM design was developed to study Escherichia

coli cells (Wang et al., 2010). Narrow trenches trap bacterial cells

perpendicular to a larger feeding channel that allows media to

deliver nutrients to the cells and wash away progeny emerging

from the trenches (Figures 1A,B). Several constraints must be
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considered in the design: the width, height, and length of cell

trenches, spacing between cell trenches, and dimensions of the

feeding channel. The width and height of the trenches are

approximately the dimensions of the particular strain of

bacteria being cultivated (e.g., 1.2 μm height, 1.3 μm width, and

20 μm length for E. coli MG1655). Proper trench dimensions

ensure that the cells are in focus, restrict growth to single file

within each trench, and ensure sufficient diffusion of nutrients to

all cells in a trench. Too large of dimensions results in cells

overlapping each other in the z direction–making segmentation

and tracking hard to impossible. Too small of dimensions leads to

difficulties loading the cells into the trenches and results in poor

nutrient diffusion to cells deep in the trenches, including the

mother cells. The chosen length of a cell trench is a trade-off

between cell retention over time, as short trenches lose cells more

rapidly (e.g., through stochastic filamentation that pulls them out

in the feeding channel), and feeding of the mother cell. It is thus

important to ensure that the growth rate of the mother cell is the

same inside the device and in batch culture for each strain and

device combination (Yang et al., 2018). Spacing between cell

trenches is a trade-off between the throughput (i.e., number of

lineages followed per image) and accuracy of fluorescence

measurements. Trenches too close to one another can result in

biased fluorescence measurements, particularly if neighboring

trenches have very different signal intensities (Kaiser et al.,

2018; Hardo and Bakshi, 2021). Finally, the width and height of

the feeding channel are chosen to minimize hydraulic resistance to

facilitate the flow of growth medium, e.g., with syringe pumps. A

single centimetre-sized chip can typically fit multiple channels,

each with their own inlet and outlet, to enable simultaneous

experiments with multiple strains (Figure 1A).

After the design is finalized, a mask can be drawn using CAD

software and ordered through different companies (e.g., Toppan

Photomasks, United States). The mold is then built on a silicon

wafer in a cleanroom environment using photolithography

techniques, where the mask is used to expose photo-sensitive

resin to light to define the features (Weibel et al., 2007; Eland

et al., 2016). The mold is a negative of the features of the chips

(i.e., what is solid on the mold becomes air in the device). The

~1 µm-sized features are on the lower end of the resolution of

these techniques, and smaller features (e.g., Section 2.4) require

other fabrication techniques (e.g., electron beam lithography). As

such, fabrication protocols typically require fine-tuning to obtain

the critical feature size (cell trench width and height) within a

~0.1 µm range, which can affect the experiments as described

above. However, once built these molds can be re-used

indefinitely to build microfluidic chips. Alternatively, the mold

can be ordered custom-built from companies such as:

ConScience (Sweden), Cornell NanoScale Science and

Technology Facility (United States), Innopsys (France), Kavli

Nanolab Delft (Netherlands), Micro Resist Technology

(Germany), Sigatec (Switzerland), and TTP (UK). Molds can

also be duplicated in epoxy, which can be an inexpensive option

for sharing molds between groups (Kamande et al., 2015).

2.1.2 Experiment setup

The MM microfluidic chip is made by pouring and curing

polydimethylsiloxane (PDMS) on top of the mold, imprinting the

features of the mold onto the chip. Individual chips are then cut

out of the PDMS slab, and holes are punched (e.g., with biopsy

FIGURE 1
Schematic of the experimental setup for the mother machine microfluidic device and data analysis. (A) Schematic representation of the
platform which traps single bacterial cells in trenches that are perpendicular to a larger feeding channel. Daughter cells are flushed out of the
trenches with flowing media, while mothers remain trapped at the end of the cell trench. (B) A micrograph of the mother machine, with YFP
fluorescence showing the cells superimposed on a brightfield image of the device. Media is pumped through the inlet into the main feeding
channel by a syringe pump, and then exits through the outlet into a waste beaker. (C) The lineages of growing cells in the trenches can then be
followed under precisely controlled environmental conditions using time-lapse microscopy. (D) An example kymograph of a growing cell imaged in
fluorescence, illustrating the segmentation and tracking of the lineage.
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punchers) at the inlets and outlets to allow the connection of

tubing which provides growth medium to the device. The chips

are then covalently bonded to a coverglass using plasma

treatment. Cells can then be loaded into trenches via

centrifugation with a custom adapter, or by simple diffusion

by loading a very dense culture. Tubing is connected to the inlets

and outlets (e.g., using syringe needles) for flow of fresh growth

media into the chip, as well as removal of used media which has

passed through the chip (Figure 1B). The media is typically

pushed through the device using syringe pumps, initially at a high

flow to clear biofilm that may be growing in dead spaces

(i.e., regions of low flow) in the inlets and outlets. The

formation of biofilms can be limited by pre-coating the chip

with bovine serum albumin (BSA) and/or supplementing the

growth media with BSA or Pluronic (Ullman et al., 2013; Cabeen

and Losick, 2018). The chip is then mounted on an inverted

fluorescence microscope for automated time-lapse microscopy of

the lineages growing in the trenches. A cage incubator and

hardware autofocus are typically required to ensure stability of

the focus over multiple days. Detailed protocols for setting up

MM experiments have been published (Cabeen and Losick,

2018). After the experiment, the multi-dimensional images

(position, fluorescence channels, time) can be processed to

track the properties of single lineages growing in the device

(Figure 1C; Section 2.2).

2.1.3 Challenges

The original design of the device enabled time-lapse

microscopy of single E. coli cells under controlled growth

conditions, leading to many biological discoveries. There are

however some challenges associated with the experimental setup,

which have led to new technical developments discussed below.

For example, automated image processing traditionally required

constitutive expression of a fluorescent protein (FP) at

intermediate levels specifically for that purpose. This limited

the number of simultaneous reporters that could be used in an

experiment, while also preventing the study of bacteria not

expressing exogenous FPs. Section 2.2 describes the recent

tools developed for segmentation and tracking of cells using

phase contrast images. In addition, the original setup of the MM

makes switching conditions within an experiment challenging.

With this design, growth media can be changed using a

Y-junction close to the chip, although this creates a short

(and imprecise) delay in the switch as the medium between

the Y-junction and the chip is being replaced. Creating complex

environmental conditions within the chip, i.e., by flowing a

growing culture, can be challenging due to the introduction of

air bubbles into the feeding channel. Such challenges have

inspired the development of more sophisticated fluidic and

environmental control strategies, which are detailed in Section

2.3. Another limitation of the original design is the inability to

genotype or isolate cells within the device, which can be useful

when imaging libraries of cells. While phenotyping pooled

genetic libraries is possible in the device, isolating single cells

of interest from the conventional MM platform has been

impractical due to the inevitable formation of biofilms in the

inlets and outlets, which additionally limit the total duration of

an experiment. While cells could potentially be genotyped on-

chip through fluorescence in situ hybridization (FISH)

techniques, diffusion of probes through the cell trenches

makes this process inefficient. These limitations have led to

the development of techniques for single-cell screening

detailed in Section 2.4. Finally, the original device was limited

to culturing E. coli or other similarly sized microbes.

Modifications to trench dimensions and the addition of other

features have now allowed the growth and imaging of a variety of

other microbes. The cultivation of some species requires

additional modifications, which are further described in

Section 2.5.

2.2 Segmentation and tracking algorithms

While the experimental techniques for using the MM have

become increasingly accessible, the image analysis pipeline to

convert time-lapse images into single-cell traces through

segmentation and tracking has lagged. For many years,

laboratories using the MM have developed their own customized

data analysis pipelines. While tools have been developed for tracking

the growth of microbes on agar pads using phase contrast

(Paintdakhi et al., 2016), the large features of the MM PDMS

chip can confound such image analysis tools. Recently, multiple

open-source software packages have been published specifically for

MM experiments with the capability of performing the segmentation

and tracking on phase contrast images (listed in Table 1).

Most of these image analysis methods share a common

overall workflow: pre-processing of the images, segmentation

of the cells, and tracking the lineages. In the pre-processing step,

the image time series are first registered to correct for drift and

jitters of the stage, for example, using cross-correlation between

successive images. The images are rotated to align the micro-

channels vertically, which simplifies further analyses. The micro-

channels are then identified and segmented. Accurately

segmenting individual cells is typically the most challenging

task, as the cells are small and in contact with each other, and

strategies vary between implementations. Tracking is then

performed to create time traces of individual cells, where cells

from each time point are connected to the cells in the next one,

and cell divisions are identified (Figure 1C). Properties such as

cell size and fluorescence intensity are extracted along these

single-cell time traces. Finally, a manual curation pipeline is

typically available, as even rare segmentation and tracking errors

can have large effects on sensitive measurements such as the

variance.
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In Molyso (Sachs et al., 2016), the cell segmentation is done

in one dimension with cells identified by bounding rectangles

instead of cell contour. The tracking is done by solving an

optimization problem, where a cost is imputed for cell

displacement between time points and cell division events.

MoMA generalized the optimization problem for both the

segmentation and tracking, overpredicting possible cell

segmentation and performing the tracking simultaneously

(Kaiser et al., 2018). This 1D segmentation works well when

the cells are perfectly aligned with the channels. However, it can

result in errors when the cell width is smaller than the channel

width, resulting in tilted cells, or if the cells are not perfectly rod-

shaped (e.g., mutants or other bacteria with different

morphologies). BACMANN enables 2D segmentation (i.e., cell

contour) through watershed-based image processing techniques,

while the tracking is based on the position with respect to the top

of the trench (Ollion et al., 2019). BACMANN also incorporates a

spot-tracking algorithm in its pipeline. MMHelper was

developed using similar segmentation approaches to also

segment using bright-field instead of phase contrast (Smith

et al., 2019). DeLTA (Lugagne et al., 2020) utilizes 3 U-net

convolution neural networks (Ronneberger et al., 2015) to

perform channel identification, cell segmentation, and

tracking. DistNET incorporates a self-attention layer into the

U-net architecture to provide information about the whole

channel to the neural network, and performs segmentation

and tracking through one deep neural network (Ollion and

Ollion, 2020). Comparison of BACMANN, DeLTA, and

DistNET on the same dataset showed that they could

achieve <1% combined segmentation and tracking error rates

(Ollion and Ollion, 2020). While BACMANN’s tracking

performed better than DeLTA, DeLTA’s segmentation

performed better. DistNET’s self-attention layer mainly

improved the tracking performance of DeLTA. Benchmarking

the techniques against data from different experimental

conditions showed good performance but an increased error

rate, suggesting a need for more training data or for changing the

analysis parameters (Ollion and Ollion, 2020).

When choosing a program, we encourage users to consider

the following criteria: accuracy of segmentation and tracking,

need for manual curation, speed of analysis, quality of

documentation, readability of code, ease of use, flexibility to

specific experimental needs, and an actively maintained code-

base. Deep-learning methods can be fast and very accurate while

requiring training on a relatively small set of manually analyzed

data. However, they often lose accuracy when the experimental

conditions are different from the training set (i.e., cell size, trench

width, etc.). Conventional methods typically require changing

analysis parameters to accommodate these kinds of changes, but

that can be less tedious than manual segmentation of many

images required to re-train a deep-learning algorithm.

Generating synthetic data to train the neural networks would

greatly alleviate their main shortcomings.

2.3 Fluidic control and environmental
conditions

One key strength of the MM is the precise control over the

growth conditions. However, switching between conditions

within an experiment and flowing mixed media are

challenging using the original design. A rapid and precise

switch between growth media can be obtained by modifying

the device design to include two inlets for each feeding channel.

To flow a mixture of media, it is necessary to introduce a

serpentine channel between the inlet and the feeding channel

to overcome the mixing limitation of the low Reynolds number

environment. The dual input mother machine (DIMM,

Figure 2A) utilized this strategy to study the induction of the

lac operon while switching from glucose to lactose (Kaiser et al.,

2018). The authors could track the lag in growth of single cells

exposed to this transition and found that the distribution of the

growth lag was multi-modal. By quantifying the number of LacY/

Z (“sensor”) molecules in single cells in the device, this multi-

modality was subsequently attributed to a fraction of the

population expressing zero LacY/Z molecules, relying instead

on stochastic leaky expression for induction of the operon (Julou

et al., 2020). However, any number of expressed lacY/Z

molecules was sufficient for fast induction of the operon,

making it a single-molecule trigger.

TABLE 1Overview of open-source software packages developed for mothermachine segmentation and lineage tracking. The applicability to specific
imaging modalities indicates which ones have been demonstrated. All programs are available on Github or Gitlab.

Software Language Deep learning
based

Phase contrast
segmentation

Brightfield
segmentation

Fluorescence
segmentation

Molyso (Sachs et al., 2016) Python ✓
MoMA (Kaiser et al., 2018) Java ✓ ✓
MMHelper (Smith et al., 2019) Python ✓ ✓
BACMANN (Ollion et al., 2019) Java ✓ ✓
DeLTA (Lugagne et al., 2020; O’Connor et al., 2022) Python ✓ ✓
DistNET (Ollion and Ollion, 2020) Python ✓ ✓
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An experimental setup was developed to mimic the

conditions of batch culture (Figure 2B), where a growing

culture is flowed directly into the microfluidic device, enabling

the study of cells transitioning between different growth phases

(Bakshi et al., 2021). This was achieved using peristaltic pumps to

flow a culture growing in a separate shaker-incubator into the

device, and bubble traps to prevent air bubbles from entering the

device. By alternating between flowing fresh media and batch

culture into the MM, the authors monitored cells after multiple

rounds entering and exiting the stationary phase and found that

the cell-size regulation strategy changed throughout phases of the

growth curve (discussed in Section 3.1).

2.4 Screening and isolation based on time-
lapse microscopy

Genetic screens have been instrumental in biology for

assigning function to molecular components and generally

linking genotypes to phenotypes. Many powerful screening

platforms have been developed, but they have been mostly

limited to distinguishing static phenotypes in the population.

Recent technical developments have transformed the MM into a

powerful platform that combines dynamic phenotype screening

with genotyping or isolation capabilities. This enables screening

based on dynamic and/or spatially resolved phenotypes, such as

oscillations in gene expression, cell-size control mechanisms,

response to changes in environmental conditions, and

intracellular localization of proteins. Notably, even static

phenotypes could be isolated more precisely because cells can

be quantified over many generations, and thus genetic and non-

genetic heterogeneity could be distinguished.

Two techniques have been developed to date for screening

cells in the MM. The first technique, named “dynamic µ-fluidic

microscopy-based phenotyping of a library before in situ

genotyping” (DuMPLING) (Lawson et al., 2017), enables

dynamic phenotyping of pooled libraries. After

characterization of the library in the MM, the cells of the

barcoded library are fixed and identified via fluorescence in

situ hybridization (FISH), connecting genotypes to dynamic

phenotypes (Figure 3A). A 300 nm gap at the dead-end of the

trench is connected to a back-end channel, which generates

convective flow that facilitates efficient movement of probes

and media over the cells. This convective flow also facilitates

feeding of the mother cell therefore reducing the diffusion

limitations related to the dimensions of the cell trenches

discussed in Section 2.1.1. The DuMPLING platform was used

to identify the effects of a CRISPR interference-mediated gene

knockdown library on the coordination of replication and

division by tracking chromosome replication forks throughout

cell division (Camsund et al., 2020).

The second technique, named single-cell isolation following

time-lapse microscopy (SIFT) (Luro et al., 2020), uses a modified

microfluidic chip containing an additional media channel used

for cell isolation (Figure 3B). The device has a system of

pressurized valves that separates the cell trenches from the

collection channels, temporarily closes the inlets and outlets

for sterilization, and closes the media channel to stop the

liquid flow. This enables an optical tweezer to move cells of

interest from their growth trench to a collection trap where they

are isolated, cultured, and sequenced. SIFT was used to screen

two libraries of synthetic genetic oscillators based on the

periodicity and precision of oscillations, showcasing its

strength in isolating dynamic phenotypes.

FIGURE 2
Adaptations to themothermachine architecture for improved fluidic and environmental control. (A) The dual inputmothermachine (DIMM) has
twomedia inlets followed by a serpentine channel that fluid passes through prior to reaching cell trenches to facilitate mixing and/or rapid switching
between different environmental conditions. Schematic representation inspired from Kaiser et al. (2018). (B) The growth curve platform allows batch
culture to be fed into the device to recapitulate batch culture conditions. This allows for observation of cells entering and exiting the stationary
phase by switching between nutrient depleted culture and fresh media. Schematic representation inspired from Bakshi et al. (2021).
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Both of these screening techniques have advantages and

disadvantages. While DuMPLING enables the in situ

genotyping of entire libraries and allows genotype-phenotype

mapping across a large number of cells, it requires a barcoded

library and cell fixation prior to hybridization, thereby

eliminating any possible downstream growth and analysis

(Lawson et al., 2017). Conversely, SIFT does not require

barcode labeling, enabling the screening of unmodified

libraries and natural populations, the isolation of live cells,

and downstream analysis of isolates (Luro et al., 2020).

However, only isolated cells can be genotyped, limiting the

scale of phenotype-to-genotype mapping throughput.

Additionally, the optical trapping mechanism in this

technique requires an extensive platform. These extended

capabilities for screening and isolating cells within MM-like

devices have the potential to enable discoveries in diverse

fields of microbiology.

2.5 Extension to other microbes

Adaptations to the MM have enabled single-cell studies of a

variety of microbes. In principle, adaptation of the MM design to

other symmetrically dividing organisms should only be a matter

of adapting the trench size, although other minor modifications

may be necessary to maintain species-specific optimal growth

conditions. Such devices have been fabricated for cultivation of

Corynebacterium glutamicum (Sachs et al., 2016) and Bacillus

subtilis (Norman et al., 2013; Cabeen and Losick, 2018). As B.

subtilis stochastically forms long multicellular chains which

would be pulled out of the trenches, an adaptation of the

classic MM device incorporated an increased trench length of

75 μm (Norman et al., 2013). This two-layer device included

shallower feeding channels surrounding the cell trenches to

ensure sufficient feeding of cells at the end of these long

trenches (Figure 4A).

FIGURE 3
Modifications to the mother machine to enable cell screening. (A) Dynamic u-fluidic microscopy-based phenotyping of a library before in situ
genotyping” (DuMPLING), has a 300 nm gap at the end of the cell trench, allowing media to flow through the cell channels. Rounds of barcoding
through FISH enable genotyping of the pooled library. Schematic representation inspired from Lawson et al. (2017). (B) Single-cell isolation following
time-lapsemicroscopy (SIFT) uses amodifiedmicrofluidic chip containing an additional lane for cell isolation below the cell trenches, separated
by a pressurized valve system (collection valve). A second set of valves (inlet and outlet) allows for the lane to be sealed for inlet cleaning and
restricting media flow after cell loading. An optical tweezer moves cells of interest from their trench to a collection trap, where they are isolated and
removed from the device to be cultured and sequenced. Schematic representation inspired from Luro et al. (2020).
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The classic MM architecture has been used to study archaea

and symmetrically-dividing yeast organisms such as

Halobacterium salinarum (Darnell et al., 2020) and

Schizosaccharomyces pombe (Nakaoka and Wakamoto, 2017),

respectively, by scaling up device dimensions. The ability of the

budding yeast Saccharomyces cerevisiae to switch budding

orientation over the course of its lifespan necessitated the

trapping and retention of mother cells in trenches open on

both ends to flowing media (Li et al., 2017). This

accommodates the removal of daughter cells produced by

budding in either orientation (Figure 4B). Alternatively, the

“yeast jail” design forgoes trenches altogether and instead

employs a microfluidic device with an array of jail units

(Ryley and Pereira-Smith, 2006). Each jail is composed of

three PDMS posts (among other designs) that behave as “jail

bars” to retain a single mother cell, while daughter cells produced

by budding are washed away with the flow of media. Similarly, A

Long-term Culturing And TRApping System (ALCATRAS)

(Crane et al., 2014), High-throughput Yeast Aging Analysis

chip (HYAA) (Jo et al., 2015), and slipstreaming MM (Durán

et al., 2020) devices comprise an array of PDMS trapping units,

many of which may fit into a single field of view during imaging,

to enable tracking of individual mother cells over their lifespan.

In the latter, S. cerevisiae cells are loaded through the outlet of the

device such that media flow reversal enables the trapping of

mother cells in a low-pressure zone behind PDMS pillars. This

method is ideal for studying cell replicative life span as it does not

place cells under mechanical pressure during trapping, and the

effect of such stress on aging is not yet known. An alternative

method utilizes channels or PDMS structures of optimal heights

for trapping mother cells underneath them, while permitting

smaller daughter cells to be flushed away (Lee et al., 2012; Xie

et al., 2012; Zhang et al., 2012).

3 Applications to study bacteria

Several features of the MM have facilitated important

discoveries about a variety of cellular processes. The tracking

of single cells under controlled and tunable growth conditions

with high throughput has shed light on how cellular processes are

affected by stochastic gene expression, and how such

heterogeneity can affect the cell’s phenotype. The ability to

track the same cells for many generations has facilitated

studies in cellular aging, and an inherent lack of competition

between cells in the device has proven useful in studying genetic

mutations. Here we will highlight discoveries about cell-size

control mechanisms, genetic mutations, cellular aging,

stochastic pulsing of gene expression, phenotypic states in

Bacillus subtilis, antibiotic resistance and persistence, and

synthetic biology that have been enabled by the MM platform.

Instead of a detailed description of each study, we highlight how

the device has enabled such discoveries.

3.1 Cell-size control

Most prokaryotes divide via binary fission, yielding two

daughter cells of nearly identical size and volume (Angert,

2005). If left unchecked, small fluctuations in cell size at cell

division can result in significant size divergence between cells of a

population over successive generations. Cell-size homeostasis

FIGURE 4
Adaptations to the mother machine architecture to optimize growth of other organisms. (A) The mother machine design adapted for B. subtilis
growth includes elongated trenches 75 μm in length to accommodate its multicellular, chained state, as well as side channels that enable uniform
nutrient availability throughout the trenches. Schematic representation inspired from Norman et al. (2013). (B)Maintaining an opening at either end
of each cell trench in a modified MM device enables removal of S. cerevisiae daughter cells produced from budding in either orientation into
perpendicular media channels. Schematic representation inspired from Li et al. (2017).
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could in principle be achieved through different control

mechanisms (Facchetti et al., 2017). Several studies have

shown that E. coli, B. subtilis and Caulobacter crescentus

maintain cell-size homeostasis by behaving primarily as

“adders”, adding on average a constant length between birth

and division, rather than as “sizers” or “timers”, for which cell

division is triggered upon cells growing to a threshold size or for a

fixed time, respectively (Voorn and Koppes, 1998; Amir, 2014;

Campos et al., 2014; Wallden et al., 2016). As time-lapse

microscopy on agar pads is limited to a few cell divisions

where the growth conditions can change, microfluidic

approaches have been important in studying cell-size

regulation. The ability to image hundreds of single cells under

constant growth conditions while precisely measuring their size

throughout the cell cycle (e.g., size at birth and added during the

cell cycle) has made the MM a particularly useful platform in

elucidating the specific mechanisms underlying cell-size

regulation (Taheri-Araghi et al., 2015; Sauls et al., 2019; Si

et al., 2019; Witz et al., 2019; Nieto et al., 2020).

Several models have been suggested to explain the

mechanism underlying adder behavior (Ho and Amir, 2015;

Micali et al., 2018; Si et al., 2019; Witz et al., 2019; Nieto et al.,

2020). While a detailed description of the different models is

outside the scope of this review, a recent analysis by Le Treut et al.

has found the authors’ model, the independent double adder, to

be the most consistent with current data (Le Treut et al., 2021).

This model proposes that the processes of cell division and

initiation of DNA replication are controlled by distinct

(independent) adders (Si et al., 2019). It further suggests that

the mechanism underlying this type of cell-size control relies on

accumulation of specific initiator proteins for independent

regulation of cell division and DNA replication to a certain

threshold and that they are produced at a rate proportional to

cell growth without being actively degraded. This hypothesis was

supported by experiments that used the MM to measure the cell

size added between cell divisions, and the cell size added between

DNA replication initiation events (tracked with DnaN-YPet) (Si

et al., 2019), which were both found to be independent of initial

cell size (i.e., adders). Perturbing the production of each initiator

protein (FtsZ and DnaA respectively) only dysregulated cell-size

control for its respective process.

Some studies carried out in the MM have shown deviations

from the adder principle under slow growth conditions (Wallden

et al., 2016; Si et al., 2019; Nieto et al., 2020). Si et al. (2019)

suggest that the adder principle can be broken if the underlying

mechanisms (threshold and constant production) are affected.

They suggest that active degradation of the division initiatior

(FtsZ) could play that role, and elimination of degradation

through clpX repression restored the adder phenotype under

that growth condition (Si et al., 2019). A recent study used a

variation of the MM setup which flows batch culture into the

device as a means of replicating conditions within that culture

on-chip to monitor E. coli and B. subtilis growth, and revealed

that cells alter their size regulation strategy as they progress

through different growth phases (Bakshi et al., 2021). Cells

switched to mixed “adder-timers” while they entered the

stationary phase and behaved as “sizers” while exiting the

stationary phase, suggesting that different strategies might be

used to respond to changes in environmental conditions. These

results also highlight the importance of using the MM for

studying this process, as other single cell imaging techniques

such as agar pads do not offer precise control over environmental

conditions. Developments in the control of growth conditions as

well as screening capabilities will thus facilitate the development

of more complete models that can capture cell-size control

strategies under varying environmental conditions.

3.2 Genetic mutations

Mutations and other DNA damage events such as double-

stranded breaks (DSBs) have the potential to drastically affect cell

survival and fitness if left unrepaired (Gordo et al., 2011). To

counter such mutations, E. coli employs effective DNA repair

pathways to recognize and repair genetic perturbations before

they are propagated to future generations. The ability to track

thousands of lineages in parallel (without growth competition

between individuals) makes the MM an ideal platform to study

rare events such as the emergence of DNAmutations. Its capacity

to capture heterogeneity in number and types of mutations

emerging between isogenic cells of a population further

highlights the utility of such single-cell, time-lapse studies. To

this end, the MM has been used to visualize copy number

variations (Tomanek et al., 2020), DNA mismatch error

(Robert et al., 2018, 2019), DSBs (Wiktor et al., 2021), and

alkylation damage (Uphoff et al., 2016; Uphoff, 2018; Vincent

and Uphoff, 2021).

The timing of mutations as well as their impact on the fitness

of the cells are important variables in the process of evolution.

The rate of chromosomal gene copy number mutations in E. coli

was estimated at ~3 × 10−3 per cell per generation in the MM

(Tomanek et al., 2020). This was achieved by expressing several

copies of a chromosomally integrated fluorescent reporter and

measuring changes in fluorescence over time as an indicator for

gene copy number (because gene expression is roughly

proportional to gene copy number). Robert et al. leveraged

the lack of competition in the MM to visualize the appearance

of DNA replication errors and their fitness impact (Robert et al.,

2018, 2019). To measure the fitness effect of the mutations, they

measured the decrease in growth rate (i.e., fitness) of the

individual lineages through the accumulation of mutations

(Robert et al., 2018). Instantaneous single-cell growth rate can

be calculated in the MM using the relative change in cell size

between successive time points (i.e., doubling rate). Although the

entire distribution of fitness effects (DFE, which has proven

challenging to measure in the field of evolution modeling) was
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still not directly estimated, the authors were successfully able to

infer all the moments of DFE (i.e. average, variance, skewness,

etc.) - thanks to the ample statistics enabled by the MM. The

analysis indicated the underlying distribution to be long-tailed,

with most mutations having little-to-no cost on cell fitness: mean

fitness cost was only ~0.3 %, which was apparently overestimated by

the previous studies. In contrast, 1% of the mutations were found to

be lethal, directly measured by observing cell death in the MM.

Mutations were detected by tracking the appearance of YFP-MutL

foci, and occurred at a constant rate over time during steady state

exponential growth, as expected from a memoryless Poisson

process. However, another MM study showed that a subset of

cells within a population exhibited a period of elevated mutation

rates in response to DNA alkylation damage, due to delayed

activation of the Ada DNA damage response regulon (Uphoff,

2018; Vincent and Uphoff, 2021). These periods of high

mutation rate lasted several generations, since many cells had no

sensor-activator Ada molecules present, and had to wait for

stochastic expression to induce the response (Uphoff et al., 2016).

Finally, the response to DSB has also been characterized using an

adapted MM with multiple inlet ports connected to the feeding

channel via a short junction, enabling rapid switching between

different media (Wiktor et al., 2021). Switching between a growth

medium and an inductionmedium enabled short induction of Cas9,

which created a targeted DSB in the chromosome. The

chromosomes could be tracked using fluorescently-tagged

proteins (ParB and MalI) with DNA-binding sites localized close

to the DSB, with the foci disappearing during the DSB. Repairs were

rapid (~15 min), homogeneous, robust (~95% of cells repaired the

damage), and had low impact on the fitness of the cells. This is

impressive given that the DSB needs to find/colocalize with its repair

template on the sister chromosome. The RecA-single strandedDNA

complex was observed to extend in a long filament spanning the

length of the cell. This could facilitate the homology search for the

repair template by eliminating the need to search along the length of

the cell in the z direction, thereby reducing it from a 3D problem to a

2D one and making the search process 100 times faster.

3.3 Aging

The phenomenon of aging in unicellular organisms is

broadly described in terms of senescence, or the progressive

loss of fitness over time (Moger-Reischer and Lennon, 2019).

This loss of fitness can be due to a decrease in growth rate and/or

an increase in death rate. Defining the ‘age’ of a unicellular

organism that lacks replicative asymmetry can be challenging,

but generally takes into account the asymmetric segregation of

damage factors during cell division, which creates effectively

‘older’ and ‘younger’ progeny cells. For example, in budding yeast

asymmetric division creates a finite replicative lifespan by

partitioning detrimental cellular factors such as misfolded

protein aggregates to older ‘mother’ cells, while preserving the

daughter lineage (Knorre et al., 2018). The mother exhibits

senescence over successive generations and eventual cell death.

While E. coli divides symmetrically, there is still an intrinsic

asymmetry in the process: one pole is created during division (the

‘new’ pole), and one is left intact (the ‘old’ pole) (Proenca et al.,

2018). Asymmetries in partitioning of cellular contents have also

been observed in E. coli. For example, the main efflux pump

(AcrAB-TolC) was shown to be partitioned with a bias for the old

pole cell, leading to elevated efflux activity in ‘older’ cells

(Bergmiller et al., 2017). Non-random segregation of sister

chromatids has also been observed, with the ancestral strand

being partitioned preferentially in the old pole cell (Mäkelä et al.,

2021). The MM is uniquely suited to study aging in

symmetrically dividing bacteria as it retains an old pole cell at

the end of each trench over an entire experiment, thus facilitating

monitoring of the old pole lineage for many generations. Here,

we present findings from several studies monitoring the aging

process in E. coli in the MM, where the age of a cell is defined as

the age of the old pole.

Both decreased growth rate and increased death rates have

been associated with aging in E. coli (Lindner et al., 2008; Wang

et al., 2010; Proenca et al., 2019; Łapińska et al., 2019). The first

report of the MM studied the aging of the mother cell over

consecutive generations (Wang et al., 2010). They found that the

growth rate of the mother cell was stable for more than a hundred

generations, but observed that the filamentation rate increased

until 50 generations (Wang et al., 2010). Note that in

50 generations of exponential growth, 1 cell would divide into

~1015 cells, making such studies intractable without the use of

devices like the MM. Subsequent studies tracked the growth rate

of both the mother cell and its immediate progeny, the ‘daughter’

cell. This showed that these cells reached different equilibrium

growth rates, with the mother cell stabilizing at a growth rate

slightly slower than the daughter cell (Proenca et al., 2018, 2019).

This suggests that damaged molecules divided asymmetrically,

with a preference to the old pole cell. The nature of this damage

and the mechanisms underlying asymmetrical partitioning of

cellular components are under investigation. Misfolded proteins

are a prime suspect, as a chaperone fusion (IbpA-YFP) was

shown to preferentially localize to the old pole as a foci (Lindner

et al., 2008; Proenca et al., 2019), while protein stress such as

phototoxic stress affected the asymmetry (Proenca et al., 2019).

However, FP fusions such as YFP have been shown to create

artifactual foci due to their oligomeric properties (Landgraf et al.,

2012). Therefore, the use of FP fusions that do not cause aberrant

foci (e.g., ClpB-msfGFP) will be informative in tracking protein

aggregates (Govers et al., 2018). In contrast, another study has

shown no asymmetries in misfolded protein aggregates using

brightfield imaging for inclusion bodies and ThT dyes to visualize

protein aggregates (Łapińska et al., 2019). Asymmetric retention

of protein aggregates at the old pole has also been observed in the

symmetrically dividing fission yeast S. pombe in a MM-like

device (Nakaoka and Wakamoto, 2017). These aggregates
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were not associated with increased division times and were

eventually transferred to a new daughter, thereby rejuvenating

the old lineage. While it is clear that even cells dividing “almost

symmetrically” like E. coli exhibit aging, the elucidation of the

molecular mechanisms and the agents causing this phenomenon

will shed light on the universal properties of cellular senescence,

and the MM provides an ideal platform with which to study it.

3.4 Stochastic pulsing

Stochastic fluctuations in gene expression can drive phenotypic

heterogeneity among clonal bacterial populations, such that

genetically identical cells display distinct behaviors. The use of FP

reporters for gene expression have been invaluable in quantifying

this heterogeneity. In principle, this heterogeneity can be generated

on different timescales. For example, cells can stochastically express

genes at different levels for long periods of time (e.g., stable

epigenetic state), or they can fluctuate rapidly between these

different expression levels (e.g., rapid pulses). Long-term time-

lapse microscopy using microfluidic devices such as the MM

enables tracking the expression dynamics in thousands of

individual cells under controlled growth conditions and can

elucidate the timescales of such fluctuations. Employing this

strategy, it was shown that the promoters controlling flagellar

biosynthesis genes in E. coli activate in stochastic pulses even if

expression of their master regulator was constant (Kim et al., 2020).

Measuring expression of a gene (bolA) dependent on the E. coli

general stress response factor, RpoS, revealed heterogeneous

expression in liquid culture, in the MM, and in another

microfluidic device (Patange et al., 2018). The promoter activity

(production rate of the reporter) can be calculated using the

derivative of the fluorescence intensity while accounting for

dilution of the FP present (Locke et al., 2011). The promoter

activity revealed stochastic pulses of expression which coincided

with periods of slower growth in the device (Patange et al., 2018).

The ability to rapidly change environmental conditions andmeasure

single-cell properties prior to and after the change enabled them to

test whether these periods of slow growth led to increased resistance

to stress. They observed that cells with higher RpoS activity and

slower growth immediately prior to the stress were more likely to

survive a hydrogen peroxide treatment. Another studymeasured the

expression of multiple stress response genes in the MM and found

additional RpoS-dependent promoters exhibiting stochastic pulses

that negatively correlated with growth rate (Sampaio et al., 2022).

Genes from the SOS regulon also displayed pulsatile activity, but

these were not correlated with the growth rate. Cells undergoing

pulses of genes from both these groups prior to a short treatment of

the antibiotic ciprofloxacin in the MM had increased likelihood of

survival (Sampaio et al., 2022). Pulses in the SOS regulon have also

been observed in another study using the MM, and have been

attributed to variability in the degradation of its regulator, LexA

(Jones and Uphoff, 2021).

In B. subtilis, several sigma factors have been reported to

exhibit stochastic, pulsatile bursts of expression (Locke et al.,

2011; Cabeen et al., 2017; Park et al., 2018), which can be

similarly tracked in the MM. Sigma factors in B. subtilis

promote the production of their own operons, which also

encodes their anti-sigma factors, creating positive and negative

feedback that can cause pulses of gene expression. Molecular

“time-sharing” was proposed as a mechanism in which

alternative sigma factors competing for RNA polymerase

binding opportunities are able to share such core resources

over time (Park et al., 2018). Stochastic bursts of sigma factor

activity also seem to play a role in stress response in B. subtilis:

heterogeneous response to lysozyme stress was observed between

individual cells grown in the MM (Schwall et al., 2021). Pulsatile

expression of the sigV operon preceding exposure to lysozyme

stress led to increased survival probability.

3.5 Phenotypic states in B. subtilis

Early work with B. subtilis in theMM revealed the existence of a

cell fate switch controlling whether B. subtilis exists in a free-living,

motile state or as a sessile member of amulticellular chain associated

with biofilm formation (Norman et al., 2013). Amodified device was

used, with side-channels to ensure even nutrient availability in the

long channels that accommodate the chain phenotype. By tracking

the fates using fluorescent reporters over hundreds of cell

generations, it was found that the transition from the motile to

the sessile state happened at a constant rate over time (i.e., is a

memoryless process), but the cells spent a precise amount of time in

the sessile state. A simple network of three proteins could

recapitulate all the properties and the modularity of the switch

and the commitment to the chained state. Remarkably, the circuit

was reconstituted in evolutionarily distant E. coli, showing that this

simple network is sufficient to drive cell-fate decision making (Lord

et al., 2019). The stochastic entry into another cell

fate–sporulation–was also studied using the MM, and was shown

to occur at a constant rate over time after adaptation to the

sporulation-inducing conditions (Russell et al., 2017).

In another study, a clonal B. subtilis population diverged into

subpopulations of distinct metabolic specialists, each

characterized by differential expression of metabolic genes

(Rosenthal et al., 2018). Cells with stochastically upregulated

sucC expression in mid to late exponential phase were associated

with the production of acetate, while a subpopulation expressing

alsS in early stationary phase was linked to production of acetoin.

Cells could be observed stochastically switching in and out of

such states with fluorescent reporters in the MM. As acetoin can

neutralize low pH conditions caused by acetate accumulation, the

slow-growing alsS-expressing subpopulation enabled growth and

expansion of an alsS- subpopulation which benefited from the

neutralization of acetate in an agar pad microenvironment. This

showcases how stochastic gene expression can help populations
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of genetically identical cells achieve cooperative behaviors.

Therefore, bacteria have shown the ability to harness

molecular fluctuations through simple circuits of a handful of

proteins to establish heterogeneous phenotypic states that can be

advantageous to the bulk isogenic population.

3.6 Antibiotic resistance and persistence

The rise of antibiotic resistance combined with the lack of new

antibiotics is an alarming threat to public health (Aslam et al., 2018).

Persister cells can survive antibiotic treatment by remaining in a

temporary state of dormancy throughout antibiotic exposure,

without being genetically resistant (Balaban et al., 2019). The switch

to this state can happen spontaneously or be induced by stress such as

starvation. Microfluidic devices are particularly well-suited for the

study of this non-genetic heterogeneity since growth conditions can

be precisely controlled and single lineages tracked over time.One of the

first applications of aMM-like device was to establish the persister state

as a phenotypic switch (Balaban et al., 2004). Persisters can be identified

in such microfluidic devices as cells that are not growing prior to

antibiotic exposure, but resume growth at some later time point

following removal of the antibiotic. With an increase in throughput

of the MM and microscopy (e.g., more trenches per chip and faster

microscope imagingwith larger field of view), it was possible to observe

hundreds of E. coli persisters without mutations that increase their

typically low frequency of approximately 1 in 1000 cells (Bakshi et al.,

2021). The molecular mechanisms underlying this phenotypic switch

are still under investigation (Goode et al., 2021b; Manuse et al., 2021).

Studies using the MM enabled the characterization of these persisters

and have shown that they have smaller size (Bakshi et al., 2021), lower

ATP levels (Manuse et al., 2021), and aremore likely to contain protein

aggregates (Goode et al., 2021a). Recent developments in microscopy

throughput, simulating batch culture conditions, and screening in the

MM will likely help us to understand the molecular mechanisms

behind bacterial persisters.

The MM has also been used to study more broadly the

response of bacteria to antibiotics. The device with back-channels

(Figure 3A) was used to rapidly load cells into the device for fast

antibiotic susceptibility testing (~30 min) of clinical samples

(Baltekin et al., 2017), by directly visualizing growth or death

of the bacteria during antibiotic exposure through microscopy. A

study looked at the accumulation of the antibiotic ofloxacin

inside E. coli in the MM and has shown that stationary phase

cells appeared to absorb the antibiotic more slowly than

exponentially growing cells (Cama et al., 2020).

3.7 Synthetic biology

It has become increasingly clear that cellular circuits must

contend with stochastic gene expression and that this noise can

have an important impact. Therefore, it is valuable to have the

ability to quantify such variability for the engineering of cells for

synthetic biology applications. Indeed, microfluidic devices have

been instrumental in the development of synthetic gene circuits

with dynamic properties (Cookson et al., 2005; Stricker et al.,

2008; Danino et al., 2010; Din et al., 2016; Lezia et al., 2022). The

use of the MM and insights from theory of stochastic gene

expression enabled the re-engineering of the repressilator - the

iconic synthetic oscillator that helped kick-start the field of

synthetic biology—to achieve a precision that approaches

natural oscillators (Potvin-Trottier et al., 2016; Luro et al.,

2020). The MM was instrumental in enabling the precise

characterization of the oscillators, identifying factors that

disrupted oscillations, characterizing redesigned iterations of

the circuit, and subsequent screening of pooled libraries.

While a handful of studies have used the MM to evaluate

(Niederholtmeyer et al., 2015; Zhang et al., 2022) or control

(Lugagne et al., 2017) synthetic gene circuits, the broader use of

the MM throughout the design process could lead to a new

generation of precise and robust synthetic circuits.

4 Discussion

Single-cell microfluidic platforms have facilitated important

discoveries in a variety of fields in biology by enabling the

quantification of dynamic and heterogenous processes. Recent

technical developments of the MM, including the ability to

phenotype or screen pooled libraries based on their dynamics,

achieve better control over the growth conditions, and to culture

additional organisms should continue to expand the applications

of these devices to new fields. Further developments could

facilitate the study of species-species interactions, as has been

done in a few studies (Din et al., 2016; Cooper et al., 2017). The

majority of studies using the MM have focused on E. coli and B.

subtilis, and applications of the device to other organisms (e.g.,

microbes important in the clinic or in the gut microbiota) would

broaden its scope. Outside the microbial realm, two studies so far

have used the device with non-adherent mammalian cells (Pearl

Mizrahi et al., 2016; Seita et al., 2021). More studies could shed

light on dynamic and heterogeneous processes, such as

phenotypic resistance to cancer treatment and the

differentiation of hematopoietic stem cells (Huang, 2009; Jolly

et al., 2018; Reyes and Lahav, 2018). Adaptation of the

phenotyping and screening platforms to mammalian cells

could provide an alternative to the single-cell screening

techniques that have been developed (Stuart and Satija, 2019;

Chandrasekaran et al., 2020).

Future studies using the MM will likely continue to advance

studies of the heterogeneous processes discussed above. By

showcasing discoveries in diverse fields, we hope to inspire

the readers to implement such devices to explore questions in

new fields and expand their possible applications. For example,

the timing of other epigenetic processes in bacteria, such as
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prions (Yuan and Hochschild, 2017; Fleming et al., 2019), could

be elucidated. While many studies have quantified the

heterogeneity in protein production, few studies have

examined how the degradation of proteins can create

heterogeneity (Wong et al., 2007; Jones and Uphoff, 2021).

Although most bacteria in nature are in stationary phase

(Gefen et al., 2014), the majority of studies have focused on

exponentially-growing bacteria. The technical developments of

the MM enabling the observation of cells in different growth

phases could fill this gap in the literature and generate insights

into the stationary phase. Adopting the MM setup has become

increasingly accessible, with molds available through different

companies, detailed protocols published, and open-source data

analysis software now available. Ultimately, because these

microfluidic devices provide a new quantitative way to look at

cells, they have the potential to continue to contribute to

discoveries in diverse areas in biology.
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