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Introduction: The use of virtual reality (VR) technology in training and rehabilitation
gained increasing attention in recent years due to its potential to provide immersive
and interactive experiences. We developed a novel VR-based balance training, VR-
skateboarding, for improving balance. It is important to investigate the
biomechanical aspects of this training, as it would have benefited both health
professionals and software engineers.

Aims: This study aimed to compare the biomechanical characteristics of VR-
skateboarding with those of walking.

Materials and Methods: Twenty young participants (10 males and 10 females) were
recruited. Participants underwent VR-skateboarding and walking at the comfortable
walking speed, with the treadmill set at the same speed for both tasks. The motion
capture system and electromyography were used to determine joint kinematics and
muscle activity of the trunk and legs, respectively. The force platform was also used
to collect the ground reaction force.

Results: Participants demonstrated increased trunk flexion angles and muscle
activity of trunk extensor during VR-skateboarding than during walking (p < 0.01).
For the supporting leg, participants’ joint angles of hip flexion and ankle dorsiflexion,
as well as muscle activity of knee extensor, were higher during VR-skateboarding
than during walking (p < 0.01). For the moving leg, only hip flexion increased in VR-
skateboarding when compared to walking (p < 0.01). Furthermore, participants
increased weight distribution in the supporting leg during VR-skateboarding
(p < 0.01).

Conclusion: VR-skateboarding is a novel VR-based balance training that has been
found to improve balance through increased trunk and hip flexion, facilitated knee
extensormuscles, and increasedweight distribution on the supporting leg compared
to walking. These differences in biomechanical characteristics have potential clinical
implications for both health professionals and software engineers. Health
professionals may consider incorporating VR-skateboarding into training
protocols to improve balance, while software engineers may use this information
to design new features in VR systems. Our study suggests that the impact of VR-
skateboarding particularly manifest when focusing on the supporting leg.
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Introduction

Virtual reality (VR) technology allows users to interact with
computer-generated environments in a simulated environment
(Cipresso et al., 2018). In healthcare, VR has been used as a tool
for rehabilitation and training, with the potential to improve motor
function, cognitive function, and psychological wellbeing in
individuals with various conditions, such as stroke, low back
pain, and Parkinson’s disease (Lheureux et al., 2020; Liang et al.,
2022; Yalfani et al., 2022). The immersive nature of VR can increase
adherence and motivation to training programs and lead to
improved outcomes (Moon et al., 2021; Recenti et al., 2021).
Moreover, VR can be used for sensory integration exercise as it
engages multiple senses, including vestibular, vision, and
proprioception, simultaneously (Yen et al., 2011). Thus, studies
have found that VR-based training can be effective in improving
motor function, balance, and mobility in individuals who have had
a stroke, as well as cognitive function in those with brain injury and
other neurological conditions (Kumar et al., 2018; Chen et al.,
2021). VR-based training has also been shown to have positive
effects on psychological well-being, such as reducing anxiety and
depression in individuals with chronic pain (Rawlins et al., 2021).
Therefore, VR-based training has the potential to enhance the
effectiveness of various interventions in healthcare.

Exergames, also known as exercise games, are interactive
technology-based physical activities that are designed to provide
an enjoyable and engaging way to get physically active (Sween et al.,
2014). Exergames have gained popularity in recent years,
particularly among older adults or individuals with chronic
conditions, as a way to promote physical activity and improve
physical fitness (Sween et al., 2014; Moret et al., 2022). Exergames
can involve a wide range of physical activities, from dancing and
jumping to moving arms and using other body movements to
control the game (Asín-Prieto et al., 2020; Lopes et al., 2020).
Research has shown that regular participation in exergames can
improve coordination, balance, and other physical fitness
measures, as well as reduce stress and improve mental health
outcomes such as mood and cognitive function (Sween et al.,
2014; Moret et al., 2022). Exergames can be played on video
game consoles, smartphones, and VR head-mounted displays,
and are suitable for people of all ages and fitness levels (Asín-
Prieto et al., 2020). The evidence on the effects of exergames on
health outcomes is mixed, overall, they suggest that exergames can
be a useful tool for promoting physical activity and improving
physical and mental health.

Unilateral leg training is a type of exercise that focuses on
strengthening and conditioning one leg at a time (Liao et al.,
2022). This type of training can be useful for a variety of purposes,
including improving muscle imbalances, preventing injuries, and
rehabilitating after an injury (Manca et al., 2017; Liao et al., 2022).
Unilateral leg training can be performed using a variety of exercises,
such as lunges, single-leg squats, and single-leg deadlifts, using body
weight or added resistance (Baumgart et al., 2017; Manca et al., 2017).
This type of training can be especially beneficial for athletes and
individuals with a history of lower body injuries, as it can help to
improve balance, stability, and overall leg strength (Liao et al., 2022).
In addition, research has shown that unilateral leg training can be
effective for improving muscle strength and power, as well as
increasing muscle activation and coordination (Zhou et al., 2022).

Unilateral leg training can be incorporated into a well-rounded fitness
routine along with other forms of exercise to improve overall physical
fitness and balance performance (Manca et al., 2017; Liao et al., 2022).
However, it is important to use proper technique to prevent injury and
ensure optimal results.

In order to combine VR-based training, exergames, and unilateral
leg training, we developed an exergame called virtual reality
skateboarding (VR-skateboarding). Moreover, VR technology was
used to simulate a real-world environment in a safe setting, as well
as to provide task-specific training for balance in the unilateral leg.
However, the biomechanical characteristics of VR-skateboarding have
not yet been fully explored. Therefore, we conducted a study to
compare the biomechanical characteristics of VR-skateboarding
with those of walking. We chose to compare these two activities
because they involve similar movement patterns, such as repetitive leg
movements. We hypothesized that VR-skateboarding would result in
greater joint angles, muscle activity, and weight distribution compared
to walking, which could potentially improve balance. The findings of
this study could be useful for health professionals in understanding the
mechanisms of training effects and designing training protocols, as
well as for software engineers in creating new features and
implementing multidisciplinary approaches.

Materials and methods

VR-skateboarding

VR-skateboarding is a training approach that combines VR and
treadmill technology. It involved using a skateboard that was
integrated with a split-belt treadmill (QQ-mill, Motekforce Link,
Netherlands), as shown in Figure 1; Supplementary file S1. The
skateboard was placed on the stationary belt of the treadmill, while
the moving belt was set to a comfortable walking speed for the
participant. Comfortable walking speed was measured using a 10-
m walk test, which is the most common and reliable test (Bohannon,
1997; Bohannon and Williams Andrews, 2011; Cheng et al., 2020b).
The leg that was placed on the skateboard was referred to as the
“supporting leg,” while the leg that slide on the moving belt was
referred to as the “moving leg.” For safety purposes, the skateboard
wheels were fixed statically on the stationary belt of the treadmill.
Handrails were also available at waist level for support during VR-
skateboarding, if needed.

A virtual scenario for VR-skateboarding was created using
Unity3D software (version 5.3.2, San Francisco, United States) and
displayed using virtual reality head-mounted displays (HTC VIVE,
HTC Corporation, New Taipei City, Taiwan). The virtual scenario
depicted skateboarding on a city road, as shown in Figure 2. Three
wireless inertial measurement unit sensors (HTC VIVE trackers, HTC
Corporation, New Taipei City, Taiwan) were used in VR-
skateboarding as follows: 1) two trackers were placed on the
participant’s legs to track leg movements. The speed and distance
travelled in the virtual scenario were adjusted based on the movement
of the tracker on the moving leg; 2) one tracker was attached in front of
the skateboard and used to control the left and right direction of
skateboarding to avoid obstacles in the virtual scenario. The
cumulative distance travelled was provided as real-time virtual
feedback and a final score to motivate participants during VR-
skateboarding.
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Participants

The eligibility of participants was assessed based on inclusion and
exclusion criteria. The inclusion criteria included being between the
ages of 20 and 40 years and not having any symptoms such as leg pain
or numbness. The exclusion criteria included having had previous
surgery and having neurological disorders such as stroke, lumbar
radiculopathy, or spinal cord injury.

Procedure

For walking, participants were asked to walk on the split-belt
treadmill at a comfortable walking speed for 1 min × 5 times. Then,
participants were asked to performVR-skateboarding using their non-
dominant leg as the supporting leg on the skateboard. Participants
were instructed to skate with their dominant leg as the moving leg at a
comfortable walking speed for 1 min × 5 times. According to previous

studies, treadmill speed has the potential to impact biomechanical
characteristics during movement (Möckel et al., 2003; Matjačić et al.,
2019). In order to eliminate confounding factors from treadmill speed,
the treadmill was set to the same speed (i.e., comfortable walking
speed) for both VR-skateboarding and walking.

Evaluation

Joint kinematics measurements

A 3-dimensional motion capture system (VICON ver. 2.5,
Oxford Metrics Ltd., Oxford, United Kingdom) with ten
infrared cameras (VICON Bonita, Oxford Metrics,
United Kingdom) was used to collect joint kinematic data at a
sampling rate of 120 Hz. The system used 45 spherical retro-
reflective markers (14 mm) placed over anatomical landmarks
based on the Plug-In-Gait model (Cheng et al., 202b).

Muscle activity measurements

Surface electromyography (EMG) (TrignoTM, Delsys Inc.,
Boston, MA, United States) was used to collect muscle activity data
(i.e., erector spinae: trunk extensor; gluteus medius: hip abductor;
rectus femoris: knee extensor; and tibialis anterior: ankle dorsiflexor)
(Wang et al., 2015). The sampling rate of the EMG was 960 Hz.

Ground reaction force measurements

Two force platforms (QQ-mill, Motekforce Link, Amsterdam,
Netherlands) were used to collect ground reaction force (GRF)
data. The force platforms were able to sample at a frequency of
960 Hz using LabVIEW software (National Instruments, Austin,
TX, United States).

FIGURE 1
An illustration of a virtual reality skateboarding system.

FIGURE 2
An illustration of a virtual scenario.
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Data processing

Data from the motion capture system, EMG, and force platforms
were processed using a custom program written in MATLAB R2020a
software (MathWorks, Natrick, MA, United States). The GRF of the
moving leg was used to identify the movement cycle (i.e., the stance
and swing phases) of each stride. A GRF threshold of 10 N was used to
identify the movement cycle (Baumgart et al., 2017). A total of
100 stable strides were selected for analysis (Kubinski et al., 2015).
The stance phase occurs from heel-strike to toe-off, while the swing
phase occurs from toe-off to heel-strike, as shown in Figure 3.

For joint kinematics, the data were filtered using a 2nd-order low-
pass Butterworth filter with a cut-off frequency of 3 Hz. The filtered
data was smoothed using a moving average (Chien and Hsu, 2018).
The minimum, maximum, and range values of the trunk, hip, knee,
and ankle joints during entire movement cycle were calculated (Smith
et al., 2016).

For muscle activities, the EMG data were filtered using a 2nd-
order Butterworth filter with bandpass and notch filters at 30–350 Hz
and 60 Hz, respectively (Adewuyi et al., 2016). The filtered data was
full-wave rectified (using a root mean square) and smoothed (using a
moving average) (Tabard-Fougère et al., 2018). The EMG was
normalized using the resting EMG for each muscle (Wang et al.,
2015). The EMG data was also time-normalized from 0 to 100 percent
for each phase (Androwis et al., 2018). The integrals of normalized
EMG (i.e., trunk extensor, hip abductor, knee extensor, and ankle
dorsiflexor) were then separately reported for the stance and swing
phases, as well as for the entire movement cycle (Vigotsky et al., 2017;
Wu et al., 2019).

For GRF, the data were filtered using a 2nd-order low-pass
Butterworth filter with a cut-off frequency of 5 Hz. The filtered
data was smoothed using a moving average (Cheng et al., 2020a).
The peak values of GRF in entire movement cycle were computed,

while the impulse values of GRF were separately computed for the
stance and swing phases, as well as for the entire movement cycle
(Golyski et al., 2018; Lee et al., 2020; Jafarnezhadgero et al., 2021).

Statistical analysis

Statistical analysis was performed in Predictive Analytics Software
Statistics 18.0 for Windows (SPSS, Chicago, IL, United States). The
normality of all variables was determined using the Shapiro–Wilk test.
Nevertheless, the data were not normally distributed. Thus, the non-
parametric Wilcoxon signed-rank test was used to compare the
variables between VR-skateboarding and walking. The p-value was
set at 0.05 as statistically significant.

Results

Twenty young participants (age: 27.4 ± 2.8 years, height: 167.2 ±
10.0 cm, weight: 61.2 ± 11.6 kg, body mass index: 21.7 ± 2.0 kg/m2)
were recruited, with ten of them being female. All participants were
right-leg dominant and used the left leg as the supporting leg and the
right leg as the moving leg during VR-skateboarding. The average
speed for VR-skateboarding and walking was 1.2 ± 0.1 m/s.

Joint kinematics

The joint kinematic results for both VR-skateboarding and
walking are illustrated in Figure 4; Table 1.

During VR-skateboarding, participants exhibited greater
minimum and maximum trunk angles and a wider range of
movement in their trunk compared to walking (z = −3.92, p <

FIGURE 3
An illustration of data processing. EMG, electromyography; GRF, ground reaction force; %BW, percentage of body weight; HS, heel-strike of moving leg;
TO, toe-off of moving leg.
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0.01; z = −3.92, p < 0.01; and z = −3.92, p < 0.01, respectively). This
indicated that participants bent their trunk forward more and
moved in a wider range during VR-skateboarding when
compared to walking.

In the supporting leg, participants demonstrated increased
minimum and maximum hip (z = −3.92, p < 0.01; and
z = −3.92, p < 0.01, respectively) and ankle (z = −3.92, p < 0.01;
and z = −3.92, p < 0.01, respectively) angles during VR-

FIGURE 4
An illustration of joint kinematics. The solid line represents the mean and the shaded area represents the standard deviation. Flex, flexion; Ext, extension;
PF, plantarflexion; DF, dorsiflexion; HS, heel-strike of moving leg; TO, toe-off of moving leg; VR-skateboarding, virtual reality skateboarding.

TABLE 1 Comparison of the joint kinematics during the entire movement cycle between VR-skateboarding and walking.

Body Segments Joint Angle (degree)

Minimum Maximum Range

VR-skateboarding Walking VR-skateboarding Walking VR-skateboarding Walking

Trunk 20.05 ± 2.14* −0.45 ± 1.44 30.25 ± 2.60* 2.87 ± 1.25 10.19 ± 2.33* 3.32 ± 1.19

Hip Supporting Leg 26.02 ± 1.59* −17.18 ± 2.01 48.32 ± 2.83* 19.30 ± 1.04 22.30 ± 2.23* 36.48 ± 2.24

Moving Leg 1.80 ± 1.60* −13.77 ± 1.21 26.16 ± 1.21* 19.85 ± 1.04 24.36 ± 2.22* 33.62 ± 1.39

Knee Supporting Leg 22.32 ± 1.98* −1.65 ± 2.39 31.80 ± 3.36* 47.13 ± 1.38 9.48 ± 2.77* 48.78 ± 1.81

Moving Leg 2.54 ± 1.04* 1.59 ± 1.13 23.28 ± 1.61* 44.99 ± 2.51 20.74 ± 2.00* 43.40 ± 2.24

Ankle Supporting Leg 24.42 ± 2.79* −9.03 ± 3.02 30.25 ± 2.12* 15.14 ± 2.53 5.82 ± 2.45* 24.17 ± 2.53

Moving Leg −12.09 ± 4.31 −13.08 ± 1.89 27.26 ± 4.84* 18.25 ± 4.50 39.35 ± 7.52* 31.33 ± 4.63

Values are mean ± standard deviation. VR-skateboarding, virtual reality skateboarding. Wilcoxon signed-rank test: *statistically significant values (p < 0.05).
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skateboarding compared to walking. However, participants had
reduced range of movement in the hip and ankle joints (z = −3.92,
p < 0.01; and z = −3.92, p < 0.01, respectively) during VR-
skateboarding compared to walking. The knee also showed
increased minimum angle (z = −3.92, p < 0.01) but reduced
maximum angle and range of movement (z = −3.92, p < 0.01;
and z = −3.92, p < 0.01, respectively) during VR-skateboarding. The
findings suggest that, in the supporting leg, VR-skateboarding
entailed greater flexion in the hip and ankle joints and a smaller
range of movement compared to walking. Additionally, during VR-
skateboarding, participants demonstrated decreased flexion in the
knee joint and a reduced range of movement in this joint.

In the moving leg, the hip joint angles showed a lower range of
motion (z = −3.92, p < 0.01) during VR-skateboarding compared to
walking, with both the minimum and maximum angles being higher
(z = −3.92, p < 0.01; and z = −3.92, p < 0.01, respectively) in VR-
skateboarding. The knee joint also showed a lower range of motion
during VR-skateboarding (z = −3.92, p < 0.01), with the minimum
angle being higher (z = −2.72, p < 0.01) and the maximum angle being
lower (z = −3.92, p < 0.01). Whereas, the ankle joint demonstrated a
greater range of motion during VR-skateboarding (z = −3.80, p <
0.01), with the maximum angle being higher (z = −3.92, p < 0.01) and
the minimum angle showing no significant difference (z = −1.30, p =

0.19) compared to walking. VR-skateboarding involved greater hip
flexion and a smaller range of movement in the moving leg compared
to walking. However, it also entailed decreased knee flexion and a
reduced range of movement, as well as increased ankle dorsiflexion
and a greater range of movement.

Muscle activity

The muscle activity results for both VR-skateboarding and
walking are illustrated in Figure 5; Table 2.

Muscle activity of the trunk extensor in the stance phase, swing
phase, and entire movement cycle was higher during VR
skateboarding than during walking (z = −3.92, p < 0.01; z = −3.92,
p < 0.01; and z = −3.92, p < 0.01, respectively). This indicated that VR-
skateboarding appeared to involve higher muscle activity in the trunk
extensor muscles compared to walking.

In the supporting leg, muscle activity of the knee extensor was
higher in the stance phase, swing phase, and entire movement cycle
(z = −3.92, p < 0.01; z = −3.92, p < 0.01; z = −3.92, p < 0.01; and
z = −3.92, p < 0.01, respectively) during VR-skateboarding than during
walking. However, muscle activity in the hip abductor and ankle
dorsiflexor was lower in the stance phase (z = −3.80, p < 0.01; and

FIGURE 5
An illustration of muscle activity. The solid line represents themean and the shaded area represents the standard deviation. HS, heel-strike of moving leg;
TO, toe-off of moving leg; VR-skateboarding, virtual reality skateboarding.
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z = −3.92, p < 0.01, respectively), swing phase (z = −3.92, p < 0.01; and
z = −3.92, p < 0.01, respectively), and entire movement cycle
(z = −3.92, p < 0.01; and z = −3.92, p < 0.01, respectively) during
VR-skateboarding than during walking. The results suggest that VR-
skateboarding entailed distinct muscle activity patterns compared to
walking, specifically higher activity in the knee extensor but lower
activity in the hip abductor and ankle dorsiflexor.

In the moving leg, VR-skateboarding was associated with lower
muscle activity in the hip abductor during the stance phase (z = −3.17,
p < 0.01) and entire movement cycle (z = −2.68, p < 0.01) compared to
walking, but no significant difference was observed in the swing phase
(z = −0.85, p = 0.39). Additionally, VR-skateboarding involved lower
muscle activity in the knee extensor and ankle dorsiflexor in the stance
phase (z = −3.92, p < 0.01; and z = −3.92, p < 0.01, respectively), swing
phase (z = −3.92, p < 0.01; and z = −3.92, p < 0.01, respectively), and
entire movement cycle (z = −3.92, p < 0.01; and z = −3.92, p < 0.01,
respectively) compared to walking. These findings suggest that muscle
activity in the hip abductor, knee extensor, and ankle dorsiflexor of the
moving leg was lower during VR-skateboarding compared to walking,
except for the hip abductor in the swing phase, which showed no
difference.

Ground reaction force

Our results showed that the average stance phase during walking
was 63.58% ± 0.24%. During VR-skateboarding, the average stance
phase was 51.91% ± 1.74%. Hence, the stance phase was shorter during
VR-skateboarding than during walking (z = −3.92, p < 0.01). The GRF
results for both VR-skateboarding and walking are illustrated in
Figure 6; Table 3 and Table 4.

In the supporting leg, the peak GRF during VR-skateboarding was
lower than during walking (z = −3.92, p < 0.01). However, the impulse
GRF during VR skateboarding was higher in the stance phase
(z = −3.92, p < 0.01) and entire movement cycle (z = −3.92, p <
0.01) but lower in the swing phase (z = −3.92, p < 0.01) compared to
walking. These results indicated that during VR-skateboarding, the
force loading on the supporting leg and weight distribution in the
swing phase were less compared to walking, but there was a greater
distribution of weight during the stance phase and throughout the
entire movement cycle.

In the moving leg, the peak and impulse GRF during VR-
skateboarding was lower than walking (z = −3.92, p < 0.01; and
z = −3.92, p < 0.01, respectively). The results showed that during VR-

TABLE 2 Comparison of the muscle activity between VR-skateboarding and walking.

Muscle groups Electromyography integral (norm)

Stance Phase Swing Phase Entire Movement Cycle

VR-skateboarding Walking VR-skateboarding Walking VR-skateboarding Walking

Trunk Extensors 2.88 ± 0.23* 1.71 ± 0.21 2.20 ± 0.16* 1.58 ± 0.17 2.54 ± 0.18* 1.65 ± 0.17

Hip Abductors Supporting Leg 1.49 ± 0.13* 2.19 ± 0.31 1.55 ± 0.09* 2.56 ± 0.26 1.52 ± 0.09* 2.38 ± 0.28

Moving Leg 1.82 ± 0.45* 2.16 ± 0.17 1.42 ± 0.43* 1.33 ± 0.38 1.62 ± 0.32* 1.75 ± 0.21

Knee Extensors Supporting Leg 4.10 ± 0.77* 2.57 ± 0.25 4.58 ± 0.53* 2.56 ± 0.26 4.34 ± 0.57* 2.56 ± 0.27

Moving Leg 1.82 ± 0.18* 3.61 ± 0.79 1.40 ± 0.23* 2.33 ± 0.53 1.61 ± 0.20* 2.97 ± 0.55

Ankle Dorsiflexors Supporting Leg 1.23 ± 0.11* 2.57 ± 0.24 1.31 ± 0.10* 2.54 ± 0.25 1.27 ± 0.10* 2.56 ± 0.24

Moving Leg 1.44 ± 0.28* 3.69 ± 0.57 1.42 ± 0.29* 5.92 ± 1.18 1.43 ± 0.27* 4.81 ± 0.79

Values are mean ± standard deviation. VR-skateboarding, virtual reality skateboarding. Wilcoxon signed-rank test: *statistically significant values (p < 0.05).

FIGURE 6
An illustration of ground reaction force. The solid line represents the mean and the shaded area represents the standard deviation. GRF, ground reaction
force; %BW, percentage of body weight; HS, heel-strike of moving leg; TO, toe-off of moving leg; VR-skateboarding, virtual reality skateboarding.
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skateboarding, the force loading on the moving leg and weight
distribution in the swing phase were lower compared to walking.

Discussion

Our study found that there were differences in joint kinematics,
muscle activity, and weight distribution between VR-skateboarding
and walking, particularly in the supporting leg. Previous research on
skateboarding had primarily focused on the “ollie” technique, which
involves using the skateboard to jump over obstacles, and therefore
was not directly comparable to VR-skateboarding in our study
(Frederick et al., 2006; Hu et al., 2021). Our results indicated that
the supporting leg during VR-skateboarding involved higher trunk,
hip, and ankle movements, as well as higher muscle activity of the knee
extensor, and a higher weight distribution compared to walking. Based
on these findings, we recommended VR-skateboarding as a potential
rehabilitation training approach for improving balance.

During VR-skateboarding, participants demonstrated a greater
range of trunk movement and flexion compared to walking. Previous
research has indicated that trunk bending can helpmaintain the center
of mass within the base of support during activities such as a unilateral
squat (Eliassen et al., 2018; van den Tillaar and Larsen, 2020). In our
study, VR-skateboarding involved balancing on a skateboard, which
may have required participants to lean forward or bend their trunk to
maintain balance and control. This may have explained the observed
increase in trunk flexion during VR-skateboarding, as such
movements may not have been necessary for walking. Our findings
were consistent with previous studies that have shown that increases in
trunk flexion can enhance muscle activity in the trunk extensor
muscles eccentrically during the stance and swing phases (Voglar
et al., 2016; Yoder et al., 2019). The flexion position involved in VR-
skateboarding may also have increased the demands on the trunk
extensor to maintain balance and control. Additionally, it is possible
that the use of VR technology in VR-skateboarding may have
contributed to the observed differences in trunk angles and

movement (Horsak et al., 2021; Meinke et al., 2022). The visual
input provided by the VR headset may have influenced the
participant’s trunk angles and movement in order to maintain
balance and control within the virtual environment (Lin et al.,
2019a; Benady et al., 2021). As a result, the increased trunk
bending during VR-skateboarding may have led to higher muscle
activity in the trunk extensor compared to walking. The increased
trunk bending during VR-skateboarding leading to higher muscle
activity in the trunk extensor may be an effective approach of
exercising to improve balance.

In the supporting leg, VR-skateboarding resulted in higher hip and
ankle joint kinematics, as well as increased muscle activity of the knee
extensor, compared to walking. This could be attributed to the height
difference between the skateboard and the treadmill belt, which
required participants to constantly flex the joints in the supporting
leg to maintain balance. Previous research has shown that the knee
extensor and hip abductor in the supporting leg are activated to hold
body weight during unilateral squatting (Eliassen et al., 2018; van den
Tillaar and Larsen, 2020). Our study also found that the activation of
the knee extensor in the supporting leg during VR-skateboarding was
higher than during walking, both in the stance and swing phases.
However, the activation of the hip abductor was lower during VR-
skateboarding, possibly due to the support provided by the handrail
(Komisar et al., 2019). In addition, the activation of the ankle
dorsiflexor was lower during VR-skateboarding due to the
stationary position of the supporting foot. This fixed position of
the ankle joint may also have contributed to the decrease in ankle
dorsiflexor activation observed in previous studies (Macrum et al.,
2012; Guillén-Rogel et al., 2017).

In the moving leg, VR-skateboarding required participants to
increase hip flexion and ankle dorsiflexion in order to maintain
trunk flexion and clear their feet from the ground. However,
participants exhibited lower joint angles of knee flexion during VR-
skateboarding compared to walking. This may have been due to the
shorter stance phase in VR-skateboarding, which can limit the range of
motion at the hip and knee joints. Previous research has shown that a

TABLE 3 Comparison of the peak ground reaction force during the entire movement cycle between VR-skateboarding and walking.

Body segments Peak ground reaction force (% body weight)

VR-skateboarding Walking

Supporting leg 95.64 ± 2.08* 111.76 ± 2.35

Moving leg 83.28 ± 5.39* 111.48 ± 2.71

Values are mean ± standard deviation. VR-skateboarding, virtual reality skateboarding. Wilcoxon signed-rank test: *statistically significant values (p < 0.05).

TABLE 4 Comparison of the impulse ground reaction force between VR-skateboarding and walking.

Body Segments Impulse Ground Reaction Force (% Body Weight)

Stance phase Swing phase Entire movement cycle

VR-skateboarding Walking VR-skateboarding Walking VR-skateboarding Walking

Supporting leg 48.34 ± 5.84* 24.79 ± 0.85 87.95 ± 2.20* 93.64 ± 3.08 68.15 ± 3.05* 59.21 ± 1.88

Moving leg 53.51 ± 3.88* 76.72 ± 3.22 N/A N/A N/A N/A

Values are mean ± standard deviation. VR-skateboarding, virtual reality skateboarding; N/A, not applicable. Wilcoxon signed-rank test: *statistically significant values (p < 0.05).
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shorter stance phase can result in reduced knee flexion angles (Yen
et al., 2019). Additionally, the muscle activity of the lower extremity in
the non-weight-bearing leg tends to decrease when body weight is
reduced or shifted to the other leg (Clark et al., 2004; Kristiansen et al.,
2019). Our results showed a decrease in muscle activity of the hip
abductor and knee extensor in the moving leg, which may have been a
result of participants shifting their weight to the supporting leg.
However, while the joint kinematics and muscle activation in the
moving leg were reduced, the weight shifting to the supporting leg can
be beneficial for balance training of the unilateral leg specifically.

The results of this study indicated that VR-skateboarding was
associated with a lower force loading but higher weight distribution
on the supporting leg when compared to walking. This decrease in
force loading was believed to be due to the support provided by
holding onto the handrail, while the increase in weight distribution
was likely due to weight shifting (Clark et al., 2004; Wu et al., 2018;
Kristiansen et al., 2019). Weight shifting has been found to improve
balance by strengthening muscles, improving coordination, and
enhancing control of the body’s center of mass, leading to increased
stability during movement (Lin et al., 2019a; Lin et al., 2019b).
Additionally, VR-skateboarding was found to have a shorter stance
phase for the moving leg compared to walking. Although this study
conducted VR-skateboarding at the same speed as walking, there
were still differences in movement cycles. One possible explanation
for this is that both legs were moving during walking, so
participants needed to shift their center of mass to the new base
of support provided by the supporting leg (Lin et al., 2019a). This
process required time and distance to complete (Lin et al., 2019a).
However, in VR-skateboarding, the supporting leg consistently
supported the body weight, allowing the moving leg to swing
more freely. Previous research has shown that gait training with
a shorter stance phase can reorganize walking patterns and
improve walking speed (Stolze et al., 2001; Yen et al., 2019).
The decreased force loading, increased weight distribution, and
reduced duration of movement cycles observed in VR-
skateboarding may have the potential to reduce joint loading,
enhance weight bearing, and improve walking speed,
respectively. These factors may have contributed to the potential
benefits of VR-skateboarding as a rehabilitation tool for individuals
with balance impairments.

Clinical implications

The clinical significance of this study is the potential use of VR-
skateboarding as a rehabilitation training approach to improve
balance. When performing VR-skateboarding, participants had
greater range of movement and flexion in their trunk compared to
when walking, as well as increased muscle activity and weight
distribution in the supporting leg. These differences in
biomechanics contributed to increase joint and muscle
coordination during VR-skateboarding. Additionally, VR-
skateboarding might also be considered a type of closed kinetic
chain exercise, where the foot is fixed. Our results indicated that
participants consistently kept the foot of the supporting leg on the
skateboard. Previous studies have revealed that closed kinetic chain
exercises can promote muscle co-contraction to stabilize the trunk and
legs. This muscle co-contraction also aids in improving
proprioception, or the ability to sense the position and movement

of one’s body in space, subsequently improving balance. Furthermore,
the use of VR technology may have influenced the observed
differences in joint kinematics, muscle activity, and weight
distribution. These findings suggest that VR-skateboarding may be
an effective training approach for improving balance in individuals
undergoing rehabilitation.

In addition, the consideration of the biomechanical characteristics
of VR-skateboarding is important for software engineers creating new
features and implementing multidisciplinary approaches. By
understanding the biomechanics, software engineers can design
features that are ergonomic and user-friendly, ensuring that the
products they develop are comfortable, safe, and appropriate for
balance training. This is particularly important for products or
systems that would be used by a wide range of individuals with
different physical abilities and characteristics, as it allows for the
creation of solutions that are accessible and inclusive. Incorporating a
multidisciplinary approach also enables software engineers to consider
the diverse needs and perspectives of different populations, such as
those with unilateral leg symptoms, to create well-rounded and
effective solutions. Overall, the incorporation of biomechanical
characteristics in the development process can lead to the creation
of innovative and highly functional products and systems that meet
the needs of a diverse range of users.

Study limitations

This study had a few limitations. First, for safety reasons,
participants held onto a handrail while VR-skateboarding. This
may have partially supported their body weight and potentially
affected joint kinematics, muscle activity or weight distribution.
However, we believed that handrail use is necessary in patient
populations to prevent accidents during training. Second, this study
conducted the experiment on the same population and at the same
speed (i.e., comfortable walking speed). Moreover, participants were
all healthy individuals with no leg abnormalities. Therefore, the results
of VR-skateboarding in this study should be interpreted with caution
when applied to patient populations or different speeds. Third,
participants performed VR-skateboarding and walking with bare
feet in this study. According to previous studies, wearing shoes can
change biomechanical characteristics, particularly reducing force
loading (Zhang et al., 2013; Udofa et al., 2019). Hence, this factor
should be taken into consideration when applying our findings to VR-
skateboarding while wearing shoes.

Conclusion

VR-skateboarding was a novel VR-based balance training
approach. The results of our study demonstrated that VR-
skateboarding involved increased movement and muscle activity in
the trunk, hips, and ankles, particularly in the supporting leg,
compared to walking. The weight distribution was also found to
increase when participants stood on the skateboard with their
supporting leg. These findings suggested that VR-skateboarding
may be a promising rehabilitation tool for improving balance.
Additionally, we proposed that future developments and
applications of this training should prioritize the strengthening of
the supporting leg in order to maximize its therapeutic benefits.
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