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Although many microorganisms have been found to produce bioflocculants, and
bioflocculants have been considered as attractive alternatives to chemical
flocculants in wastewater treatment, there are few reports on bioflocculants
from the safe strain C. glutamicum, and the application of bioflocculants in
acid wastewater treatment is also rare attributed to the high content of metal
ions and high acidity of the water. In this study, a novel bioflocculant produced by
Corynebacterium glutamicum Cg1-P30 was investigated. An optimal production
of this bioflocculant with a yield of 0.52 g/Lwas achieved by Box–Behnken design,
using 12.20 g/L glucose, 4.00 g/L corn steep liquor and 3.60 g/L urea as carbon
and nitrogen source. The structural characterization revealed that the
bioflocculant was mainly composed of 37.50% neutral sugar, 10.03% uronic
acid, 6.32% aminosugar and 16.51% protein. Carboxyl, amine and hydroxyl
groups were the functional groups in flocculation. The biofocculant was
thermally stable and dependent on metal ions and acidic pH, showing a good
flocculating activity of 91.92% at the dosage of 25 mg/L by aid of 1.0 mM Fe3+ at
pH 2.0. Due to these unique properties, the bioflocculant could efficiently remove
metal ions such as Fe, Al, Zn, and Pb from the real acid mine wastewater sample
without pH adjustment, and meanwhile made the acid mine wastewater solution
become clear with an increased neutral pH. These findings suggested the great
potential application of the non-toxic bioflocculant from C. glutamicum Cg1-P30
in acid mine wastewater treatment.
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Introduction

The removal of colloidal particles mediated by flocculants is an important procedure in
many industrial fields such as tap water purification and wastewater treatment, dyes and
textiles, food and beverage. Flocculants are generally divided into three different categories:
inorganic, organic, and bioflocculants (Alias et al., 2022). Compared with conventional
chemical inorganic and organic flocculants, microbial bioflocculants, the macromolecules
secreted bymicroorganisms during growth and lysis, are considered to be ecosystem-friendly
due to their non-toxic and biodegradable properties. In addition, microbial bioflocculants
can be produced at high rates and the extracellular bioflocculants are easily recovered from
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the fermentation broth. Thus, microbial biofluccolants are attracting
extensive attention as a potential alternative to chemical flocculants
(Shahadat et al., 2017).

A number of microorganisms, including bacteria, fungi,
microalgae and actinomycetes, have been reported to produce
bioflocculants. For example, Bacillus sp. is the most studied
bacterial species for bioflocculant production (Bakar et al., 2021).
However, the practical application of bioflocculants is still limited
due to their low flocculating efficiency, low yield, and high cost of
production. Consequently, it become important to screen novel
effective bioflocculant-producing microorganisms, seek for
economical cultivation substrates and optimize the fermentation
process in the research of bioflocculant (Okaiyeto et al., 2016). At the
same time, the performance of biological flocculants is closely
related to its structural composition (Kurniawan et al., 2022), and
is greatly affected by flocculation conditions such as dosage, metal
ions, pH value, and temperature. Therefore, it is beneficial to master
this information for selecting suitable bioflocculants facing with
application scenarios with different characteristics.
Corynebacterium glutamicum is generally recognized as safe
(GRAS) and have been widely used as host for production of
functional compounds, however, to date there have been few
reports on production, characterization, properties of
biofluccolants from Corynebacterium glutamicum, except a
polygalacturonic acid bioflocculant named REA-11 from C.
glutamicum CCTCC M201005 (He et al., 2002; Li et al., 2003; He
et al., 2004a; He et al., 2004b).

Acid mine wastewater, which is an unavoidable by-product
of the mining and mineral industry, is harmful to the aquatic
environment because it contains high concentrations of
dissolved heavy metals (primarily iron, aluminum, zinc, and
other heavy metals) and sulphate, and have a high turbidity and
a high acidity with a pH of 2.0–3.0 (Feng et al., 2004; Kefeni
et al., 2017; Fu et al., 2020). Acid mine wastewater has become
the leading environmental issue of the mining industry over the
years, many methods, containing alkaline chemical
neutralization, precipitation, adsorption, and membrane
technology have been widely used in treatment of acid mine
wastewater. However, though the utilization of biolflocculant is
thought as an economic and effective strategy to treat the
mining wastewater, such as clarification of turbid aqueous
solutions (Liu et al., 2019), removal of organics (Maliehe
et al., 2019) and metal remediation (Ayangbenro et al.,
2019), probably because the flocculating activities of many
reported bioflocculants have been significantly inhibited in
high acidic conditions or in the presence of iron or
aluminum (Tawila et al., 2019; Pu et al., 2020; Rajivgandhi
et al., 2021), the application of bioflocculant in acid mine
wastewater treatment is still need to be explored.

In this study, a novel bioflocculant was produced from C.
glutamicum Cg1-P30, which was Gram-positive, catalase positive
with rod-like shapes and identified by 16S rRNA sequence analysis
(Supplementary Material), and the culture medium using low-cost
corn steep liquor as a nutrient source for fermentation was
optimized. The structural characterization, flocculating activities,
and the application in treatment of acid mine wastewater of the
isolated bioflocculant were also investigated.

Materials and methods

Culture conditions

Corynebacterium glutamicum Cg1-P30 (CMCC NO. 22680),
preserved at China General Microbiological Culture Collection
Center, was initially grown in brain heart infusion (BHI) agar
medium for activation. The activated strain was maintained on BHI
broth at 30°C in a rotary shaker at 200 rpm overnight. Subsequently,
2% of the seed culture was transferred into new flasks containing
50 mL of production medium consisting of 10 g/L glucose, 5 g/L corn
steep liquor, 5 g/L urea, 0.25 g/L MgSO4·7 H2O, 1.0 g/L K2HPO4 and
1.0 g/L KH2PO4 and incubated at 30°C and 200 rpm for 48 h. The
concentrations of glucose, corn steep liquor, and urea were further
optimized as described in the section of optimization of medium for
bioflocculant production.

Optimization of medium for bioflocculant
production

Based on the result of one-factor-at-a-time experiment, response
surface methodology through Box-Behnken design (Design Expert
software, Version 8.0.6) was applied to evaluate the optimum level
and interactive effects of carbon and nitrogen sources on
bioflocculant production. The concentration of glucose, corn
steep liquor, and urea were selected as independent variables at
three different levels, while the response variable was the flocculating
activity of the fermentation supernatant after culturing for 48 h. The
result of Box-Behnken design was shown in Table 1. A quadratic
polynomial equation was fitted to evaluate the correlate relationship
between the independent variables and the response as following:

Y � β0 + β1X1 + β2X2 + β3X3 + β12X1X2 + β13X1X3 + β23 X2X3

+ β11 X2
1 + β22 X2

2 + β33 X2
3

Where Y (%) is the flocculating activity of the fermentation
supernatant, β0 is the intercept coefficient; β1, β2, and β3 are the
linear coefficients; β11, β22, and β33 are the quadratic coefficients; and
β12, β13, and β23 are the interaction coefficients; X1, X2, X3 are the
concentration of glucose, corn steep liquor, and urea, respectively.
Three additional experiments were conducted to verify the validity
of the statistical experimental strategies.

Determination of flocculating activity

The flocculating activity was determined using the kaolin clay
suspension method (Sun et al., 2012) with some modification. 1 mL
bioflocculant sample (the fermentation supernatant was used in the
optimization experiment) and 50 μL FeCl3 (1 M) solution were
mixed with 49 mL of kaolin solution (4 g/L) and then incubated
for 5 min at room temperature. The absorbance of the upper phase
of the mixture was measured by at 550 nm. A control in which the
bioflocculant was replaced with deionized water was also conducted
under the same conditions. The flocculating activity was calculated
according to the following equation:
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Flocculating activity � B − A( )/B[ ] × 100%

Where A and B are the absorbance at 550 nm of the sample and
control, respectively.

Extraction and purification of bioflocculant

The cell-free supernatant obtained from the culture broth by
centrifugation at 6,000 rpm and 4°C for 30 min wasmixed with three
volumes of ethanol and kept at 4°C overnight for precipitation. The
resulting precipitate by centrifugation was dissolved in distilled
water to repeat the precipitation procedure for three times. The
final collected precipitate was dissolved in deionized water, dialyzed
(molecular weight cutoff of 10,000 Da) to remove low molecular
weight compounds and lyophilized at −50°C to obtain the purified
bioflocculant.

Characterization of the bioflocculant

The total content of polysaccharide, uronic acid, amino sugar and
protein in the bioflocculant was measured by the phenol-sulfuric acid
method, carbazole-sulfate method, Elson-Morgan method and
Bradford method, with glucose, glucuronic acid, glucosamine and
bovine albumin as the standard, respectively. For monosaccharide

composition analysis, after hydrolysis of the bioflocculant with
trifluoroacetic acid at 110°C for 6 h, the hydrolyzed sample was
analyzed by using a high-pressure ion chromatography system
(Dionex ICS 3000, Thermo Fisher Scientific Inc., United States),
equipped with an anion exchange column (Dionex CarboPac PA20,
Thermo Fisher Scientific Inc., United States) and a pulsed
amperometric detector (reference electrode Ag-AgCl, measuring
electrode Au). For neutral monosaccharide analysis, the mobile
phase consisting of A (100mM NaOH) and B (10 mM NaOH),
was programmed as follows: 0–5 min, 100% A; 5–25min, 10% A.
For uronic acid monosaccharide analysis, the mobile phase consisting
of A (10 mM NaOH) and B (100 mM NaOH containing 1 M sodium
acetate), was programmed as follows: 0–20 min, 95% A; 20–30 min,
70% A; 30–35 min, 100% A. The identification of each
monosaccharide peak was determined on the basis of the elution
time by comparison with standard solutions of different
monosaccharides (fucose, arabinose, rhamnose, galactose,
glcosamine, glcose, xylose, galacturonic acid and glucuronic acid).
The FT-IR spectra of the bioflocculant was recorded after grinded
with KBr powder and pressed into a pellet, by a Bruker Vertex
70 spectrometer (Bruker Optics, United States) at the wavelength
range of 400–4,000 cm−1. The elemental composition of the
bioflocculant was analyzed using a Thermo Scientific K-Alpha XPS
system (Thermo Fisher Scientific Inc., United States). The surface
morphology of the bioflocculant was observed by SEM (Hitachi
SU8010, Japan).

TABLE 1 The matrix of the BBD experiment for culture medium optimization and the experimental and predicted flocculating activity.

Run X1 X2 X3 Flocculating activity (%)

(Glucose) (Corn steep liquor) (Urea)

Real level (g/L) Real level (g/L) Real level (g/L) Predicted measured Measured

1 10 3 4 76.02 76.13 ± 0.81

2 15 3 4 72.89 71.67 ± 0.80

3 10 5 4 73.53 74.74 ± 0.23

4 15 5 4 68.70 68.59 ± 0.71

5 10 4 3 81.50 80.89 ± 0.70

6 15 4 3 75.78 76.50 ± 1.11

7 10 4 5 68.86 68.15 ± 1.00

8 15 4 5 66.64 67.24 ± 0.56

9 12.5 3 3 82.97 83.46 ± 1.13

10 12.5 5 3 77.57 76.95 ± 0.64

11 12.5 3 5 70.02 70.63 ± 0.60

12 12.5 5 5 68.75 68.26 ± 0.57

13 12.5 4 4 87.49 86.37 ± 0.61

14 12.5 4 4 87.49 87.50 ± 0.61

15 12.5 4 4 87.49 88.04 ± 0.66

16 12.5 4 4 87.49 87.97 ± 0.43

17 12.5 4 4 87.49 87.54 ± 0.94
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Measurement of the flocculating activity

The influence of pH was tested in the kaolin clay suspension
system with a pH of 2.0–8.0 adjusted by 2 MHCl or 2 MNaOH. The
cations including NaCl, KCl, MgCl2, CaCl2, CuCl2, FeCl2, FeCl3, and
AlCl3 were used to test the effect of metal ions on the flocculating
activity at the final concentration of 1.00 mM. The dose effects of the
biopolymer (5–30 mg/L) and Fe3+ (0.50–1.50 mM) were studied at
pH 2.0. The thermal stability was test at the temperature of 20, 40,
60, 80, and 100°C. The zeta potential of kaolin suspension before and
after flocculation was analyzed by a Zetasizer (Zetasizer Pro,
Malvern, United Kingdom).

Application in acid mine wastewater

The acid mine wastewater was sampled from iron ore processing
plant of Xiangtan City in Hunan Province, China. In order to analyze the
application potential of the bioflocculant in acid mine waste water
treatment, the biofluccolant was added into the acid mine wastewater
at the final concentration of 25 mg/L without pH adjustment. The
suspension was shaken at 200 rpm and 30°C for 30min. Then the
flocculating activity was calculated according to the change of
turbidity based on the absorbance at 550 nm and the pH change was
record by a pH meter ((FiveEasy Plus pH, Mettler, United States). The
supernatant was collected for detecting the concentration of Fe, Al, Mn,
Cu, Pb, Zn, Ni and Cd by inductively coupled plasma atomic emission
spectroscopy (ICP-AES, Hitachi Limited., Japan). Themetal removal rate
was calculated as follows:

Removal rate %( ) � C0 − C( )/C0 × 100

where C0 and Cwere the initial and final concentrations of the metal,
respectively.

Statistical analysis

Data are expressed as mean values with standard deviation
(±SD) from three independent experiments. Statistical
comparisons were performed using analysis of variance
(ANOVA), and differences at p < 0.05 were considered
statistically significant.

Result

Optimization of fermentation medium
composition

A three-level, three-factor Box-Behnken design was used to
optimize the medium composition containing corn steep liquor
in shake-flask fermentation. The obtained quadratic regression
model representing the flocculating activity as a function of the
carbon and nitrogen source was written as follows:

Y � −255.46 + 31.16X1 + 6.54X2 + 35.07X3 − 0.17X1X2

+ 0.35X1X3 − 1.03X2X3 − 1.31X2
1 − 6.54X2

2 − 6.12X2
3

where Y was the flocculating activity of the fermentation
supernatant, X1, X2, X3 were the concentration of glucose, corn
steep liquor, and urea, respectively. The statistical significance of the
regression model was assessed by F-test and p-value. The analysis of
variance (ANOVA) for the quadratic model was summarized in
Table 2. Similarly to the study of Agunbiade et al. (2022), the model
F-value of 99.09 indicated that the model was highly statistically
significant at p < 0.0001. The lack of fit F-value and p-value was
found to be 4.4 and 0.093, indicating that the suitability of the model
to predict the variations. The p-values showed that X1, X2, X3, X1

2,
X2

2, and X3
2 were statistically significant at the 95% confidence level.

In contrast, X1X2, X1X3, and X2X3 had no significant influence on
the flocculating activity. In addition, the value of the determination
coefficient (R2), the adjusted determination coefficient (R2

adj) and
the predicted determination coefficient determination coefficient
(R2

pred) were 0.9922, 0.9811, and 0.9015, respectively, indicating a
good correlation between experimental and theoretical results. At
the same time, a low value (1.36%) of the coefficient of the variation
(C.V.) demonstrated the experimental values were precise and
reliable.

From the regression model analysis, a maximum
flocculating activity of the fermentation broth was estimated
as 88.93% under the optimal medium composition with glucose
at 12.20 g/L, corn steep liquor at 4.00 g/L and urea at 3.60 g/L.
Under this optimal condition, the actual flocculating activity
was 88.79% and was very close to the predicted value. By
combination of repeated precipitation and dialysis, 0.52 g of
purified bioflocculant was finally obtained from 1 L of
fermentation broth.

Characterization of the bioflocculant

Chemical analysis revealed that the purified bioflocculant
contained neutral sugar (37.50%), uronic acid (10.03%),
aminosugar (6.32%), protein (16.51%) and nucleic acid (3.72%).
The detected rhamnose, arabinose, galactose, glucose, mannose,
fucose, galacturonic acid and glucuronic acid in monosaccharide
composition analysis were at a molar ratio of 1.11:2.29:1.84:3.67:
4.67:2.93:5.67:4.85 (Figure 1).

The FTIR spectrum of the purified bioflocculant was displayed
in Figure 2. The broad band around 3,420 cm−1 was representative of
the stretching vibration of O-H group. The weak band at 2,930 cm−1

was attributed to the stretching vibration of C-H aliphatic bands
(Huang et al., 2019). The band at 1,640 cm−1 was resulted from C=O
stretching vibration (Poorgholy et al., 2017). The bands at 1,557 and
1,407 cm−1 were generated by N-H and C-H bending vibration,
respectively (Salaberria et al., 2014; Yang et al., 2022) The band
around 1,059 cm−1 was from the stretching vibration of the C-O
group (Fang et al., 2021).

The elemental composition of the biofocculant was analyzed
by XPS. The mass fraction of C, O, N, S, and P was detected as
63.48%, 30.58%, 4.65%, 1.00%, and 0.29%, respectively.
Moreover, the core level peaks of C 1s, O 1s and N 1s were
deconvoluted to vertify the corresponding functional groups.
As Figure 3 shown, the peaks located at 284.7, 286.2, and
287.6 eV in the C 1s high-resolution spectrum were assigned
to C–C, C–OH/C–N and C=O groups, respectively (Li et al.,
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2009). The peaks located at 531.5, 532.3, and 533.1 eV in the O
1s high-resolution spectrum were attributed to C=O, O–C–O/
O-C=O and C-OH, respectively (Liang et al., 2020). The peak at
400.28 eV in the N 1s high-resolution spectrum was assigned to
the protonated nitrogen in aminosugar, while the peak at
399.5 eV was originated from the non-protonated nitrogen in
NH or NH2 group (Zhang et al., 2013; Zhong et al., 2018).

Measurement of the flocculating activity

Effects of metal ions, pH, dosage, and temperature on
flocculating activity of the bioflocculant were shown in
Figure 4. The bioflocculant alone had negligible flocculating
activity, but the situation changed by addition of metal ions. At
pH 2.0, the bioflocculant at 10 mg/L demonstrated a good
flocculating activity of 88.79% and 82.72% toward 4 g/L
kaolin suspension, in the presence of 1.0 mM FeCl3 and
AlCl3, respectively. If the metal ion changed or the
pH increased, the flocculating activity dramatically dropped.
The trivalent cations were more favorable for promoting
flocculation than divalent and monovalent cations.

Considering that though the zeta potential of kaolin solution at
pH 2.0 was changed from −12.8 to 9.55 mV by addition of the
bioflocculant, no obvious fluccolation was observed, however, in the
presence of both Fe3+ and the bioflocculant, the zeta potential of

kaolin solution changed to 35.45 mV and the flocculation efficiency
was significantly improved, it was speculated that trivalent cations
with higher charge density could more effectively neutralize the
negative charge of kaolin particles to form bridges (Salehizadeh
et al., 2000). Variations in pH also cause differences in the
electrostatic charge of the suspended particles, thus affecting the
bridging efficiency for kaolin clay particles. The absolute values of
zeta potential of kaolin suspension in the study were increased
from −12.8 to −39.9 mV with the increase of pH 2.0 to 6.0.

The synergistic effect of bioflocculant and Fe3+ on the
flocculating activity was tested at different dosages of
bioflocculant and FeCl3. The maximum flocculating activity
achieved 91.92% at the dosage of 25 mg/L biolfocculant by
combination of 1.0 mM Fe3+. When the bioflocculant
concentration varied from 10 mg/mL to 30 mg/mL, its
flocculating activity kept increasing with the increase of Fe3+

concentration from 0.5 to 1.0 mM, and at the presence of
1.0 mM Fe3+ the flocculating activities were above 88% with not
much change during this bioflocculant concentration range, but
overdosage of Fe3+ would reverse the surface charge of kaolin
particles from negative to positive and reduced flocculation
obviously by electrostatic repulsion forces (Wang et al., 2015;
Nguyen et al., 2021; Hyrycz et al., 2022). With respect to the
influence of temperature, the bioflocculant retained high
flocculating activity above 85% when temperature varied from
20°C to 100°C, indicated it was stable under high temperature.

TABLE 2 Variance analysis (ANOVA) of the response surface quadratic model for culture medium optimizaition.

Source Sum of squares Df Mean square F value p-value

Model 988.54 9 109.84 99.09 <0.0001a

X1 31.65 1 31.65 28.56 0.0011a

X2 22.27 1 22.27 20.09 0.0029a

X3 236.77 1 236.77 213.6 <0.0001a

X1X2 0.72 1 0.72 0.65 0.4471

X1X3 3.02 1 3.02 2.73 0.1425

X2X3 4.27 1 4.27 3.85 0.0906

X1
2 280.87 1 280.87 253.39 <0.0001a

X2
2 179.92 1 179.92 162.32 <0.0001a

X3
2 157.90 1 157.9 142.46 <0.0001a

Residual 7.76 7 1.11

Lack of Fit 5.96 3 1.99 4.40 0.093

Pure Error 1.80 4 0.45

Cor Total 996.30 16

R-Squared 0.9922

Adj R-Squared 0.9811

Pred R-Squared 0.9015

Adeq Precision 25.8220

C.V. % 1.36

aModel terms are significant.
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Application in acid mine wastewater
treatment

A real acid mine wastewater sample without pH adjustment was
directly used to investigate the application possibility of the
bioflocculant in treatment of acid mine wastewater. As shown in
Figure 5, after treatment with the bioflocculant at a dosage of 25 mg/
L for 30 min, the acid mine wastewater sample changed from yellow-
brown to colorless and clarified, meanwhile, an amount of yellow-

brown sediment appeared at the bottom, and the flocculating
activity was tested as 96.39%. The yellow-brown color of the acid
mine wastewater was caused by large quantities of ferric ions
resulted from the oxidation of ferrous ions, and ferric ions could
start to precipitate at a pH as low as 3.0 (Potgieter-Vermaak et al.,
2006), it seemed that the addition of the bioflocculant accelerated the
precipitation process of ferric ions by flocculation. ICP analysis
further confirmed that the bioflocculant was able to remove metal
ions from the acid mine wastewater sample, with a removal rate

FIGURE 1
The monosaccharide composition of the bioflocculant detected by ion chromatography.

FIGURE 2
FT-IR spectra for the bioflocculant.
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FIGURE 3
XPS spectra of the bioflocculant (A) and high resolution 1 s XPS spectra of C, O, and N from P-GS408 are shown in (B–D), respectively.

FIGURE 4
The effects of pH (A), cations (B), dosage of the bioflocculant and Fe3+ (C), temperature (D) on the flocculating activity of Kaolin suspension by the
bioflocculant.
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higher than 70% to Fe, Al, Zn, Pb, and Cd. Under the action of the
bioflocculant, the final concentration of Pb2+ was lower than 1 mg/L,
meanwhile, though the final concentration of Mn2+ and Cu2+ did not

meet this standard, their concentration obviously changed from
49.7 to 28.6 mg/L and 5.72 to 2.45 mg/mL, respectively. Moreover,
the pH of the acid mine wastewater was effectively increased from

FIGURE 5
The effect of the bioflocculant on the metal ion concentration of the real acid wine wastewater.

FIGURE 6
SEM micrograph images of purified bioflocculant (A,B) and bioflocculant aggregation with the acid mine wastewater (C,D).
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3.04 to 6.86. The zeta potential of the acid mine wastewater was
changed from −19.12 to 2.89 mV by addition of the bioflocculant.
SEM images showed that the bioflocculant had an irregular stacked
layer structure and aggregated with acid mine wastewater to form
large clumps with net-like structure (Figure 6).

Discussion

Fermentation medium accounts for a significant portion in the
overall cost of bioflocculant production (Pu et al., 2018; Fan et al.,
2019; Mohammed and Dagang, 2019) especially carbon and
nitrogen source, plays a vital role (Xia et al., 2018b). Corn steep
liquor, the by-product of corn wet-milling, has been used as cheap
nutrient supply for the fermentation of various microorganisms, due
to its high contents of soluble proteins, amino acids, carbohydrates,
vitamins and minerals (de Barros et al., 2020; Kang et al., 2020). The
bioflocculant fermentation production process using corn steep
liquor as a cheap nutrient supply was successfully accomplished
by response surface methodology in this study. According to the
p-values, the corn steep liquor, glucose and urea all showed
significant impact on the yield of bioflocculant production,
however, the interaction between glucose, corn steep liquor, and
urea was not significant. Though fed-batch cultivation strategy and
two-stage pH control mode had been applied to improve the
production of bioflocculant REA-11 from C. glutamicum CCTCC
M201005 (He et al., 2004b; Wu et al., 2010), its reported yield was
only calculated in U/mL, thus it was difficult to compare the result
with the yield of bioflocculant in this study using the common unit
g/L. Meanwhile, considering that only 0.24, 0.26, 0.40, and 0.36 g of
purified bioflocculant was obtained from 1 L of fermentation broth
of Klebsiella oxytoca GS-4-08 (Yu et al., 2016), Virgibacillus sp. Rob
(Cosa et al., 2011), Aspergillus flavus S44-1 (Aljuboori et al., 2013)
and Bacillus amyloliquefaciensDT (Sun et al., 2015), respectively, the
bioflocculant production yield of 0.52 g/L in this study though was
not high, but was still acceptable. Besides that C. glutamicumwas not
an efficient bioflocculant producer, it was speculated that the low
production yield might be attributed to that only the culture
medium composition was partially optimized, other fermentation
conditions, such as pH, time and inoculum size, should be optimized
in further study.

The monosaccharide composition of the bioflocculant in this
study was very different from that of the bioflocculant REA-11
produced by C. glutamicum CCTCC M201005, which was
composed of galacturonic acid with trifle proteins (He et al.,
2002), but had some similarities to many microbial bioflocculants
(Sun et al., 2015; Chen et al., 2017; Xia et al., 2018a; Xia et al., 2022).
The polysaccharide was the main ingredient in the bioflocculant and
the carboxyl groups of uronic acid in the bioflocculant could provide
a certain amount of effective sites for the attachment of particles (Xia
et al., 2022). The FTIR spectrum showed the presence of carboxyl,
hydroxyl, and amino groups in the bioflocculant, and the result of
XPS was in agreement with FTIR analysis, further confirmed that the
hydroxyl, carboxyl and amino groups were abundant in the
bioflocculant (Fan et al., 2019).

The bioflocculant REA-11 originated from C. glutamicum
CCTCC M201005 was stable at pH 3.0–6.5 and its flocculating
activity was markedly improved by Ca2+. Under the optimum

bioflocculant concentration of 8.2 mg/L and optimum CaCl2
concentration of 8.0 mM, its flocculating activity was 85.2% (He
et al., 2004a). However, the flocculating activity of the biofloccuant
in this study was different from that of REA-11, its enhanced
flocculating activity induced by FeCl3 or AlCl3 was similar to
that of the bioflocculants produced by Bacillus sp. As-101
(Salehizadeh et al., 2000), K. oxytoca GS-4-08 (Yu et al., 2016),
Raoultella ornithinolytica 160–1 (Ding et al., 2021), Klebsiellu sp. A9
(Sheng et al., 2016) and Halogeometricum borinquense A52
(Chouchane et al., 2020). Moreover, the maximum flocculating
activity of the bioflocculant observed at pH 2.0 was similar to
that of the bioflocculants produced by Bacillus sp. F19 (Zheng
et al., 2008), Bacillus aryabhattai PSK1 (Abd El-Salam et al.,
2017) and Azotobacter chroococcum (Yang et al., 2017). Kaolin
clay particles form an electrical double layer at the solid-water
interfaces and the negative charge on the surface of the particles
enables them to suspend well in the solution. According to Elkady
et al. (2011), the good flocculating activity at pH 2.0 might be
attributed to that the electric double layer was changed because the
negative charge on the surface was reduced by the adsorption of H+

in the highly acidic environment, subsequently the electrostatic
repulsion force and distance between the suspended particles
were decreased, and the bridging effect of the bioflocculant was
correspondingly improved. The optimal flocculation conditions of
the bioflocculant from Bacillus sp. for kaolin solution were
determined as 120 mg/L bioflocculant and 0.4 mM Fe3+ (Hua
et al., 2021). As for the bioflocculant from K. oxytoca GS-4-08,
the best dosage of the bioflocculant and Fe3+ were 700 mg/L and
3.0 mM respectively in the flocculating system (Yu et al., 2016).
Compared to these reported bioflocculants, the bioflocculant in this
study achieved a high flocculating activity at a relative low dosage by
the aid of Fe3+. Chouchane et al. (2018) reported that the
heteropolysaccharide-based bioflocculant from
hydrocarbonoclastic strain Kocuria rosea BU22S was thermally
stable. Pu et al. (2020) found that the polysaccharide
BM2 produced by Bacillus megaterium strain PL8 had a
flocculating activity over 87% from 20°C to 100°C. The
thermostability of the bioflocculant in this study is in accordance
with these reports. Moreover, considering that biofluccolants with
polysaccharide backbone were thermostable, while those with high
compositions of proteins were generally sensitive to heat (Tawila
et al., 2018), the good thermo-stability of the bioflocculant indicated
that its flocculating activity was primarily resulted from the
polysaccharide-based structure, rather than protein.

Acid mine wastewater has a low pH of 2.0–3.0 and contains high
levels of different metals such as iron, aluminium, manganese, zinc,
lead, copper and nickel (Vital et al., 2018). The high acid value and
the existence of the metal ions in acid mine wastewater are both
beneficial to the performance of the bioflocculant in this study. The
flocculation behavior of the bioflocculant in the real acid mine
wastewater sample illustrated that some metal ions underwent co-
precipitation with ferric ions and was removed from the wastewater
by the help of the bioflocculant. Meanwhile, due to the precipitation
of sulfides, hydroxides, and carbonate (Chen et al., 2021), the pH of
the wastewater changed from acid to close to neutral. After
treatment by the bioflocculant, the final concentration of Pb2+

and the pH in the wastewater sample reached the national
wastewater standard stipulated in the Integrated Wastewater
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Discharge Standard (Yan et al., 2015). The zeta potential change of
the acid mine wastewater with the addition of the bioflocculant
showed that the charge neutralization mechanism was involved in
the flocculation. Moreover, the interstitial spaces between the
stacked layers of the bioflocculant observed by SEM were
beneficial to the absorption of metal ions (Saba et al., 2019),
while the net-like structure of the flocs after flocculation
indicated that polymer bridging played an important role in the
flocculation process (Aljuboori et al., 2015). Considering that the
mineral content and concentration of water-soluble metal ions in
the acid mine water varies with the geological environment in
different mining areas, in the further study, the action of the
bioflocculant needs to be tested using more different acid mine
water samples, at the same time, its application condition requires
more detailed exploration.

In conclusion, a novel cation-dependent bioflocculant was produced
by the GRAS strain C. glutamicum utilizing corn steep liquor as a cheap
nutrient supply. Chemical analysis indicated that the bioflocculant was
mainly composed of polysaccharides (53.85%) and proteins (16.51%).
FTIR and XPS analysis revealed the abundant carboxyl, amine and
hydroxyl groups in its structure. The bioflocculant had high thermal
stability, and showed a good flocculating activity over 70% to kaolin clay
suspension by the aid of Fe3+ at high acidic condition. Moreover, the
simple addition of bioflocculant to the real acid mine wastewater could
remove metal ions such as Fe, Al, Pb, Zn efficiently from the sample,
making the suspension clear with an increase in the pH to neutral. These
findings indicated the bioflocculant from C. glutamicum could be an
efficient and promisingmaterial to treat acidmine wastewater in a simple
and fast way.
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