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According to the classical Windkessel model, the heart is the only power source

for blood flow, while the arterial system is assumed to be an elastic chamber that

acts as a channel and buffer for blood circulation. In this paper we show that in

addition to the power provided by the heart for blood circulation, strain energy

stored in deformed arterial vessels in vivo can be transformed into mechanical

work to propel blood flow. A quantitative relationship between the strain energy

increment and functional (systolic, diastolic, mean and pulse blood pressure) and

structural (stiffness, diameter and wall thickness) parameters of the aorta is

described. In addition, details of blood flow across the aorta remain unclear

due to changes in functional and other physiological parameters. Based on the

arterial strain energy and fluid-structure interaction theory, the relationship

between physiological parameters and blood supply to organs was studied,

and a corresponding mathematical model was developed. The findings

provided a new understanding about blood-flow circulation, that is, cardiac

output allows blood to enter the aorta at an initial rate, and then strain energy

stored in the elastic arteries pushes blood toward distal organs and tissues. Organ

blood supply is a key factor in cardio-cerebrovascular diseases (CCVD), which are

caused by changes in blood supply in combination with multiple physiological

parameters. Also, some physiological parameters are affected by changes in

blood supply, and vice versa. The model can explain the pathophysiological

mechanisms of chronic diseases such as CCVD and hypertension among others,

and the results are in good agreement with epidemiological studies of CCVD.
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1 Introduction

Cardio-cerebrovascular diseases (CCVD) are among the

most common diseases causing death and disability in

humans. They kill 15 million people worldwide each year and

impose a large medical and economic burden on society. CCVD

refers to ischemic or hemorrhagic diseases of the brain, heart,

body tissues and other organs caused by hyperlipidemia, high

blood viscosity, atherosclerosis, hypertension, high uric acid

content and other factors, and are characterized by high

morbidity, disability and mortality. The pathogenesis of

CCVD is characterized by many physiological phenomena

such as blood pressure, obesity, sympathetic nervous system

changes, vascular stiffness, high blood lipid content and blood

viscosity, as well as poor habits such as a sedentary lifestyle, lack

of physical exercise, poor sleep habits, high fat and high sodium

diets, smoking, and mental anxiety, among other factors.

According to the classic Windkessel model, the heart is the

only power source for blood flow, while the arterial system is

assumed to be an elastic chamber that only acts as a channel and

buffer for blood circulation. Studies have shown that the heart of

a healthy person at rest pumps 5–6 L/min of blood, and the

amount of blood needed is 7.6–9.2 × 103Kg per day, in other

words, cardiac output power at rest is about 0.9–1.9 W (Wang

et al., 2020). Average daily cardiac output typically falls with age

from 9.91 (age 23.6 years) to 5.91 (age 82) × 103Kg

(Brandfonbrener et al., 1955; Idema et al., 1994), with a

corresponding reduction in cardiac output power from 1.44 to

0.86 W. It is hard to imagine that blood can be pumped through

the entire body by such low power. We believe that there are

other sources of energy in the body for powering blood flow,

including that from the elastic arterial system in vivo. Active

elastic arteries store strain energy, which can be converted into

mechanical work to propel blood flow.

Various mechanical properties of arteries have been studied

from different aspects since Fung (Fung 2013). Biomechanical

parameters of intact or separated arterial tissues (intima, media

and adventitia) such as arterial stiffness, compliance,

microstructure of elastic and collagen fibers, smooth muscle

cells located within the artery wall, have been identified using

methods such as planar or inflation tests to serve as a reference

for clinical cardiovascular disease (CVD) diagnosis, treatment

and monitoring (Niestrawska et al., 2016; Hoffman et al., 2017;

Amabili et al., 2019; Ramachandra and Humphrey 2019; Lisický

et al., 2021a). Also, constitutive models with different levels of

complexity and number of parameters also have been developed,

such as phenomenological extensions of Fung’s model (Fung

et al., 1979) and structure-based versions of the GOH (Gasser-

Ogden-Holzhapfel) model (Gasser et al., 2006; Rachev and

Shazly 2019; Lisický et al., 2021b; Holzapfel et al., 2021), to

describe and predict the mechanical behaviors of arterial tissues.

Meanwhile, changes in histological and mechanical properties of

pathological arterial tissues with intima damage, atherosclerosis,

aneurysm, and calcification could serve as a first-hand reference

for clinical studies and practices (Desyatova et al., 2017; Zareh

et al., 2019; Noble et al., 2020; Thrivikraman et al., 2020; Lisický

et al., 2021b). However, elastic blood vessels in vivo are

deformable tubes that are pre-stretched. Little attention has

been paid to the storage of strain energy in these elastic vessels.

A large number of studies have been carried out on risk

factors for CCVD incidence and mortality as a function of a

single physiological variable, and useful results have been

achieved in statistical clinical studies. The effects of

structural features of arterial vessels on hypertension and

chronic CVD have previously been studied. Aortic stiffness

is closely associated with hypertensive diseases and is an

independent predictor of fatal stroke in patients with

essential hypertension. Arterial stiffness can be assessed

noninvasively by measurement of pulse wave velocity, which

is a simple and reproducible method (Laurent et al., 2001a, b;

Boutouyrie et al., 2002; Laurent et al., 2003; Wu et al., 2012;

Ecobici and Stoicescu 2017; Lyle and Raaz. 2017; Virdis 2018;

Tomiyama 2020). The association of blood pressure (BP) with

risk factors for CVD morbidity and mortality has been

explored. BP is a powerful cardiovascular (CV) risk factor

that acts on the arterial wall and is responsible in part for

various CV events, such as cerebrovascular incidents and

ischemic heart diseases (Safar 2008; Verdecchia et al., 2012;

Wu et al., 2012; Malyszko et al., 2013). The effects of blood

viscosity and blood lipid, such as cholesterol, triglyceride, high

density protein, low density protein and hematocrit on CVD

have been discussed (Collaboration et al., 2007; Apostolidis and

Beris 2016; Vasquez et al., 2019; Cekirdekci and Bugan 2020;

Engin and Güvenç 2020). Undoubtedly, these research results

have played an important role in the understanding, diagnosis,

treatment and prevention of CVD. Of all the risk factors, blood

pressure is the greatest concern. Although the incidence of

hypertension is high, our understanding of its pathogenesis is

still incomplete (Wu 2021). Blood supply disorders can cause

changes in blood pressure, and blood supply to the brain, heart

and other organs is correlated with their physiological

parameters. As CCVD is a systemic, complex and multi-

factorial disease that develops over time, risk factors for

CCVD need to be considered in terms of more than a single

physiological variable as there is a lack of consensus on several

topics, including the existence of the J-curve (Vokó et al., 1999;

Malyszko et al., 2013; Verdecchia et al., 2017; Yin et al., 2021).

Risk factors for CCVD can only be predicted by a small number

of physiological parameters such as blood pressure, vascular

stiffness, and blood lipids. Due to differences among

individuals, it is difficult to use a single physiological

parameter to accurately predict the incidence and mortality

of CCVD. Therefore, it is necessary to build a model with

multiple risk factors. Fluid-structure interaction (FSI) theory is

a powerful tool to build a model that can incorporate multiple-

factors considering physiological and functional parameters.
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FSI theory has been widely used in the study of human blood

circulation, especially in the field of hemorheology. There has

been great interest in recent research on the effects of vascular

elasticity on the distribution of blood flow velocity, wall shear

stress and flow velocity (Coccarelli et al., 2021; Chalons et al.,

2022), including the effects of different geometric structures

(Corti et al., 2020), external conditions (Nardinocchi et al.,

2005; Misra et al., 2018), multi-scale factors (Qohar et al.,

2021), fluid properties (Shinde et al., 2022) and states (Younis

and Berger 2004). There have been many studies on fluid-

structure interaction models of blood and arteries, such as the

Ventricular-Arterial Coupling model (Pagoulatou et al., 2021),

Direct Eulerian Generalized Riemann Problem scheme (Sheng

et al., 2021), and Hybrid Windkessel-Womersley coupled model

(Aboelkassem and Virag 2019), among others. The above studies

are based on elastic cavity theory, which considers the

contribution of arteries to dissipation energy, and have

primarily generated hemorheological parameters. However,

the strain energy of elastic arteries has not been considered as

the source of power for blood flow. Because these findings have

been difficult to describe in terms of clinically accepted CVD risk

factors, they have not been incorporated into clinical practice.

In summary, morbidity and mortality of ischemic or

hemorrhagic CCVD are mainly characterized by abnormal

blood supply, and blood supply to organs should be a key

control quantity for chronic diseases. The availability of

adequate nutrients and oxygen to organs depends on the

ability of the heart to pump blood and the large vessels to

carry it. Unfortunately, the relationship between blood supply

to organs and physiological parameters is not well understood

since the exact blood flow across a given blood vessel in response

to mechanical forces such as systolic/diastolic blood pressure

(SBP/DBP) is unclear (Chandran et al., 2012). Therefore,

biochemical parameters obtained from routine physical

examinations cannot be used to assess blood flow. In order to

reduce the incidence and mortality of CCVD, it is necessary to

further understand the relationship between physiological

parameters and blood supply. Whether disruption of blood

supply causes changes in physiological parameters or vice

versa is a controversial topic that merits further study.

Our objectives were as follows: firstly, confirm that the active,

deformed elastic aorta stores deformation energy, and establish a

quantitative relationship between strain energy and functional

and structural parameters. Secondly, based on fluid-structure

interaction theory, develop a mathematical model of the effect of

coupling multiple physiological parameters to blood supply.

Disruption of blood supply can cause changes in physiological

parameters, and vice versa. This model can be used to evaluate

human blood flow using biochemical parameters obtained from

routine physical examinations, and can address some

controversial problems in the prevention, diagnosis and

targeted treatment of CCVD. By contrast with meta-analysis

methods, this model describes the relationships between multiple

physiological parameters and blood supply to organs.

Transforming this theoretical framework into clinical research

will provide new evidence for an in-depth knowledge of human

blood circulatory physiology.

2 Materials, test methods and
experimental results

The purpose of this study is to overcome the barrier between

biomechanics and clinical practices in the understanding of

blood circulation and CVD and build a multi-parameter

coupling model with clinical medicine as the background.

Therefore, the physiological parameters that can be tested in

clinical medicine were selected in the study.

Past studies have shown that compared with brachial blood

pressure (BP), central BP is a more accurate predictor of cardio-

cerebrovascular risk (Picone et al., 2021), and brachial BP

measurements may lead to a 28% misdiagnosis rate in

patients (Roman et al., 2007). In this study, the human aorta

was used as research object. The aorta of porcine was used as the

in vitro experimental materials since the aortic mechanical

properties and structures of porcine are very similar to that of

human beings (Suzuki et al., 2011; Fung 2013; Mathern et al.,

2022). Expansion tests and biaxial tensile tests were conducted

under different loads. The expansion tests used normal porcine

physiological BP and heart rate, 50/120 mmHg and 80 beats/min

(Gladczak et al., 2013; Lelovas et al., 2014), respectively.

Collection of and experiments on porcine artery tissue were

approved by the Ethics Committee of Kunming University of

Science and Technology.

2.1 Expansion and extension test

The aim of the experiment was to obtain the relative strain of

the aorta. Ten porcine aortic arteries were collected from a

slaughterhouse in Chenggong, China, as soon as the pigs were

sacrificed, and the aortic tissues were transferred to the

laboratory. Connective tissues and fat were removed from

around each artery. Then, the arteries were divided into

ascending, descending proximal, and distal segments, each

with a length of 4 cm. Expansion experiments were performed

on the tubular artery segments using a dynamic mechanical tester

(Electroforce, 5500, TA Instruments, United States). The tubular

artery segments were stretched axially to recover their in vivo

dimensions, with the longitudinal stretch ratio λz = 1.2, 1.3,

1.4 for the ascending, proximal descending, and distal descending

arteries, respectively, according to the results reported by Han

and Fung (Han and Fung 1995). Prior to each test, the diameter

of the unstressed artery was measured with a digital caliper. The

arteries were then dilated with distilled water to simulate

physiological and pathological blood pressure. A pressure
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sensor and laser rangefinder were used to record the relationship

between the internal pressure and the external diameter of the

artery, which was used to calculate the relative circumferential

strain of the aorta during diastole and systole. In clinical

practices, the aortic outer diameters can be easily and

accurately measured, and then the relative circumferential

strain can be calculated. For the convenience of clinical

application, engineering strain is used in this paper. The

experimental results were shown in Figures 1A,B.

2.2 Biaxial planar test

The purpose of the experiment was to obtain the stress-strain

curve of the aorta, which furthermore to deduce the equations of

strain energy. After the expansion tests, four square (13 ×

13 mm) arterial specimens were cut with a customized cutter

to ensure size consistency of sample cut from the artery segments.

The edges of the square specimens were parallel with the

longitudinal and circumferential orientations. Biaxial tests

were performed using a commercial tensile testing machine

(Cell Scale, Biomaterials Testing, Waterloo, Canada). The

specimens were mounted on the biaxial test system by four

bio-rakes and stretched to 1.4× the initial length of the

specimen, as the strain in the artery wall was less than 0.4×

that under physiological conditions. Planar stretch tests were

controlled by displacement in order to reduce creep, and samples

were stretched slowly (strain rate of 0.3 per minute). The

specimens were preconditioned by ten loading and unloading

cycles to obtain stable strain-stretch data, and the last cycle was

chosen for analysis. According to the law of Laplace, the range

and magnitude of stress and strain were estimated according to

the corresponding diameter of the artery segment and

physiological blood pressure range. The stress and strain

curves of the artery specimens were fitted by an exponential

function with a goodness of fit R2 ≥ 0.99. According to the paired

Student’s t test, no statistically significant difference was found

between linear and nonlinear approaches (p = 0.993, > 0.05).

Therefore, the stress-strain behavior of the aortic tissues within

the physiological range of BP can be approximated by the linear

method. The experimental results were shown in Figure 2.

FIGURE 1
Results of expansion and extension tests. (A)Outer diameter-pressure curves of the aorta, with an in vivo axial stretch ratio of 1.2, 1.3 and 1.4 for
the ascending, proximal descending and distal descending aorta, respectively. (B) Relative strain-pressure curves of the ascending, proximal
descending and distal descending aorta with an axial in vivo stretch ratio of 1.2, 1.3 and 1.4.

FIGURE 2
Circumferential stress-strain curve of the ascending aorta.
The solid-dotted line represents the nonlinear stress-strain curve,
and the dashed line represents a linear approximation.
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2.3 Experimental platform for simulating
the cardiovascular system

In order to estimate the strain energy stored in the aorta and

show its relationship with blood flow, a set of closed

cardiovascular test simulation systems was designed (Figure 3,

China patent number: ZL 201911070403.2). This system consists

of a peristaltic pump, extensible elastic tubes, a sealing tank, a

pressure adjustment device, a pressure sensor (Millar Mikro-

Cath 825-0101, United States), a laser rangefinder (Mitutoyo

LMS-503S, United States) and two flow meters. This device can

be used to measure changes in the volume of fluid flowing

through an elastic tube at different stretch ratios, internal

pressures, fluid media and materials, so as to show that the

deformed elastic tube has the ability to store strain energy that

can be converted into mechanical work to promote fluid flow.

The results were reproducible. The experimental flow values were

recorded within 20 min and were shown in Figure 4. Although

the cross-sectional area of the specimen decreased during stretch,

the flow volume increment increased, indicating that the in vivo

descending artery stored strain energy, which could explain the

increase in fluid flow.

2.4 Statistical analysis

Statistical analyses were performed by SPSS 26 andMicrosoft

Excel statistical packages. A paired 2-tailed Student’s t test was

used to compare the variance of linear and nonlinear approaches

to analysis of stress-strain data within the physiological range of

BP, with the significance level set to p < 0.05. The experimental

results are reported as mean ± standard error.

3 Strain energy density increment

3.1 Strain energy density increment in the
aorta

It is a nature phenomenon that elastic arteries contribute to

blood flow. There are few literatures that quantify the

contribution of elastic vessels to blood flow, especially the

contribution of functional and structural parameters of aorta

to blood supply. This research gap was the basis of the innovation

of this paper. In order to facilitate clinical applications, the strain

energy density increment (SEDI) of the aorta is described by

physiological variables that can be measured during clinical

practice. Previous studies have shown that despite the

viscoelasticity of the elastic aorta, circumferential mechanical

properties of the aorta can be approximated by linear elasticity

over the physiological range (see Figure 2). As the axial elastic

modulus is much larger than the circumferential modulus, and

the aorta is constrained by surrounding soft tissues, and there is

little longitudinal stretching of the vascular wall, the influence of

axial deformation can be ignored (Bergel 1961). The elastic

properties of blood vessels are therefore primarily related to

circumferential parameters (Bergel 1961). As the ratio of radius

to wall thickness of the ascending artery is 10.2 (Mensel et al.,

2014; Mensel et al., 2016), the ascending aorta was regarded as a

thin-walled cylinder. According to the circumferential stress-

strain relationship, the area enclosed by the dashed line in

FIGURE 3
Cardiovascular system experimental simulation platform.

FIGURE 4
Increment in cumulative flow over 20 min with different
stretch ratios for porcine aorta.
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Figure 2 is the linear strain energy density. The SEDI (Δu)
between the systolic and diastolic periods can be

approximated as:

Δu � (σs − σd)(εs − εd)/2 (1)
or

Δu � φ2(αsps − αdpd)2/8E (2)
in which

E � Dp/2hεθ , σ i � φpiDi/2hi, i � s, d (3)

where ps, pd and E (Chandran et al., 2012) represent systolic

blood pressure (SBP), diastolic blood pressure (DBP), stiffness of

the aorta (circumferential elastic modulus), respectively, φ is

defined as the expansion constraint coefficient, D, p, εθ and h are

inner diameter, mean blood pressure (MBP) (p � (2pd + ps)/3),
relative circumferential strain and wall thickness, respectively.

εθ � εs − εd � (Ds −Do)/Do − (Dd −Do)/Do � (Ds −Dd)/Do

, αs � Ds/hs − 2, αd � Dd/hd − 2, where Ds, Dd, hs and hd are the

outer diameters and wall thicknesses of the aorta in systole and

diastole, respectively.Do is initial outer diameter of aorta. σ i is the

circumferential stress in systole and diastole. It should be noted

that φ can also be calculated from artery compliance. It can be

seen that the SEDI is positively correlated with the squared value

of pulse pressure, and negatively correlated with the

circumferential elastic modulus. The above formula can be

applied to not only humans, but also other mammals.

Figure 5A represents the relationship between SEDI and DBP/

SBP in porcine thoracic artery. Figure 5B shows the variation of

the SEDI in the distal aorta as a function of diastolic pressure at a

systolic pressure of 113 mmHg. It can be seen that the SEDI for

the proximal artery is higher than that for the distal artery,

indicating that the proximal artery has a higher elastic modulus.

Compared with other artery segments, the ascending aorta stores

the most strain energy and exhibits the highest elasticity.

3.2 Nonlinear and linear approximations of
strain energy density in the ascending
artery at physiological blood pressure

Figure 2 shows the circumferential stress-strain curve of porcine

ascending artery within the physiological range of BP (50/

120 mmHg). The area enclosed by the solid line is the non-linear

strain energy density, while that within the dashed line is the linear

strain energy density. In the case of the porcine aorta, the difference

in strain energy density between the linear and nonlinear values was

only 3.8 ± 91.65% (Figures 6A,B). Therefore, linear strain energy

density is considered to be an accurate estimate of the nonlinear

strain energy density at physiological BP.

4 A new fluid-structure coupling
model of human blood circulation

4.1 Valid base assumptions

In addition to satisfying the basic assumptions of Section 3,

blood flow in the aorta was assumed as laminar flow. In the

human aorta, the amplitude of Reynolds number Re is calculated

to be about 1,500, far below the critical value of 2,100. There is no

experimental evidence of sustained turbulence in human blood

circulation so far. In most of the cardio-vascular cycle, blood flow

in the circulatory system can be set as laminar flow. Under special

FIGURE 5
Strain energy density increment per unit length. (A) Increment in strain energy density per unit length of the aorta with an in vivo axial stretch
ratio of 1.2, 1.3 and 1.4 for the ascending, proximal descending and distal descending arteries, respectively. (B) Increment in strain energy density per
unit length upon in vivo axial stretch for the ascending, proximal descending and distal descending arteries, respectively, with an SBP of 113 mmHg.
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circumstances, some disturbance of blood flow in the aortic root

and pulmonary trunk occur as the heart contacts to its peak.

Turbulent or highly disturbed flow would occur in the posterior

side of the diseased valve, or the stenosis of the blood vessel, or

the implanted mechanical devices (Chandran et al., 2012).

4.2 The relationship between
physiological parameters and blood
supply

The relationship between physiological parameters and

blood supply was studied. Herein, physiological parameters

refer to functional and structural parameters of the aorta,

hemorheological properties, blood lipid, pulse, and

heart rate.

The kinetic energy unit weight of total blood flow (Shandong

Institute of Technology and Northeast Electric Power University

1979) is

k � ηV2/2g (4)

where η is the kinetic energy correction factor. For viscous fluid

laminar flow η = 2. The increment in kinetic energy unit weight is

ΔK � ΔVρgV2, where ΔV is the increment in volume (Zhang

and Yang 1996). As cross-sectional area changes (ΔA), the

increment in kinetic energy unit length is

ΔK � ΔAρgV2 � ΔAγV2 (5)

where ρ is blood density and γ is the per-unit-volume weight. In

diastole and systole, the increment in flow area ΔA is

ΔA � φ(Dsps/hs −Ddpd/hd)Af/E (6)

Thus, the increment in blood kinetic energy unit length ΔK
in diastole and systole is

ΔK � φγAf(αsps − αdσd)V2/E (7)

The dissipated energy increment during fluid flow Δwτ (the

increment in work done by blood and wall shear stress) (Zhang

and Yang 1996) is

Δwτ � −γλ(Ds −Dd)K2V2 (8)

where λ is the friction loss factor of the elastic vessel (which

is related to flow state and blood viscosity, lipid content, and

velocity) for laminar flow, λ � 64/Re, Re � VD/μ, in which Re

is the Reynolds dimensionless coefficient, μ is blood

viscosity, and K is a coefficient. According to the

Hamilton principle for fluid-structure coupling (Shandong

Institute of Technology and Northeast Electric Power

University 1979; Zhang and Yang 1996), the functional χ

of the constructed aortic vessel per pulse unit length can be

represented as follows:

χ � πD2φγ(αsps −αdσd)V2/4E−πDhφ2(αsps −αdσd)2/8E
−π(Ds −Dd)φγλDK2V2 (9)

where V is the flow distance over one pulse through the cross

section of the artery per unit weight of blood, which is defined as

the characteristic velocity. According to the Hamilton principle

of fluid-structure coupling, V can be obtained by the variational

operation of Ds and Dd. We have:

FIGURE 6
Circumferential stress-strain curves of the ascending artery. (A) Stress-strain curves of the anterior (ANT), lateral (LNT), posterior (POST) and
medial (MED) quadrants around the circumference of the artery. The horizontal and vertical lines represent the values of stresses and strains
calculated using a physiological range of 50/120 mmHg BP for pigs. (B) Histogram of the differences in strain energy within the physiological range
estimated by linear and integral approximations. The five columns represent the ratio of the linear to integral estimates of stress-strain area for
the anterior (ANT), lateral (LNT), posterior (POST) and medial (MED) quadrants and the mean difference, with the values marked above each column.
The label n.s. indicates no significant difference among the four quadrants.
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V �
��������������������

φh

Dγ(1 + β) (αsps − αdpd)√
(10)

in which

β � 4Eλ(hd − hs)
D(ps − pd)φ (11)

where β is defined as the coupling energy dissipation coefficient

and is related to fluid viscosity, blood lipid, vascular geometry,

pulse pressure, and vascular stiffness. Therefore, the average

blood flow Q of each pulse through the cross section is:

Q � Q0 + ΔQ � (1 + φ
Dp

Eh
)Af

��������������������
φh

Dγ(1 + β) (αsps − αdpd)√
(12)

where Af is the blood flow area of the aorta. The average flow

volume �Q per minute through the cross section of the vessel is:

�Q � n(1 + φ
Dp

Eh
)Af

��������������������
φh

Dγ(1 + β) (αsps − αdpd)√
(13)

where n is the pulse frequency. This model describes the effect of

multiple physiological variables on blood supply. To illustrate

applications of the above formulas, four examples are provided.

1) If central BP is set to 80/110 mmHg at rest and 80/120 mmHg

in the normal state, the area of the ascending artery expands

by 3% and 4%, respectively (Lu et al., 2017). Taking E = 3.5 ×

105 Pa, Re= 1,000, D = 32.0 mm, h =1.46 mm (Mensel et al.,

2014; Mensel et al., 2016; Lu et al., 2017), φ = 0.0439/0.0565

(rest and normal states), β = 0.375/0.290 (rest and normal

states), and K = 1 (laminar flow), average blood flow volume

calculated by Eq. 13 is 5.23 and 7.95 L/min at rest and in the

normal state, respectively. These values are consistent with

clinical measurements.

2) According to clinical statistical studies (Schutte et al., 2005),

the physiological parameters of healthy humans are: BP of

123/72 mmHg, heart rate of 64.8 bmp, and arterial

compliance of 1.78 ml/mmHg, while for hypertensive

patients, the corresponding values are 156/91 mmHg,

69.1 bmp, and 1.65 ml/mmHg. Ceteris paribus, the DBP of

hypertensive patients calculated by Eq. 13 is 94.3 mmHg,

resulting in a deviation of 3.6% from clinical data.

3) It has been reported that there is a significant difference in the

relative risk of hemorrhagic stroke and different types of

ischemic stroke with BP higher than 110/180 mmHg (28.83%

vs 9.56%) (Wu et al., 2012). According to Eq. 13, within this

range, blood flow increased by over 31% compared with that

of healthy people. This data does not reflect the risk of

hemorrhagic stroke, but does indicate the likelihood of

hemorrhagic stroke. In this situation, more blood is

retained in the cerebrovascular system, which leads to

increased cerebral BP and risk of brain vessel rupture.

4) Changes in SBP and pulse pressure (PP) in diastolic

hypertension patients suggest a 12% increase in the

incidence of CVD events at the end of 2 years in patients

with lower DBP (75 mmHg) compared with patients with

higher DBP (95 mmHg) when SBP was 160 mmHg for both

groups (Amery et al., 1985; Staessen et al., 1997; Wang et al.,

2000). According to Eq. 13, blood flow volume in the lowDBP

group (75 mmHg) increased by 23% compared with the high

DBP group (95 mmHg), leading to an increase in

hemorrhagic stroke.

5 Discussion

The model established in this paper is a new understanding

of blood circulation. It is emphasized that the heart pumps

blood at an initial rate to provide initial kinetic energy for

circulation, then, the potential energy (i.e. strain energy) of

arterial vessels drives blood flow, and the work done by the

shear force on the blood vessel wall is the dissipated energy,

which forms the whole blood circulation with three parts. The

current FSI models about blood flow and arteries are based on

Windkessel model or modified model (Aboelkassem and Virag

2019; Pagoulatou et al., 2021; Chalons et al., 2022). Different

from the Windkessel model, the new model shows that in

addition to the power provided by the heart for blood

circulation, strain energy stored in deformed arterial vessels

in vivo can propel blood flow. In the study of hemorheology, the

influence of blood flow field, state, velocity and shear stress

caused by vasculopathy on vascular wall has been focused on,

especially the change of flow field and stress field when plaque,

atherosclerosis, lipid accumulation and calcification occur in

vascular wall (Boujena et al., 2014; Lopes et al., 2020; Lipp et al.,

2020). While the new model focuses on the correlation with

average flow and physiological parameters, which is more

significant for clinical medical applications. The model of

multi-parameter blood flow presented in this paper is an

approximate analytical solution of average velocity rather

than numerical solution. The relationship between this

model and CCVD is discussed as follows.

5.1 Mechanical mechanism of the J-curve

The J-curve has existed in clinical practice for decades and

has been well known to clinical medicine physicians and scholars.

The J-curve represents the relationship between blood pressure

and mortality of CCVD, the risk rate and mortality of CCVD

increased when DBP/SBP is too high or low, as shown in Figure 7

(Yin et al., 2021). Whether the J-curve exists is the focus of debate

among medical experts (Vokó et al., 1999; Malyszko et al., 2013;

Verdecchia et al., 2017; Yin et al., 2021). Our results support the

existence of the J-curve (Figure 5B).
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Strain energy provided by arteries can promote blood flow. In

comparing the SEDI curve with the J-curve, it was found that

SEDI is negatively associated with the risk of cardiovascular

disease (CVD). At a given SBP (from Figure 5B), when DBP is too

high or too low, the circumferential relative strain is small (see

Figure 1B), so does the SEDI stored in the aorta (see Figure 5B).

This indicates that inadequate strain energy in the aorta results in

insufficient energy to promote blood flow, thus impairing blood

supply to target organs and increasing the risk of CVD. However,

for the same SBP, the risk of CVD caused by excessively low DBP

is lower than that caused by high DBP. This is consistent with the

J-curve in that the risk and mortality of CVD increases when

DBP is too high or low. This means that lower BP is not always

better for treatment of hypertension. Only when the SBP and

DBP are within a defined range can the aorta provide the optimal

strain energy and promote adequate flow.

The relationship between blood flow and several

physiological variables is described in Eq. 13 and shown in

Figure 8.

5.2 Structural and functional parameters
of the aorta and their effects on blood
supply

Aortic mean blood flow is closely related to structural and

functional parameters that can be measured easily in clinical

practice, so their relationship to CCVD has been a topic of

intense research. While previous studies have qualitatively

described a bidirectional correlation between structural and

functional parameters of the vasculature, the equation

proposed in this paper quantitatively describes the

relationship between them and how it is altered by changes in

blood supply.

5.1.1 Vascular stiffness and blood supply

As can be seen from Eq. 12, without considering BP, Q0 is

only related to the geometric size of the aorta, while ΔQ is not

FIGURE 7
J-Curve of the association between blood pressure and risk of death. (A) SBP: all-cause mortality. (B) DBP: all-cause mortality. (C) SBP:
cardiovascular and cerebrovascular mortality. (D) DBP: cardiovascular and cerebrovascular mortality. International Journal of General Medicine
2021:14 5039-5049 Originally published by and used with permission from Dove Medical Press Ltd.
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only related to geometric size, but also negatively related to E.

With an increase in E resulting from, e.g., calcification, high

cholesterol level, lipid deposition, plaque or atherosclerosis in the

artery intima, vascular smooth muscle cell senescence, or

increased oxidative stress in the arteries, the contribution of

ΔQ to total blood supply decreases. If the value of arterial stiffness

is sufficiently high, the contribution of ΔQ to total blood supply is

minimal. In this case, blood supply is only related to PP and

aortic geometry. As the media-intima thickness (MIT) of the

aorta increases, PP inevitably increases, but has little effect on the

value of MBP. Therefore, it is clear that increased PP can serve as

an indicator of increased aortic stiffness. The results obtained by

this model are consistent with current clinical reports (Laurent

et al., 2001a, b; Boutouyrie et al., 2002; Laurent et al., 2003; Wu

et al., 2012; Ecobici and Stoicescu 2017; Lyle and Raaz. 2017;

Virdis 2018; Tomiyama 2020).

5.1.2 Vascular geometry and blood supply
It can be seen from Eq. 13 that vascular geometry is positively

correlated with blood supply. The geometry of the arteries

changes with age. Both the inner and outer diameters increase

and theMIT thickens with age, but the increase in outer diameter

is greater than that in inner diameter, indicating an increase in

wall thickness (Jadidi et al., 2019). In addition, the incidence of

intima calcification, high cholesterol, lipid deposition, plaque or

atherosclerosis, senescence of vascular smooth muscle cells, and

increased arterial oxidative stress also contribute to MIT

thickening and an inevitable decrease in blood supply,

although the nervous system compensates by raising BP to

ensure adequate blood flow (McEniery et al., 2007; Jadidi

et al., 2020).

5.1.3 Functional parameters of the aorta and
blood supply

It can also be seen in Eq. 13 that �Q is a monotonically

increasing function for SBP and MBP, that is, when SBP and

MBP are excessively high, blood supply increases greatly.

Excessive blood supply can cause damage to organs, resulting

in fatal diseases such as hemorrhagic stroke, cognitive

impairment, heart failure, CKD, and aneurysm, among others

(see example 3 in Section 4). Clinical illnesses such as metabolic

disorders, blood sugar disorders and obesity increase the demand

for blood, resulting in increased SBP and MBP, which eventually

leads to hypertension. Long-term high PP or high MBP can lead

to excessive blood volume in the vascular system and increase

pressure in the arteries, resulting in blood vessel rupture and

bleeding (i.e., hemorrhagic stroke) in weak vessels (see example

4 in Section 4). Increased SBP and MBP are related to increased

arterial stiffness, changes in geometric parameters, dyslipidemia

and high blood viscosity (see Eq. 13). However, a need for

FIGURE 8
Relationship between blood flow and physiological variables.
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increased blood supply can result from a variety of causes,

including metabolic disorders, blood disorders, obesity,

Marfan’s syndrome, sleep disorders, liver disease, elastic

pseudo xanthoma, aneurysm, and emotional stress (e.g., fear,

excitement or sadness). SBP and MBP must rise to keep up with

the requirements of organs for blood.

DBP is also closely related to arterial stiffness and blood

supply, and excessive hypotension would reduce blood supply to

organs, leading to increased incidence of ischemic CCVD. In

clinical treatment of hypertension, personalized treatment

should consider matching arterial structural parameters and

functional parameters, blood lipid, and rheological parameters

of patients. Blindly lowering BP without considering other

parameters will reduce blood supply (see Eq. 13), which can

lead to chronic ischemic diseases. In China, the incidence of

ischemic diseases (such as coronary heart disease and cerebral

infarction) after treatment of hypertensive patients is much

higher than that of patients with cerebral hemorrhage (Wu

et al., 2012). The question of whether this is caused by

lowering BP alone without considering other physiological

parameters merits further consideration. In addition, a sudden

BP drop deprives the brain and vital organs of oxygen and

nutrients and can result in fatal outcomes such as coronary

artery disease and cerebral infarction. Therefore, the optimal goal

of hypertension treatment (control of functional parameters)

should be aimed at ensuring appropriate blood supply to organs.

The above factors are described by Eq. 13, in good agreement

with clinical studies (Safar 2008; Verdecchia et al., 2012; Wu

et al., 2012; Malyszko et al., 2013).

5.3 Dyslipidemia, high blood viscosity and
blood supply

It can be seen from Eq. 11 that the coefficient β can be

affected by many factors. Only the effects of dyslipidemia and

blood viscosity are discussed here. Increased blood viscosity and

dyslipidemia result in a higher β value and lower average flow

velocity and blood supply (see Eqs 10, 13. In order to provide

sufficient blood supply, BP has to be increased, which leads to

chronic hypertension. In addition, acute ischemic diseases are

often caused by dyslipidemia, high blood viscosity, and rapid

declines in blood flow velocity, and are manifested as a marked

decrease in blood supply. These results are in good agreement

with clinical studies (Collaboration et al., 2007; Apostolidis and

Beris 2016; Vasquez et al., 2019; Cekirdekci and Bugan 2020;

Engin and Güvenç 2020).

5.4 Heart rate, pulse rate and blood supply

In normal healthy people, the heart rate is equal to the pulse

rate. For patients with long-term hypertension, the strain energy

stored in elastic arteries decreases as arterial stiffness increases,

reducing the blood supply to organs, often accompanied by

weight gain and diseases like diabetes and lipid disorders.

Insufficient blood supply to organs often occurs in patients

with chronic hypertension undergoing treatment. Due to

sympathetic regulation of the heart, heart rate can be greater

than pulse rate, and blood pumped by the heart cannot in that

case be fully transported to organs through the aorta, eventually

resulting in atrial fibrillation, where excess blood accumulates in

the left atrium, resulting in thrombosis. When the clot breaks off,

carotid artery blockage can lead to ischemic stroke. Atrial

fibrillation is not only related to heart function and the

sympathetic nervous system, but also to the ability of the

aorta to supply blood. Proper physical exercise helps to raise

the pulse rate and increase blood flow, which is beneficial to

patients in a long-term ischemic state. The above discussion is

consistent with recent research (Isabelle et al., 2016; Warnert

et al., 2016; Campbell et al., 2019; Presa et al., 2020; Tofas et al.,

2021; Waclawovsky et al., 2021).

5.5 Sympathetic nervous system,
peripheral resistance and blood supply

Increased sympathetic activity and poor habits such as lack of

sleep, smoking and obesity can lead to increased peripheral

resistance and a need for increased blood supply (Seravalle

and Grassi 2017; Omboni 2020; Boutouyrie et al., 2021).

However, vascular structural parameters cannot rapidly

change in response. According to Eq. 13, for average blood

flow ( �Q), the change of MBP is more obvious than that of PP.

Therefore, MBP has to increase to provide sufficient blood

supply, that is, DBP has to increase while PP decreases,

resulting in a clinical diagnosis of isolated diastolic

hypertension. For instance, if BP is 120/95 mmHg (SBP/DBP),

it can be seen from Eq. 13 that blood flow volume would be

reduced by 18.2%. Long-term sustained isolated diastolic

hypertension causes insufficient blood supply to the body,

which is clinically manifested as heat discomfort, dizziness,

listlessness of spirit, and weakness of limbs, among other

symptoms (Chrysant 2020; Monzo et al., 2021).

5.6 Aging and blood supply

Aging-related changes in aortic structural parameters (such

as increased stiffness, thickened MIT, increased outer diameter

and decreased blood flow area) result in decreased blood flow

(Chang et al., 2017; Ferrara et al., 2018; Jadidi et al., 2021). In

early stages, MBP and PP rise in order to ensure adequate blood

supply, with clinical manifestations mostly diagnosed as isolated

systolic hypertension (Ferrara et al., 2018; Yu and Zhang 2021).

With aging, aortic stiffness increases, which along with less
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physical activity and lower demand for blood supply leads to

decreased MBP (Mikael et al., 2017; Boutouyrie et al., 2021;

Conell et al., 2021) that mainly manifests as decreased DBP and

increased PP.

5.7 Expansion constraint coefficient

Elastic vessels cannot dilate freely due to constraints

imposed by surrounding soft tissues. At the same time, the

influence of variables such as aging and other factors cause soft

tissue constraints on blood vessels to change. Here, εAp =

φpD/Eh, in which εAp is the circumferential aortic cross

section area strain. It can be seen that when εAp is constant,

φ is positively correlated with stiffness and wall thickness of

blood vessels, and negatively correlated with MBP and inner

diameter of arteries, and φ can also be calculated from artery

compliance.

6 Conclusion

If the heart is one “pump” for blood flow, the aorta is

another “pump” that deforms to store strain energy that is

converted into mechanical work to force blood through arteries.

Blood supply abnormalities are the root cause of morbidity,

death and disability associated with CCVD, and those caused by

arteriosclerosis precede the appearance of organ diseases. The

optimal goal of hypertension treatment, control of functional

parameters, should be to ensure adequate and appropriate

blood supply to organs. This study quantitatively presents

the relationships between blood flow volume and various

physiological variables and between strain energy and

macro-vascular parameters. Disruption of blood supply can

be caused by changes in physiological parameters, and vice

versa. The present model can also explain pathogenesis and

development of chronic conditions such as CCVD from the

perspective of clinical medicine. Changes in one physiological

variable will affect many others. To reduce the incidence of

CCVD, more attention must be paid to management of the

health of the aorta. This study can help to guide accurate

prediction, prevention, diagnosis and clinical treatment

of CCVD.

7 Limitations

Although the results calculated from the quantitative

mathematical model are in good agreement with the

epidemiology study results, further clinical verification is still

needed. In the derivation of the expression of SEDI of the aorta,

we followed the assumptions of linear elasticity in the

physiological range, the influence of axial deformation was

ignored.
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