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Additive manufacturing (AM) technologies can enable the direct fabrication of
customized physical objects with complex shapes, based on computer-aided
design models. This technology is changing the digital manufacturing industry
and has become a subject of considerable interest in digital implant dentistry.
Personalized dentistry implant treatments for individual patients can be achieved
through Additive manufacturing. Herein, we review the applications of Additive
manufacturing technologies in oral implantology, including implant surgery, and
implant and restoration products, such as surgical guides for implantation, custom
titanium meshes for bone augmentation, personalized or non-personalized dental
implants, custom trays, implant casts, and implant-support frameworks, among
others. In addition, this review also focuses on Additive manufacturing
technologies commonly used in oral implantology. Stereolithography, digital light
processing, and fused deposition modeling are often used to construct surgical
guides and implant casts, whereas direct metal laser sintering, selective laser melting,
and electron beammelting can be applied to fabricate dental implants, personalized
titanium meshes, and denture frameworks. Moreover, it is sometimes required to
combine Additive manufacturing technology with milling and other cutting and
finishing techniques to ensure that the product is suitable for its final application.
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1 Introduction

In recent years, digital technologies, such as computer-aided design/computer-aided
manufacture (CAD/CAM), digital intraoral scanners, and additive manufacturing (AM)
technologies, have been successfully applied in implant dentistry (Dawood et al., 2015),
providing new clinical and technical methods for surgical oral implant operations and
restoration manufacture. Digitalization shows a steady development trend in the field of
dentistry. As a typical digital manufacturing technology, AM can connect disease diagnosis,
treatment planning, and production processes through data flow, forming a fully digital process
for dental product processing (Salmi, 2021). Digital workflows not only greatly improve the
safety of implant placement and the convenience of manufacturing restoration, but also reduce
labor intensity for dentists and provide a satisfactory medical experience for patients
(Barazanchi et al., 2017).

Additive manufacturing (AM) technologies, also known as three-dimensional (3D) printing
technologies, are rapid prototyping technologies that have gradually become alternative
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methods for generating products from CAD files in dentistry (Abduo
et al., 2014). Previously, numerical control processing technology (NC
technology, also known as subtractive machining technology) was
typically used. In the industry, NC refers to the use of turning, milling,
grinding, and other approaches to remove material from a specific
solid object to form a desired shape. As the processed objects in
stomatology NC machining are specific oral materials, milling and
grinding techniques are often adopted according to the characteristics
of the material used and precision manufacturing requirements
(Abduo et al., 2014). NC is a mature processing technology that
achieves high precision using a wide range of materials and can be
used to directly process almost all commonly used stomatological
materials. In addition, NC is the first choice for batch fabrication
(Petrick and Simpson, 2015); however, the disadvantages of NC
include the material waste associated with this technology, which
leads to high production costs. Moreover, particularly complex dental
auxiliary therapy devices (such as root-analogue implants,
personalized titanium meshes, etc.) are difficult to achieve using
NC (Dawood et al., 2015).

AM is a processing technology based on discrete stacking
forms. The underlying principle involves transformation of a
3D digital model into continuous superposition of a two-
dimensional sheet model through a discrete process, where a
computer program controls the stacking of materials in order,
layer by layer. The most remarkable features of AM are that it
overcomes the limitations of subtractive machining technology
and can be used to mass produce a variety of products with
complex morphology in a short time. In addition, in principle,
AM consumes a minimum amount of raw materials, and
unformed raw materials (resin liquid, metal powder, etc.) can
be reused, which greatly reduces costs (Kessler et al., 2020; Tian
et al., 2021).

Overall, these two manufacturing methods (NC and AM) each
have advantages and disadvantages, and AM is not conclusively
superior to subtractive manufacturing; in most cases, the
techniques present complementary advantages (Alammar et al.,
2022). In implant dentistry, applications of and research into AM
are becoming increasingly extensive, ranging from fabrication of
surgical guides and dental implants to dental casts and implant
frameworks, among other items. The use of AM has led to a
progression of implant dentistry applications from traditional,
purely empirical methods to more accurate digital medicine
(Schweiger et al., 2021; Huang et al., 2022).

Several reviews on the applications of AM in dentistry have been
published (Barazanchi et al., 2017; Revilla-Leon and Ozcan, 2019; Tian
et al., 2021); however, few have focused on the application of this
technology in oral implantology. Moreover, the materials reviewed
have been limited to polymers, and the types of applications covered
were not comprehensive (Revilla-León et al., 2020). In this review, we
discuss the AM technologies commonly used in oral implantology and
their applications. In addition, we compare the accuracy of different
AM technologies and describe the clinical applications of products
fabricated by AM.

The aim of this review is to provide readers with information on
recent progress in the application of AM in oral implantology. As a
result, we focus on the following questions: Which AM technologies
are commonly used in implant dentistry? What are the applications of
AM technologies in implant dentistry? What are the benefits of the
application of AM technologies in implant dentistry?

2 Additive manufacturing technologies
commonly used in implant dentistry

AM refers to a class of manufacturing processes in which parts are
built by stacking layers of material on one another. There are seven 3D
printing categories in the American Society for Testing and Materials
classification standard: vat photopolymerization (VPP), powder bed
fusion (PBF), material jetting, binder jetting, material extrusion
(MEX), sheet lamination, and directed energy deposition. Although
there are various AM processes, not all of them are used in implant
dentistry. Technologies frequently adopted in implant dentistry
practice include VPP [stereolithography (SLA), digital light
processing (DLP), etc.], PBF [selective laser melting (SLM),
selective laser sintering (SLS), etc.], and MEX (fused deposition
modeling, etc.) (Schweiger et al., 2021). Parts are built directly
from digital 3D models created using CAD software. CAD models
are converted into many thin layers, and the fabrication facility uses
this geometric data to build each layer in turn until the part is
completed (Bozkurt and Karayel, 2021). Given this approach, AM
is often referred to as layered manufacturing, direct digital
manufacturing, or physical free-form manufacturing (Turkyilmaz
and Wilkins, 2021).

Each 3D printing technology is based on the principle of the
“additive” method, with the main differences among them being the
molding methods and materials used. Appropriate 3D printing
technologies should be selected according to the application
purpose (Figure 1) (Jawahar and Maragathavalli, 2019; Schweiger
et al., 2021).

2.1 Vat photopolymerization

2.1.1 Stereolithography
SLA is a well-known 3D printing technology that has been used for

almost 30 years (Turkyilmaz and Wilkins, 2021), and is primarily
applied to print surgical guides, dental model replicas, custom trays,
and provisional restorations (Anadioti et al., 2018; Khorsandi et al.,
2021; Schweiger et al., 2021). SLA uses a high-intensity ultraviolet light
source, which applies the wavelength and heat of light to polymerize
and selectively solidify liquid resin for lamination. In this process, to
better integrate new layers with previous layers, the polymerization
reaction of each layer is usually not fully completed under the direct
light source, but further light processing is rather performed after the
printing is completed (Pagac et al., 2021). Finally, the support
structures added automatically by the printer require manual
removal (Revilla-León et al., 2020).

2.1.2 Digital light processing
DLP, as a VPP technology, has attracted wide attention. A major

area of DLP printer application is the digital manufacture of dental
models (Park et al., 2021). Differences between DLP and SLA include
the type of light source and the way the light source is controlled to
selectively illuminate and cure the resin. In SLA, the light source is a
laser, while DLP uses a projector, similar to a movie projection device,
that illuminates the entire shape of the printed object at the surface of
the liquid (Pagac et al., 2021; Son et al., 2021). In theory, DLP printing
of an object takes less time, because each layer does not require a step-
by-step laser scan; however, most DLP devices do not have the high
resolution that SLA laser beams can provide (Revilla-León et al., 2020).

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Huang et al. 10.3389/fbioe.2023.1100155

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1100155


Therefore, DLP is advantageous for rapid printing of larger parts with
fewer details, while SLA is superior for printing accurate parts with
intricate details (Huang et al., 2022).

2.1.3 Continuous liquid interface production (CLIP)
CLIP is a variant of DLP considered to be a vat-polymerization

technology (Alammar et al., 2022), conducted using a liquid resin
cylinder, a bottom-up construction platform, an ultraviolet lamp, an
oxygen-permeable window, and a projector. The projector displays a
continuous, extremely thin cross section of an object, using ultraviolet
light from below (Pagac et al., 2021). Ultraviolet rays harden the liquid
in cross section in a cylinder of liquid resin. Simultaneously, a lift pulls
the formed objects out of the resin tank (Alammar et al., 2022). The
key to CLIP printing is the presence of a window for oxygen and
ultraviolet light to pass through at the bottom of the resin cylinder. As
oxygen hinders the curing process, resin at the bottom of the cylinder
continuously forms a “dead zone” that does not cure. This “dead zone”
is very thin, such that ultraviolet light can pass through and solidify the
resin above, which does not come into contact with oxygen. As there is
no resin stuck to the bottom of the cylinder, the printing speed is very
fast, because printing does not occur in the air but in the resin
(printing in the air reduces curing speed, due to the presence of
oxygen) (Alammar et al., 2022).

2.2 Powder bed fusion

PBF is the metal-printing technology most commonly used in
dentistry. Ti and Cr-Co alloys are preferred metal materials in
biomedical applications, primarily because of their mechanical
properties, biocompatibility, thermal, magnetic, and electrical
conductivity, and general high temperature resistance (Revilla-León
et al., 2017). PBF includes SLS, direct metal laser sintering (DMLS),
SLM, and electron beam melting (EBM). These techniques typically
use high-powered lasers or electron beams to melt small particles, such
as plastics, metals, ceramics, or glass, in powder form (Velasquez-

Garcia and Kornbluth, 2021). The powder is usually preheated to a
temperature below the melting point of the material before printing
begins. The energy source is then controlled by the printer, enabling it
to selectively melt powder on the surface of the powder bed. After
melting one layer, the powder bed reduces by the height of one layer,
and a new powder layer is then laid on top with a roller, subsequently
completing printing of the new layer (Revilla-Leon et al., 2019a).

Most non-metallic materials printed by PBF do not require
support structures, because the model is always fully wrapped and
supported by green powder; however, metallic materials may require
support structures to assist in rapidly transferring heat away from the
part while reducing expansion during printing. PBF printers can build
three-dimensional geometries, such as fine lattices, which are valuable
for making prostheses to promote bone ingrowth; hence, PBF
technology is widely used in medical fields, including orthopedics
and for dental implants, among other applications (Mangano et al.,
2014a). In addition, personalized titanium mesh and implant
frameworks can be fabricated using this technology (Sumida et al.,
2015; Barbin et al., 2020).

The main speed-limiting steps of PBF are the thermal cycle of the
machine and post-processing of parts (Attarilar et al., 2021). Most PBF
machines need to be warmed up to a certain temperature to start printing,
and after printing, cooling is required before the printed parts can be
removed from the machine. The post-processing procedures required are
also highly dependent on the type of technology and materials used. For
example,metalmaterials require processes such as thermal hardening and
residual stress relaxation (Sing et al., 2016). Metal-printed parts may also
require subsequent milling with a computer numerical control (CNC)
lathe, to achieve a smooth finish, after they have been removed from the
printer platform (Bordin et al., 2017).

At present, in the PBF category, SLM makes comprehensive use of
cutting-edge technologies, such as new material, laser, and computer
technologies, which have great potential for further future development
(Ansari et al., 2019). Dental implants printed by SLM have higher
density and strength, as well as sufficient dimensional accuracy (Chen
et al., 2014), which can be attributed to the SLM forming principle. SLS

FIGURE 1
Applications of 3D printing technologies commonly used in implant dentistry. Chart showing the applications (blue boxes), primary 3D printing
technologies (red boxes), and materials needed (purple boxes) (Dawood et al., 2015; Khorsandi et al., 2021; Tian et al., 2021).
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binds metal or non-metallic powders with high melting points by
melting a metal or binder with a low melting point (Jawahar and
Maragathavalli, 2019), while SLM uses a high power laser with a small
spot to melt metal powder rapidly and completely, and requires higher
laser power density than that used for SLS (Revilla-León et al., 2017). In
addition, although SLM parts have good mechanical strength, they may
have high internal stresses caused by the thermal gradients induced
during processing, necessitating additional heat treatment.

EBM is also a powder bed melting technology. The principles of
fabrication using EBM and SLM are similar, but the heat sources differ
(Velasquez-Garcia and Kornbluth, 2021). Compared with technologies
that use lasers as the energy source, EBM has many advantages, such as
high energy utilization, no reflection, high power density, and convenient
focusing, which can be used to make implants (Raheem et al., 2021).

2.3 Material extrusion

The MEX process is also termed fused filament fabrication (FFF)
(Bozkurt and Karayel, 2021). The MEX family process, fused deposition
modeling (FDM), is the most common type of printing used in medical
or dental equipment; however, its printing resolution is inferior to that
of SLA (Huang et al., 2017; Oberoi et al., 2018). FDM can handle a
variety ofmaterials, such as foundry wax, polyamide (commonly known
as nylon), acrylonitrile butadiene styrene plastic, polylactic acid (PLA)
plastic, low melting point metals, and ceramics (Lin et al., 2019). In
FDM, the thermoplastic material is heated, melted, and extruded
uniformly from a nozzle to generate filaments. Simultaneously, the

nozzle moves along a specific path, operated by anNC system according
to the continuous thin layer data planned by the slicing software, for
filling. After cooling, the filamentousmaterial is bonded layer by layer to
form a thin cross-section, and finally the layers are superimposed to
form a three-dimensional entity (Torabi et al., 2015).

2.4 Material jetting

In 2000, Objet (Israel) applied for a patent for PolyJet technology
(now owned by Stratasys). PolyJet sprays a liquid photopolymer layer
onto the construction tray and immediately solidifies it using ultraviolet
light. Compared with SLA, the PolyJet laser spot diameter is
0.06–0.10 mm, allowing much higher printing accuracy than that
achieved by SLA, and facilitating fabrication of smooth and precision
parts. In addition, due to its high-speed raster construction process,
PolyJet can achieve fast printing, and does not require secondary curing.
It has been demonstrated that implant guides made using PolyJet are
more accurate than those fabricated using SLA technology (Tappa and
Jammalamadaka, 2018; Patpatiya et al., 2022).

3 Research status on additive
manufacturing applications in implant
dentistry

The accuracy of surgical implant placement is greatly improved by
surgical guides constructed by 3D printing technology. Customized

FIGURE 2
Applications of 3D printing technologies in implant dentistry clinical practice. (A) 3D printed surgical guide. (B) Personalized titaniummesh. (C) Standard
implant. (D) Customized root-analogue implant. (E) Custom tray. (F) Implant models. (G) Implant framework. Adopted from (Mangano et al., 2012b; Revilla-
Leon et al., 2017; Revilla-Leon et al., 2018a; Westover, 2019; Olea Vielba et al., 2020; Cucchi et al., 2021; Herschdorfer et al., 2021).
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titanium mesh improves the accuracy of bone augmentation, and 3D
printing technology can even be used to prepare personalized implants
to meet individual patient needs (Revilla-León et al., 2020). During
implant restoration, 3D printing technologies can replace certain
manual operations, such as the manufacture of custom trays,
working casts, etc., helping to reduce human error. Suitable tray
and accurate dental models are key to restoration. There is
evidence that 3D printed custom trays and models are sufficiently
accurate, which significantly impacts the success of the final
restoration. Additionally, implant-supported frameworks generated
by CNC cutting are very popular, but this process results in a waste of
materials, whereas implant frameworks fabricated by 3D printing
effectively avoid this problem. The emergence of 3D printing has
undeniably aroused the interest of many dentists and accelerated the
clinical development of implantology. Some examples of the
application of 3D printing technologies in dentistry are presented
in Figure 2.

3.1 Applications of additive manufacturing in
the surgical stage of implant treatment

3.1.1 Surgical guides
3D printed surgical guides have been used for more than 10 years,

and the digital workflow of the guides is as follows. Virtual planning
and design is conducted using computer software and digital
workflows for planning and manufacturing, based on data obtained
from 3D imaging, and these plans are then transmitted through 3D
printed surgical guides (Rouzé L’Alzit et al., 2022; Unsal et al., 2020;
Zhang et al., 2020). At present, SLA is the most widely used approach,
due its economical nature and speed. Some newer technologies, such
as PolyJet, can also be used to prepare guides (Henprasert et al., 2020).
The guide manufacturing process is illustrated in Figure 3, taking
tooth-supported guides as an example (Sedov et al., 2021).

The production of guides involves multiple, closely-linked steps,
including data collection and integration, design of the implanting
plan and guide structure, and manufacturing, and errors in previous
steps will accumulate in the final guides (Putra et al., 2022; Rouzé
L’Alzit et al., 2022). Factors influencing template accuracy can be
roughly divided into three categories: 1) System error: that is, errors
generated during CBCT scanning and data conversion, which cannot
be controlled by humans; 2)Manufacturing error: related to the type of
3D printer (Zhang et al., 2022) (Table 1), selection of printing
materials, use of supporting structures, slicing method and software
types (Cho et al., 2021; Elliott et al., 2022; D. D; Rubayo, et al., 2021);
and 3) Other factors.

To reduce surgical complications caused by problems with 3D
printed surgical guide production, it is vital to understand the
limitations of 3D printing technology. Research has demonstrated
that 50 µm layer printing provides better overall guide dimensions
than 100 µm layer printing (Dalal et al., 2020). Further, printing
angulation can influence the intaglio surface, as well as tube
deviations (Dalal et al., 2020). Rubayo et al. showed that 0- and
45-degree build angles produced the most accurate surgical templates,
while a 90-degree build angle generated the least accurate surgical
templates (D. D. Rubayo, et al., 2021). Tahir et al. evaluated the effect
of different printing directions on the placement accuracy of implant
surgical templates made by DLP. The results showed that the

horizontally printed templates showed excellent accuracy (Tahir
and Abduo, 2022).

Regarding other factors that influence template accuracy, Zhou
et al. (Zhou et al., 2018) conducted a comprehensive comparison of
various clinical factors and concluded that guide accuracy may be
affected by guide position (maxilla or mandible), guide fixation
(fixation screw or not) (Pessoa et al., 2022), type of guide (total or
partial) (Mangano et al., 2018; Lou et al., 2021; Fotopoulos et al., 2022;
Gargallo-Albiol et al., 2022), flap approach (open flap or flapless),
differences in implant system (Zhu et al., 2021), high temperature
sterilization (Marei et al., 2019; Kirschner et al., 2022) and support
mode (tooth-supported, mucosa-supported or mixed-supported) (Pan
et al., 2022). In addition, Henprasert et al. concluded that there was no
significant difference in accuracy between 3D-printed and milled
guides, but found that the former had the advantages of high
efficiency and reduced material waste (Henprasert et al., 2020).
Mukai et al. compared the repeatability and accuracy of two
surgical guides obtained using 3D printing and milling methods
(Mukai et al., 2021) by overlaying images and the results revealed
no significant differences in average mismatch between the two groups
in terms of trueness (p = 0.529) or precision (p = 0.3021), indicating
that both milling and printing manufacturing methods are suitable for
guided surgery.

3.1.2 Customized titanium mesh
The development of customized titanium mesh generated by

3D printing technology, with the aim of solving the shortcomings
of traditional titanium mesh, has become a focus in GBR research
and application (Xie et al., 2020). Based on patient CBCT three-
dimensional jaw data, the ideal alveolar bone is virtually designed
using CAD software, according to the shape of the dental arch
and the expected implant position (Manzano Romero et al.,
2021). Then, the matching customized titanium mesh is
designed directly on the reconstructed alveolar bone model.
Finally, customized titanium mesh is manufactured using SLM
or EBM (Figure 4) (Xie et al., 2020; Cucchi et al., 2019; Seiler et al.,
2018).

There are many advantages of 3D printed customized titanium
mesh (Seiler et al., 2018; Hartmann et al., 2019), as follows.

• The cell structure, pore size, and thickness of 3D printed
titanium mesh can be adjusted according to requirements
(Jung et al., 2014).

• The scope of 3D printed titanium mesh is limited to the area of
the bone defect rather than extending into areas with sufficient
bone mass, avoiding overstretching of soft tissue. In the second
stage of surgery, the doctor only needs to remove the titanium
mesh through the alveolar crest incision, avoiding the need to
turn the flap again.

• The use of customized titanium mesh can reduce the operation
time, thus shortening exposure to general anesthesia, decreasing
blood loss, decreasing wound exposure time, and simplifying the
surgical procedure.

• Personalized titanium mesh has lower exposure rates, as
confirmed by a meta-analysis conducted by Zhou et al. (Zhou
et al., 2021). Titanium mesh avoids nerves and blood vessels in
the initial design, which is of great significance in improving the
accuracy of GBR.
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Guidelines for designing 3D printed customized titanium meshes
have been published (Sagheb et al., 2017; Hartmann and Seiler, 2020;
Li L et al., 2021) and include.

• The bone mass around the implant, the shape of alveolar bone,
and the condition of soft tissues are factors that should be
considered in the design.

• The distance between the boundary of the titanium mesh and
adjacent teeth, nerves, blood vessels and other important
structures should be ≥2 mm.

• The position and number of nail holes should be determined
according to the retention needs. Nail hole diameter can be
designed according to that of the titanium nail to be used.

In terms of the accuracy of 3D printed titanium mesh, Sumida
et al. (Sumida et al., 2015) confirmed that the maximum error between
customized titanium mesh and CAD data is <300 μm, indicating that
it has sufficient accuracy for GBR. Regarding mechanical properties,
the average tensile strength and test stress of titanium mesh with a
thickness of 0.5 mm and a pore size of 1 mm printed by SLM are 627 ±
41 and 541 ± 26 MPa, respectively, while the average elongation
strength and micro-Vickers hardness are 7.2% ± 2.8% and 203 ±
5 HV, respectively, demonstrating that titanium mesh has good
mechanical properties. Otawa et al. (Otawa et al., 2015) tested the
accuracy of SLM titanium mesh. The results show that dimensional
accuracy, pore structure accuracy and the error between CAD design

and the scanned real product by overlapped images are tolerable, and
the maximum error and average error are 292 μm and 139 μm,
respectively.

In term of indications, customized CAD/CAM titanium mesh can
be used in bone augmentation surgery for horizontal and vertical bone
defects, particularly for cases with large area, complex, combined
horizontal and vertical bone defects. Some clinical studies have
focused on the bone augmentation effect of CAD/CAM titanium
mesh as shown in Table 2. It is worth noting that many clinical studies
have shown that customized titanium mesh cannot completely avoid
the problem of titanium mesh exposure, but exposure does not
necessarily affect the final bone augmentation effect (Zhou et al.,
2021; Ciocca et al., 2018a; Hartmann and Seiler, 2020). From the
perspective of design, some scholars have demonstrated this by
optimizing the design of customized titanium mesh thickness and
pore size and other parameters and making the shape of customized
titanium mesh smooth, so as to reduce the possibility of exposure. In
addition, some scholars suggest using fibrin rich in platelets or
collagen membrane to cover titanium mesh to reduce the exposure
rate (Cucchi et al., 2021; Sagheb et al., 2017).

In fact, there is another way AM can help GBR, as used by Li et al.
(Li S et al., 2021). By collecting intraoral scanning and DICOM (digital
imaging and communications in medicine) data from patients, the
implant position can be digitally designed, and the alveolar bone
digitally augmented around the ideal implant position. This process
provides superior precision and efficiency relative to traditional GBR

FIGURE 3
Schematic diagram of guide production. (A) Cone-beam computed tomography is used to generate 3D data from the teeth and jaws. (B) Three-
dimensional information from the teeth and surrounding soft tissue is obtained by intraoral optical impression or scanned from a traditional plaster model. (C)
In the guide design software, the two datasets are imported in turn and then matched, checked, and confirmed. (D) The guide is designed. (E) 3D printing is
used to fabricate the guide. (F) The final guide is completed.
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procedures, as reflected in the preoperative virtual bone augmentation
design, with an increment of 0.5 mm beyond the contour of the labial
bone arch to compensate for possible bone resorption during bone
healing. After 3D printing of the reconstructed alveolar bone model,
the titanium mesh was trimmed and prefabricated on the alveolar
bone model. The preformed personalized titanium mesh has lower
technical sensitivity and better plasticity than 3D printed titanium
mesh (Xie et al., 2020). Indeed, the customized titaniummeshmade by
both methods increases the possibility of customized bone
regeneration (Seiler et al., 2018).

3.1.3 Dental implants
Interconnected pore structures are conducive to the transport

of nutrients and increase surface roughness, which facilitates new
bone formation and osseointegration (Chen et al., 2020; Yu et al.,
2020). Moreover, porous structures reduce implant stiffness and
generate an implant elastic modulus similar to that of the human
jaw, thereby reducing stress shielding effects and allowing implants
to be retained and function in the jaw for long periods of time
(Wally et al., 2019). Titanium implants with uniform micron-scale
porous structure can be produced by 3D printing (Mangano et al.,
2014b). SLM and EBM are typically used to prepare dental

implants, and implant materials are mainly titanium and
titanium alloys, although some scholars have attempted to use
zirconia (Pillai et al., 2021). Further, some researchers have
proposed the use of titanium for the root portion and zirconium
in the abutment portion to form one-piece implants that can
achieve optimal osseointegration and ideal soft tissue
attachment (Westover, 2019).

Using the characteristics of the complex geometric components
formed by 3D printing, implants simulating the natural root can be
customized. Personalized implants can be completely consistent with
the shape of the patient’s extraction socket. In immediate implant
application, this approach can achieve high initial stability and
reproduce the perfect gingival profile of natural teeth (Figliuzzi
et al., 2012). In addition, personalized implants have similar stress
conduction and distribution characteristics to natural teeth (Moin
et al., 2013).

To obtain personalized implants, teeth and jaw data are collected
by computed tomography or CBCT before surgery, and a three-
dimensional model of the teeth reconstructed using software. Then,
a CAD model of the implant is generated, exported to an STL file, and
transferred to specialist reverse software. The surface of the model is
smoothed to generate a regular surface, and then transferred to CAD

TABLE 1 Accuracy of different 3D printing techniques for fabrication of surgical guides for use in dental implantology.

References Printing techniques
used

Main conclusions

Rouzé L’Alzit et al. (2022) SLA, DLP, FDM, and SLS, Inkjet 1. Regardless of the 3D-printer technology used, small-extent surgical guides are more accurate than large-extent
guides

2. SLA and DLP produced similar results

3. FDM was the least accurate

Henprasert et al. (2020) SLA, PolyJet, and MultiJet 1. Planned and final implant positions are not influenced by the additive manufacturing technologies tested

2. The additive manufacturing technologies tested allowed for accurate implant placement

Chen et al. (2019) SLA, PolyJet, and DMP 1. PolyJet 3D printing is more accurate and reproducible than SLA 3D printing

2. Printed Co-Cr metal surgical templates produced using the DMP 3D printer retain their initial accuracy and
reproducibility after 1 month of storage

Gjelvold et al. (2019) SLA and DLP 1. The tested desktop 3D printers can produce surgical guides with similar deviations to those generated by definitive
implant position

2. DLP printing was more accurate concerning deviations at the entry point and vertical implant position

Abduo and Lau, (2020) DLP and FFF 1. Although the two printers generally have similar accuracy, the guides produced by DLP printers are more accurate
than those generated by FFF.

Sommacal et al. (2018) FFF and DLP 1. There is a statistically significant difference between templates printed with a professional DLP printer and those
printed with a consumer FFF3D printer

2. Consumer FFF 3D printers are not suitable for creating templates for implant-guided surgery

Pieralli et al. (2020) SLA and FDM 1. The accuracy of surgical guides made by FDM is similar to SLA.

Sun et al. (2019) SLA and FDM 1. Using an FDM-printed surgical template for implant implantation is as accurate as using an SLA template for
single dental space indications

Koch et al. (2019) SLA, MultiJet and PolyJet 1. The SLA guides have the smallest deviation, followed by PolyJet and MultiJet.

2. The average 3D deviation of two printers of the same brand and model is significantly different

Sun Y et al. (2022) SLA and FDM 1. The placement accuracy of the FDM guide is the same as that of the SLA guide for single posterior edentulous
spaces

Wegmüller et al. (2021) MJ, SLA, FFF, and DLP 1. The accuracy of MJ guides is higher than that of FFF and DLP guides (p < 0.01)

DLP, digital light processing; FDM, fused deposition modeling; FFF, fused filament fabrication; SLA, stereolithography; SLS, selective laser sintering; MJ, Material Jetting.
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software for abutment design. After completion, an STL file of the
implant and abutment is obtained and imported into the printer for
processing and manufacture (F. G. Mangano F. G. et al., 2013;
Westover, 2019). Due to deviations in precision, some researchers
have incremented implant CAD models by dimension percentages
(0%, 5%, and 10%) for clinical applications (F. G. Mangano F. G. et al.,
2013). Another technique involves laser scanning of the root to
construct the final implant after extraction, and design of macro-
retainers on the implant surface to increase its stability following
placement (Dantas et al., 2021).

Another class of implants, referred to as patient-matched
implants, are less personalized than 3D printed root-analogue
implants; for example, some scholars have used 3D printing to
generate narrow-diameter implants for patients with insufficient
alveolar bone width (F. Mangano et al., 2013b). In addition, 3D

printing is also used in the manufacture of non-customized dental
implants (similar to current commercial implants). The Italian “Tixos”
implant, which is similar to a traditional implant, is produced by
DMLS technology and has a variety of sizes to choose from (Mangano
et al., 2012a). Furthermore, implants produced by DMLS have high
fatigue strength and good corrosion resistance (Yang et al., 2020).
Gehrke et al. confirmed that the mean fracture strength of DMLS
implants with diameter 3.5 mm and length 16 mm can reach >1200 N
(Gehrke et al., 2018): However, for two-stage dental implants, it is
difficult to achieve a tight connection between a 3D printed implant
and the abutment due to a lack of surface accuracy, but a tight
connection can be achieved by machining of the connection
structure in the 3D printing implant platform (Tunchel et al.,
2016). The predicted survival rates of 3D printed implants
confirmed in clinical studies are presented in Table 3.

TABLE 2 Different studies used 3D printing titanium mesh to obtain the effect of bone augmentation.

References Bone graft material Design of customized
titanium mesh

Printing
techniques
used

Whether to use other
barrier membranes

Main conclusions

Sagheb et al.
(2017)

Particulate autogenous bone
mixed with deproteinized
bovine bone mineral

- - A resorbable collagen membrane
or a resorbable collagen
membrane, followed by platelet-
rich fibrin (PRF) membranes

Six months after operation,
CBCT showed an average
increase of 6.5 ± 1.7 mm in
vertical bone mass and 5.5 ±
1.9 mm in the horizontal
direction, compared with that
before surgery

Ciocca et al.
(2018a)

Autologous bone and
anorganic bovine bone in a
1:1 ratio

The mesh was calibrated at a 0.3-
mm thickness, and holes in the
mesh were calibrated at 1-mm
diameter

DMLS No Six to 8 months after surgery,
cone beam CT showed an
average increase of
1.72–4.1 mm (average
3.83 mm) in the mandibular
arch and 2.14–6.88 mm
(average 3.95 mm) in the
maxilla

Cucchi et al.
(2021)

A mix 50:50 of autogenous
bone and bone xenograft

The meshes were usually less than
0.5 mm in thickness

SLM Patients requiring bone
augmentation procedures were
randomly divided into two
groups: group A received only
custom-made meshes (Mesh-)
and group B received custom-
made meshes with collagen
membrane (Mesh+)

Although group B had superior
outcomes to group A in
regenerated bone volume, the
use of custom-made meshes
alone did not seem to be inferior
to custom-made meshes
covered with cross-linked
collagen membrane, in terms of
healing complication and
regeneration rates

Li L et al. (2021) Particulate autogenous bone
chips, deproteinized bovine
bone mineral, and platelet-
rich-fibrin (i-PRF)

The thickness of the model is
0.3 mm, and the aperture is
2.0 mm. The edge of the mesh
should avoid damage to the
adjacent teeth, nerves, blood
vessels and other important
structures, and stay away from
these structures at least 2 mm

DMLS Dual layer of resorbable collagen
membrane and concentrated
growth factor matrix

According to the post-
implantation CBCT evaluation,
the patient-based average
vertical bone gain was 3.55 ±
3.74 mm, and the horizontal
average bone gain at 0, 2, and
4 mm below the implant
platform was 4.06 ± 2.37, 5.58 ±
2.65, 5.26 ± 2.33 mm,
respectively

Cucchi et al.
(2020)

Autogenous bone and bone
xenograft

The meshes were usually less than
0.5 mm in thickness

SLM No Measurements showed an
average VBG of 4.5 ± 1.8 mm at
surgical re-entry. Surgical and
healing complications occurred
in 30% and 10% of cases,
respectively. Mean values of
PBV, LBV, and RBV were 984,
92, and 892 mm3, respectively.
The average RR achieved
was 89%

VBG, vertical bone gain; PBV, planned bone volume; LBV, lacking bone volume; RBV, regenerated bone volume; RR, average regeneration rate.
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Poly ether ether ketone (PEEK) 3D printed implants have also
attracted attention (Basgul et al., 2021b; Sun C et al., 2022). PEEK
is an aromatic polymer with characteristics of corrosion
resistance, high temperature resistance, non-cytotoxicity, X-ray
transmission, chemical stability, and good biological safety
(Najeeb et al., 2016; Panayotov et al., 2016; Basgul et al.,
2021a). Compared with titanium alloy, the elastic coefficient of
PEEK is relatively low and closer to that of human cortical bone,
which helps to reduce stress shielding effects at the bone-implant
interface, thereby minimizing implant loosening and peri-implant
bone loss (Han et al., 2022). Although it has many advantages, the
main challenge for PEEK as a dental implant material is that it is a
bioinert material with low surface energy; Therefore, appropriate
strategies should be developed to improve the biological activity of
PEEK and realize its potential benefits (Jung et al., 2019; Basgul
et al., 2021b).

FDM and SLS 3D printing technologies can be used to print PEEK
implants, and the former is most commonly used (Schmidt et al., 2007;
Baek et al., 2022; Basgul & Spece et al., 2021). The molecular structure
of PEEK does not change at high temperature; thus, no toxic
substances are produced in the printing process (Prechtel et al.,
2020; Shilov et al., 2022). Further, 3D printed PEEK implants have
many advantages, including free design, interconnected porous
structures and specific surface topography (Shishkovsky et al.,
2013; Torstrick et al., 2018; Yuan et al., 2018). Han et al.
systematically analyzed the biological activity of PEEK implants
printed by FDM, including surface roughness, wettability, cell
adhesion, metabolic activity, and proliferation (Han et al., 2019a).
They found that, compared with the sandblasted surface of traditional
molded or milled PEEK implants, the special surface morphology and
porous structure of 3D printed PEEK implants played an important
role in stimulating bioactive potential.

In addition, to improve the bioactivity of 3D printed PEEK
implants, Han et al. used plasma surface treatment technology to
introduce Ar or O2 functional groups into the surface of 3D printed
PEEK, which significantly improved surface hydrophilicity and
changed surface morphology and roughness (Han et al., 2022).
Plasma-treated PEEK induced adhesion, metabolic activity,
proliferation, and osteogenic differentiation of SAOS-2 cells
in vitro. Su et al. developed a sulfonation strategy to create
uniform micropores on PEEK lattice scaffolds fabricated by FFF
(Su et al., 2020). The suitable lattice structure sulfonation time was
30–45 s, and the mean size of formed micropores was 0.19 ± 0.07 μm.
Compared with the untreated PEEK scaffold, the micropore
structure on the FFF printed PEEK lattice scaffold significantly
improved cell attachment, spreading, proliferation, and bone-
specific differentiation of MC3T3-E1 cells. More importantly, the
existence of micropores on the lattice scaffold promoted the
attachment of new soft tissue to PEEK implants.

In addition to biocompatibility studies, other investigations
have been dedicated to improving the mechanical strength of PEEK
(Chen et al., 2022). Numerous factors can influence the
biomechanical qualities of 3D printed PEEK implants, including
the size/shape of the test sample, printing temperature, printing
speed, layer thickness, component orientation, nozzle diameter,
and raster angle (Arif et al., 2018; Basgul & Spece et al., 2021;Basgul
& Thieringer et al., 2021; Prechtel et al., 2020; Moby et al., 2022).
PEEK formed by FFF has sufficient tensile, bending, and fracture
strength (Arif et al., 2018), but the fatigue properties of these
implants require further evaluation (Fabris et al., 2022). Sonaye
et al. studied the printing parameter set of PEEK implants
produced by FFF technology (Sonaye et al., 2022) and showed
that the best printing parameters for PEEK implants are: nozzle
temperature, 450°C; bedplate temperature, 150°C; chamber

FIGURE 4
Schematic diagram of personalized titanium mesh production. (A) Three-dimensional CBCT image data of the patient’s jaws is obtained. (B) The three-
dimensional jaw structure is reconstructed. (C) Personalized titaniummesh is designed according to the condition of alveolar bone defect. (D) After the design
is completed, the file is imported into the 3D printer for manufacturing. (E) After printing is completed, the titanium mesh is treated by ultrasonic cleaning,
sandblasting, and acid etching. (F) The situation is simulated during the operation.
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temperature, 90°C; layer thickness, 0.1 mm; and printing speed,
30 mm/s. The use of optimized process parameters resulted in
implants with excellent fatigue performance. Further,
reinforcement of PEEK with various materials, such as glass
fiber, carbon fiber, and silicate based bioceramics, improves its
mechanical strength to a certain extent (Han et al., 2019b;
Petersmann et al., 2020; Taymour et al., 2022).

In summary, the excellent overall properties of PEEK mean that it
has considerable prospects for application as dental implant material.
Combined with 3D printing, customized and graded porous PEEK
implants can be manufactured quickly, resulting in implants with
better performance than those generated by traditional manufacturing
processes. However, 3D printing of PEEK implants is mostly at the
laboratory research stage, and wide application of PEEK implants in
the clinic requires more supportive evidence from basic research and
clinical trials.

3.2 Applications of additive manufacturing in
the restoration stage of implant therapy

3.2.1 Custom trays
Three-dimensional printing technology has been applied to

fabricate custom trays for implants (Kim et al., 2019b). Revilla-
León et al. and Piedra et al. described an implant impression
technique for a complete arch, digitally designing metal splint
structured and custom trays, which were generated using DMLS
and DLP technology, respectively (Revilla-León and Özcan, 2017;
Piedra and Revilla-Leon, 2018). Good matching between the metal
splint structure and the impression copings makes it simple to locate
in the patient’s mouth. Compared with manual individual trays, 3D
printed custom trays have many advantages: First, custom trays have
sufficient extension range and more uniform 3D impression material
space between the splinting structure and the custom tray (Sun et al.,

TABLE 3 Clinical studies of 3D printed titanium implant.

References Manufacturing
method

Material Implant
features

Clinical applications Main findings

Mangano et al.
(2013a)

DMLS Ti-6Al-4V Root-analogue
implants

Root-analogue implants were implanted in the
sockets and restored with a single crown for
15 patients

1. At 1-year follow-up, implant survival rate
was 100%

2. Mean DIB was 0.7 (±0.2) mm

Mangano, et al.
(2012b)

DMLS Ti-6Al-4V Standard
implants

Implants were inserted in the edentulous
mandible for 24 patients

1. After a 1-year loading time, implant
survival rate was 98.9%

2. DIB was 0.28–0.30 mm (95% CI, 0.24–0.32)

Mangano et al.
(2015)

DMLS Ti-6Al-4V Standard
implants

Implants inserted in the mandible to support ball
attachment-retained mandibular overdentures
for 24 patients

1. After 4 years of loading, overall cumulative
survival rate was 96.9%

2. DIB values were 0.38–0.25 and
0.62–0.20 mm at 1- and 4-year follow-up
examinations, respectively

Mangano et al.
(2012b)

DLMF Ti-6Al-4V Standard
implants

201 implants (106 maxilla, 95 mandible) were
inserted in 62 patients

1. Overall implant survival rate was 99.5%

2. Mean DIB was 0.4 ± 0.2 mm

Mangano et al.
(2013b)

SLS Ti-6Al-4V Standard
implants

Implants placed in the posterior jaw for
16 patients

1. At 2-year follow-up, implant survival rate
was 100%

2. Implant success rate was 94.6%

3. DIB was 0.4 ± 0.3 mm

Mangano et al.
(2014b)

DMLS Ti-6Al-4V Standard
implants

Implants used to support bar-retained maxillary
overdentures for 30 patients

1. 3-year implant survival rates were 97.4%
(implant-based) and 92.9% (patient-based)

2. Biological complication incidence rates
were 3.5% (implant-based) and 7.1% (patient-
based)

3. The incidence of prosthetic complication
was 17.8% (patient-based)

Tunchel et al.
(2016)

DMLS Ti-6Al-4V Standard
implants

Eighty-two patients (44 male, 38 female; age
range 26–67 years) were enrolled. A total of
110 3DP/AM titanium dental implants
(65 maxilla, 45 mandible) were installed: 75 in
healed alveolar ridges and 35 in post-extraction
sockets. Prosthetic restorations included
110 single crowns

1. After 3 years of loading, six implants failed,
for an overall implant survival rate of 94.5%

2. Among the 104 surviving implant-
supported restorations, 6 showed
complications and were therefore considered
unsuccessful, for an implant-crown success
rate of 94.3%

3. Mean DIB values were 0.75 (±0.32) mm and
0.89 (±0.45) mm after 1 and 3 years of
loading, respectively

DIB, distance from the implant shoulder to the first visible bone-to-implant contact; DMLS, direct metal laser sintering; SLS, selective laser sintering.

Frontiers in Bioengineering and Biotechnology frontiersin.org10

Huang et al. 10.3389/fbioe.2023.1100155

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1100155


2017), providing more accurate oral tissue records; and second, they
reduce the time required to fix the impression rod using materials such
as resin, shorten clinical operation duration, and avoid the
inaccuracies in definitive models caused by resin polymerization
shrinkage (Kim et al., 2019a; Revilla-Leon and Ozcan, 2019).

Research confirms that 3D printed custom trays are stronger than
traditional custom trays (Liu et al., 2019), which can be attributed to
the parameters set in the manufacturing process. With increasing
printing layer thickness, the tensile bond strength of trays first
increases and then decreases, reaching a peak at 0.4 mm thickness,
and printing time decreases sharply. Although bending and tensile
strength decrease, dimensional printing accuracy remains constant
from 0.1 to 0.4 mm, and then decreases at 0.5 mm, demonstrating that
moderate layer thickness provides the best performance for 3D
printing of custom trays (Liu et al., 2021).

To meet clinical requirements, tray materials should have both
sufficient rigidity and dimensional stability and provide sufficient
retention of impression materials. Xu et al. evaluated the bonding
strength between three 3D printed custom tray materials (SLA, DLP,
and FFF) and three elastomeric impression/adhesive systems [vinyl
siloxane ether (VSXE), vinyl polysiloxane (VPS), and polyether (PE)]
using the peel test (Xu et al., 2020). The results showed that the three
3D printing tray materials have good chemical compatibility with
adhesives such as VSXE, VPS, and PE, and that 3D printing tray
materials can provide sufficient clinical bonding strength with elastic
impression/adhesive systems; when severe impression removal
resistance is detected, it is recommended to use both PLA and VPS.

The studies described above confirmed that 3D printed custom
trays have sufficient strength, hardness, and bonding strength with
impression materials. Hence, 3D printing implant impression
techniques could provide alternatives to conventional impression
techniques for implant restoration.

3.2.2 Implant models
Materializing digital impressions is among the earliest applications

of 3D printing in dentistry (Revilla-Leon and Ozcan, 2019). The
definitive implant model must ensure accurate implant location
and relationship with adjacent teeth. Compared with traditional
plaster models, 3D printed models have the advantages of being
lightweight, resistant to damage, and having high finish, good wear
resistance, and avoiding the inaccurate position of the analogue, which
may be caused by artificial fixation of the implant analogue on the
impression (Monaco et al., 2018; Tian et al., 2021). Moreover, 3D
printed models overcome the disadvantages of digital models, as the
physical model facilitates simple evaluation of the occlusal condition
and interproximal contact (Buda et al., 2018).

Printed model inaccuracy results from accumulation of distortions
caused by the acquisition method, parameters determined by the
design software, and the printing process (Tian et al., 2021), which
may be affected by many factors, such as scanner selection and the
digitization process, among others. Papaspyridakos et al.
(Papaspyridakos et al., 2020) proposed that the deviation of a
printed model for use in implant restoration should ideally
be <100 μm and should not exceed 150 μm.

Maria et al. (Maria et al., 2021) measured the physical positions of
implants in a master model and analogs in printed resin models using
a coordinate measuring machine. Three analog implant systems for
3D printed resin models [Straumann (ST), Core3DCentres (CD) and
Medentika (MD)] were tested. Mean 3D linear distortion for ST

(−155.7 ± 60.6 μm), CD (124.9 ± 65.0 μm), and MD (−92.9 ±
48.0 μm) differed significantly (p < 0.01), confirming that the
implant analog system has a significant effect on the accuracy of
analogs in 3D printed models. Mean absolute angular distortion did
not differ significantly between ST (0.57° ± 0.48°) and CD (0.41° ±
0.27°), while both differed significantly from MD (2.11° ± 1.14°). Print
orientation had a significant effect on 3D linear distortion, but no
discernible trend could be found. Michelinakis et al. pointed out that,
when choosing a semi-digital method, the cumulative deviation of the
model in the 3D printing process may lead to a deviation in the
position of the implant analogue, which depends on the printing
technique and materials used (Table 4) (Michelinakis et al., 2021). In
addition, Yousef et al. (Yousef et al., 2021) suggested that restoration
be conducted as soon as possible after the model is printed, as the 3D
printed model will deform during long-term storage.

3.2.3 Implant frameworks
CAD/CAM technologies are widely used to design and

manufacture frameworks for implant-supported prostheses (Kapos
and Evans, 2014). After completing CAD of implant-supported
frameworks, the virtual design is transformed into a physical object
by addition or subtraction manufacturing (Revilla-Leon et al., 2019b).
Compared with traditional casting technology, subtractive
technologies reduce some clinical steps and eliminate certain
human errors, but result in waste of materials and may fail to
reflect the finer details of frameworks (Svanborg et al., 2018). Metal
AM processes, such as SLM or EBM, are also used to fabricate implant
frameworks, and effectively reduce material waste (Barbin et al., 2020).
The mechanical properties of 3D printed implant frameworks can be
comparable to, or even better than, those of traditional casting
(Revilla-Leon et al., 2021). In addition, the shape of retainers on
frameworks can be freely designed to increase the adhesion between
the framework and the resin material.

The accuracy of the fit between implant frameworks and the
underlying structures is an extremely important factor in avoiding
biological and technical complications (Svanborg et al., 2018), which
affect the long-term clinical success of implant-supported restorations.
In an in vitro study, Revilla-Leon et al. evaluated discrepancies in the
manufacture of titanium frameworks for implant-supported
complete-arch prostheses manufactured using SLM and
EBM(Revilla-Leon et al., 2018a). First, titanium frameworks for
implant-supported complete-arch prostheses were designed using
dental software. Then, frameworks were fabricated using SLM or
EBM technology. The manufactured titanium frameworks and
framework STL files were fitted and superimposed using a
coordinate measuring machine. The results showed that there were
no significant differences between SLM and EBM in the x and y-axes of
implant frameworks, while the z-axis varied. The 3D discrepancies of
all comparisons ranged from 60 ± 18 μm to 69 ± 30 μm, and the
differences were not statistically significant. The discrepancy in the
y-axis was largest (37–56 μm), followed by the x (16–44 μm) and z
(6–11 μm) axes. Revilla-Leon et al. also compared the discrepancy at
the implant abutment-prosthesis interface of complete-arch cobalt-
chromium implant frameworks fabricated by additive and subtractive
technologies before and after ceramic veneering in a separate study
(Revilla-Leon et al., 2021). No significant differences were detected
between the CNC and AM groups, except that the AM group
presented a significantly higher discrepancy on the x-axis
compared with the CNC group. Abu and Onoral. (2021) fabricated
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3-unit Co-Cr frameworks with three indirect (conventional technique,
polymethyl methacrylate milling, SLA) and two direct (SLM and soft
alloy milling) methods. The mean vertical marginal discrepancy value
of the SLM group (74.2 ± 20.5 μm) was significantly lower than those
of all other groups (p < 0.05), demonstrating superior fitting accuracy.
Barbin et al. (2020) evaluated the influence of milling, SLM, and EBM
on full-arch fixed dental prostheses (FAFDPs) manufacture, in terms
of marginal FAFDP misfits, prosthetic screw stability, and strain and
stress on implant-supported systems, among other parameters.
Compared with SLM and EBM frameworks, milled frameworks
had the highest average marginal match, but the deviation of the
former was within a clinically acceptable range. Ceramic veneer had
no significant effect on the average marginal misfit values of any
manufacturing process, while spark erosion reduced mean marginal
misfit values for SLM and EBM titanium frameworks. On screw
stability analysis, milled frameworks showed higher mean screw-
loosening values, but after chewing simulations, none of the
frameworks exhibited screw loosening.

In a recent systematic review (Thakur et al., 2021), the marginal fit
and accuracy of complete-arch implant-supported frameworks,
implant-retained fixed partial dentures, single implant crowns, and
interim implant-retained restorations fabricated using AM and
subtractive manufacturing methods were compared. The results
showed that there was no significant difference in the marginal fit
of single implant crowns or complete-arch implant frameworks
between the two fabrication methods. For implant-supported fixed
partial dentures, AM was superior to subtractive milling, but both
digital fabrication methods produced implant-supported
superstructures with clinically acceptable marginal fit.

The characteristic superficial texture of the layer-by-layer buildup
in AM technologies results in a rough metal surface. A strong
correlation between the roughness values on mating surfaces and
implant-prosthodontic discrepancy has been reported. To achieve
acceptable implant prosthodontic discrepancy, some scholars have

combined 3D printing technologies and subtractive processing,
electropolishing, sandblasting, or other post-processing techniques
(Revilla-Leon et al., 2019b; Revilla-Leon et al., 2021). Ciocca et al.
(2018b) compared the trueness and precision of frameworks
manufactured with an SLM/milling hybrid technique (SLM/m) and
conventional milling. The maximum misfit for the milled group was
20–35 μm, while there was no significant difference between SLM and
SLM/m, with errors of 8–16 μm and 9–22 μm, respectively. Moreover,
irrespective of the manufacture method, the trueness of titanium
framework misfit was affected by framework span.

4 Discussion

The focus of this review was to provide an overview of AM
technologies commonly used in implant dentistry and their
application in the surgical and restoration stages of implant
therapy. In addition, the accuracy of different 3D printing
techniques for fabrication of printed parts is summarized in
Table 2 and Table 4. The growing interest in 3D printing
technologies clearly shows their potential impact on the future of
implant dentistry (Nikoyan and Patel, 2020). With their advantages of
high material utilization, ability to form complex geometric structures,
and production of personalized products, 3D printing technologies
have become an alternative method to generate components from
CAD files. The various materials used in implant dentistry require the
application of different AM techniques. Metal materials, such as
personalized titanium meshes and titanium dental implants, can be
manufactured using DMLS/SLM/EBM, whereas polymer materials,
such as surgical guides and implant models, are fabricated using SLA,
DLP, and PolyJet techniques.

Resin material products (surgical guides and implant models, etc.)
produced by VPP technology have been widely studied and applied;
however, there are specific areas that warrant further investigation. In

TABLE 4 Accuracy of different 3D printing techniques for fabrication of implant models for use in dental implantology.

References Printing techniques
used

Main conclusions

Olea Vielba et al. (2020) MultiJet 1. There was no significant difference in x-, y-, and z-linear, or XZ angular discrepancy between the conventional
and additive manufacturing groups

2. The AM group had a significantly higher median YZ angular discrepancy than the CNV group (p = 0.007)

Buda et al. (2018) PolyJet and SLA 1. Significant differences in accuracy among the implant analog cast fabrication systems

2. The PolyJet industrial printing system was more accurate than the conventional gypsum implant analog cast

Revilla-Leon et al. (2018a) MJP1, SLA, MJP2, DLP 1. Regardless of the cast system, x-axes showed more distortion (42.6 μm) than y- (34.6 μm) and z- (35.97 μm)
axes

2. Among additive manufacturing technologies, MJP2 presented the highest (64.3 ± 83.6 μm), and MJP1 (21.57 ±
16.3 μm) and DLP (27.07 ± 20.23 μm) the lowest distortion, which did not differ significantly from that of
conventional dental stone (32.3 ± 22.73 μm)

Rungrojwittayakul et al.
(2020)

CLIP and DLP 1. All 3D printed models generated using CLIP and DLP printers had clinically acceptable levels of trueness

2.Models produced using the CLIP printer exhibited significantly greater trueness, relative to the reference model,
although the difference was small

Kim et al. (2018) SLA, DLP, FFF, PolyJet 1. The PolyJet and DLP techniques were more precise than the FFF and SLA methods, with PolyJet exhibiting the
highest accuracy for 3D model printing

Hazeveld et al. (2014) DLP, 3DP, MJP 1. All replicas were sufficiently accurate and could be used interchangeably with plaster models

3DP, 3-dimensional printing; CLIP, continuous liquid interface production; DLP, digital light processing; FFF, fused filament fabrication; SLA, stereolithography.
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particular, the numbers of patients and observation time in clinical
studies of personalized titanium mesh generated by 3D printing have
been limited to date; hence, the therapeutic effects of this approach
require further study and verification. In future research, to ensure
mechanical strength, continued optimization of personalized titanium
mesh parameters, such as thickness, pore diameter, and shape, is
required. In addition, the effects of combining personalized titanium
mesh with absorbable collagen membrane, concentrated growth factor
membrane, or other bone augmentation techniques warrant further
exploration. Furthermore, 3D printing to manufacture dental
implants has only recently been introduced; thus, more research
and clinical studies are needed to understand the long-term safety
and clinical efficacy of 3D printed implants. Future work will include
study of the mechanical properties and structural characteristics, as
well as printing process optimization of 3D printed dental implants, to
achieve improved accuracy and performance (Oliveira and Reis,
2019). Finally, although it may seem that all oral implant medical
devices can be made using 3D printers, a single technology may not be
able to meet all patient needs. For some applications, 3D printing
technology needs to be combined with milling or other cutting/
finishing techniques, to generate a product that can achieve the
final application goal (de Oliveira Campos et al., 2020).
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