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Accurate segmentation of retinal layer boundaries can facilitate the detection of
patients with early ophthalmic disease. Typical segmentation algorithms operate
at low resolutions without fully exploiting multi-granularity visual features.
Moreover, several related studies do not release their datasets that are key for
the research on deep learning-based solutions. We propose a novel end-to-end
retinal layer segmentation network based on ConvNeXt, which can retain more
feature map details by using a new depth-efficient attention module and multi-
scale structures. In addition, we provide a semantic segmentation dataset
containing 206 retinal images of healthy human eyes (named NR206 dataset),
which is easy to use as it does not require any additional transcoding processing.
We experimentally show that our segmentation approach outperforms state-of-
the-art approaches on this new dataset, achieving, on average, a Dice score of
91.3% and mIoU of 84.4%. Moreover, our approach achieves state-of-the-art
performance on a glaucoma dataset and a diabetic macular edema (DME) dataset,
showing that our model is also suitable for other applications. We will make our
source code and the NR206 dataset publicly available at (https://github.com/
Medical-Image-Analysis/Retinal-layer-segmentation).
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1 Introduction

The retina is often referred to as the “window to the body,” as the early stages of many
chronic diseases are associated with structural changes in the tissues of retinal layers (London
et al., 2013; Pavkov et al., 2019). The precise quantification of changes in each retinal layer is a
crucial step in monitoring disease progression (Ueda et al., 2022). Optical coherence
tomography (OCT) is a non-invasive imaging technique that plays a pivotal role in
clinical ophthalmology. It uses low-coherence interferometry to generate a two-
dimensional image of internal tissue microstructures through optical scattering, akin to
ultrasonic pulse-echo imaging (Huang et al., 1991). The imaging principle of OCT has
evolved from time-domain OCT (TD-OCT) in 1991 (Huang et al., 1991) to spectral-domain
OCT (SD-OCT) in 1995 (Fercher et al., 1995) and subsequently to swept-source OCT (SS-
OCT) in 1997 (Chinn et al., 1997). OCT facilitates fundus retinal layer imaging (Huang et al.,
1991), providing a clear representation of the structure of retinal layers and the thickness of
each layer by leveraging differences in tissue structure and inter-layer distances (Figure 1).
Since OCT images can directly and vividly display these characteristics, they are frequently
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employed as key indicators in the diagnosis of ophthalmic diseases
(Ueda et al., 2022). Hence, by applying layer segmentation to OCT
images of retinal layers, we can effectively monitor changes in the
structure (thickness) of retinal layers.

Manual segmentation of retinal layers, traditionally an early
method, has been labor-intensive, expensive, and challenging to
standardize among different specialized ophthalmologists. Hence,
automatic segmentation methods for retinal layers have become
indispensable. Thanks to the rapid advancements in deep learning-
based techniques, computational imaging approaches have become
increasingly adept at automatically addressing this progression.
These techniques rely on specialized datasets corresponding to
the task to function reliably (Min et al., 2017). However, the
retinal segmentation datasets employed in most studies are
proprietary (Li et al., 2020). Only a few of the publicly available
datasets can be used, and these require transcoding prior to
application (Chiu et al., 2015; He et al., 2019). We contend that
constructing a semantic segmentation dataset of the retinal layer of
healthy human eyes is of significant importance.

Automatic retinal layer segmentation has significantly advanced
in recent years. Several earlier methods utilized traditional computer
vision techniques (Dufour et al., 2012; Tian et al., 2016; Karri et al.,
2016), where layer segmentation was accomplished through

multiple stages, including pre-processing tasks, such as denoising,
and followed by post-optimization. However, these methods, due to
their requirement for custom development for each unique problem,
are being gradually supplanted by deep learning-based segmentation
methods. Deep learning methods offer principal advantages for
retinal layer segmentation tasks; they can autonomously extract
image features and have the capability to generalize across diverse
retinal images. ReLayNet (Roy et al., 2017) is a prevalent approach
for retinal layer segmentation that operates on a U-Net framework
(Ronneberger et al., 2015). However, the original U-Net framework
has been superseded by attention-based frameworks that are capable
of producing more informative and richer feature maps, thus
resulting in improved segmentation outcomes (Chen et al., 2021).
One major limitation of the U-Net framework is its lack of sufficient
network depth. This deficiency results in the extraction of less
informative feature maps, which consequently leads to
diminished segmentation accuracy. Moreover, there exist deep
learning-based methods that extract features at a smaller scale,
which further limits the extent of informative features (Li et al.,
2020).

In this paper, we introduce a novel, multi-scale, end-to-end deep
learning model specifically designed for segmenting retinal layers in
healthy human eyes using OCT B-scan images. Our solution

FIGURE 1
OCT B-scan images of retinal layers in healthy human eyes and annotations of each retinal tissue layer. (A) Original B-scan retinal layer image, (B)
ground-truth, (C) eight classes of annotations for retinal layers, namely, NFL, GCL + IPL, INL, OPL, ONL, ELM+ IS, OS, and RPE (Fernández et al., 2005), and
other areas annotated as background class.
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addresses the limitations of current methods, which often fail to
optimally preserve and utilize more detailed feature maps during
segmentation. We achieve this by expanding the scale, reducing the
upsampling multiple factors, and incorporating a depth-efficient
attention module. Our strategy is built upon the latest ConvNeXt
backbone. Additionally, we annotate and publicly release a dataset
specifically for semantic segmentation of retinal layer OCT images
in healthy human eyes. This dataset comprises 206 OCT B-scan
images of healthy human eyes. Each image is categorized into nine
classes, including eight retinal layers and the background, with an
average of 14.82% of the pixels per image annotated as part of the
retinal layers. We are confident that this newly created dataset will
significantly contribute to the advancement of semantic
segmentation methodologies in this field. Our semantic
segmentation technique demonstrates superior performance on
the NR206 dataset compared to existing methods, and we further
corroborate its generalization capacity on two other publicly
accessible datasets. The model and the dataset will be made
available to the public upon the acceptance of this paper.

The organization of this paper is as follows: Section 2 presents
the related work, covering both semantic segmentation
methodologies and associated datasets. Section 3 outlines our
proposed approach, detailing three main aspects: backbone
networks, multi-scale feature encoding, and the depth-efficient
attention module. Section 4 introduces our proposed
NR206 dataset. Subsequently, in Section 5, we explain the
experiments, interpret the model, and discuss the results. The
final section concludes the paper and outlines future research
directions.

2 Related work

2.1 Datasets

Several publicly accessible datasets of retinal layer optical
coherence tomography (OCT) images currently exist online.
Srinivasan et al. (2014) collected 45 sets of retinal images from
15 healthy subjects, 15 patients with dry age-related macular
degeneration, and 15 patients with diabetic macular edema for
disease classification. The study by Gholami et al. (2020) released
an open-source database composed of four types of OCT images of
ophthalmic diseases and one type of OCT images of healthy human
eyes, encompassing more than 500 OCT B-scan images of human
eyes. Chiu et al. (2015) extracted 110 B-scan images of the retinal
layer from 10 patients with severe diabetic macular edema and
manually segmented the boundaries of eight layers with the
assistance of two ophthalmologists. Last, He et al. (2019)
gathered OCT images from 14 healthy human eyes and 21 eyes
of patients with multiple sclerosis, labeling images of the boundaries
of nine layers. The majority of these publicly available datasets of
retinal layer OCT images are primarily used for classification
detection tasks and are not suitable for retinal layer
segmentation. Moreover, some are compiled by MATLAB and
need to be transcoded by professionals before use. Until 2017,
retinal layer segmentation primarily used boundaries for layer
segmentation. With the application of U-Net (Ronneberger et al.,
2015) to medical segmentation tasks in 2015 and ReLayNet (Roy

et al., 2017) to retinal layer segmentation in 2017, new annotation
paradigms for layer segmentation of retinal layers have begun to
emerge. Zhang et al. (2021) acquired a 3D scanned OCT image
containing 273 eyes for 3D semantic segmentation of retinal layers.
This pixel-level segmentation approach does not require
consideration of the continuity of boundary lines, making it
more universal compared to traditional threshold segmentation
using boundary lines. However, most semantic segmentation
datasets of retinal layers are not publicly available, which has
hindered the advancement of the field.

2.2 Semantic segmentation methods

Since the introduction of the fully convolutional network (FCN)
(Long et al., 2015), encoder–decoder architectures have been
extensively used for a wide array of segmentation tasks. Notable
networks, such as U-Net (Ronneberger et al., 2015), DeepLabV3+
(Chen et al., 2018), and UnetR (Hatamizadeh et al., 2022), all adopt
this structure. Encoders generally leverage various backbone
networks to extract highly semantic feature maps. With the swift
advancement in multiple vision tasks, backbone networks have
rapidly evolved in recent years. This includes CNN-based
networks such as VGG (Simonyan and Zisserman, 2014), ResNet
(He et al., 2016), Xception (Chollet, 2017), and ConvNeXt (Liu et al.,
2022), as well as transformer-structured networks, such as ViT
(Dosovitskiy et al., 2020) and Swin Transformer (Liu et al.,
2021). The feature maps extracted by the backbone network are
inputted into the decoder network, which contains an upsampling
component, to restore the resolution of the image, thereby
facilitating semantic segmentation.

Deep learning has made significant strides in the biomedical
field (Le, 2021); (Le and Huynh, 2019). Since U-Net (Ronneberger
et al., 2015) first applied semantic segmentation to medical
applications, several dedicated semantic segmentation networks
for the medical field have been proposed. These include
Attention U-Net (Oktay et al., 2018), UnetR (Hatamizadeh et al.,
2022), and FDK-Unet Wang et al. (2020). Furthermore, ever since
ReLayNet (Roy et al., 2017) was first introduced for retinal layer
segmentation, a surge in research in this task has been observed. For
example, Li et al. (2021) proposed a two-stage network for
segmenting the optic disc and retinal layers separately. The
common goal of these works is to consistently optimize and
enhance segmentation results, automate the segmentation of
retinal layer OCT images, and advance the early diagnosis and
treatment monitoring of retinal diseases.

DeepLabV3+ is a method developed by Chen et al. (2018),
marking the final installment of the DeepLab series. This method
utilizes the ASPP module to optimize the performance of dilated
convolution. It adopts Xception as the backbone network
(Chollet, 2017), combines encoder–decoder structures to
design a new framework, and achieves state-of-the-art results
on the PASCAL VOC 2012 and Cityscapes datasets (Chen et al.,
2018). Despite its strengths, the model also has several
limitations. First, the model only uses two scales of feature
map information for upsampling restoration, namely,
F1 ∈ RC1×H

4×
W
4 and F2 ∈ RC2×H

16×
W
16. This not only involves fewer

scales but also tends to lose detail with larger upsampling factors.
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Second, no weights are assigned to the feature map information
at each scale, leading to inefficient use of the feature map
information. Finally, the chosen backbone network has certain
constraints, given that better-performing backbone networks
have since been proposed.

3 Methods

3.1 Framework overview

Our proposed methodology comprises an encoder module that
extracts multi-scale features and a decoder module that
amalgamates multi-scale information for upsampling reduction.
Drawing inspiration from DeepLabV3+ (Chen et al., 2018), we
utilize a modern backbone, ConvNeXt, to generate more
informative visual embeddings. To address the problem of
insufficient spatial details in the segmentation task, we introduce
a more granular scaling of the feature map in the encoder section
and corresponding upsampling processes in the decoder section.
However, the incorporation of feature map resolutions at various
granularities also compromises the computational complexity of the
network. To address this, we propose a depth-efficient convolutional
block attention module, abbreviated as DE-CBAM, within the
decoder section to enhance the efficient utilization of feature
information derived from the encoder. The structure of our
proposed network is illustrated in Figure 2.

3.2 Backbone network

We employ the recently introduced convolutional network
model, ConvNeXt (Liu et al., 2022), as our backbone for feature
extraction. Floating-point operations per second (FLOPs) is a
common metric used to quantify the computational cost.
ConvNeXt addresses the FLOPs/accuracy trade-off using the
concept of ResNeXt, with its central component being grouped
convolution. This approach significantly reduces FLOPs, and the
network width is expanded to compensate for the loss of capacity. To
align with the non-local self-attention mechanism of the
transformer, ConvNeXt employs a large kernel-sized convolution.
This enhances the network’s performance while keeping the
network’s FLOPs approximately constant. ConvNeXt has
outperformed transformers in terms of accuracy, scalability, and
robustness across most major benchmarks.

We carried out an extensive comparison among several
backbone choices and empirically selected ConvNeXt for our
feature extraction backbone. For more details, please refer to
Section 5.4.

3.3 Multi-scale feature encoding

Multi-scale feature encoding involves extracting feature maps at
various scales through the backbone, followed by fusion of the
results via a series of concatenation or addition operations.

FIGURE 2
Overview of the proposed framework. This framework is composed of two primary components: the encoder and the decoder. During each training
iteration, B retinal grayscale images are fed into themodel. They first enter the backbonemodule of the encoder section for feature extraction, resulting in
four featuremaps. The featuremapwith the smallest size but the largest number of channels (B, 128, H/8,W/8) is then input into the first UP ×2module for
2x upsampling restoration. The restored feature map’s size matches that of the adjacent output feature map from the backbone, allowing for
channel concatenation. Following concatenation, the featuremap is passed to the first DE-CBAMmodule for feature weighting. The output feature map,
which has half the original channels but retains the same size, is then input into the secondUP ×2module. The subsequent stepsmirror the previous ones.
Finally, after exiting the third DE-CBAM block, the feature map is fed into the output convolution module, which adjusts the number of feature map
channels to match the number of output target classes (nine classes in the NR206 dataset).
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Noting the limitation of the DeepLabV3+ model, which only utilizes
feature map information at two scales for upsampling, we extend
this to four scales. Theoretically, an increase in the number of scales
enriches the information in the feature map. Additionally, the
original DeepLabV3+ model uses a large upsampling factor,
which is prone to detail loss. In addition, the upsampling
reduction multiplier in the original DeepLabV3+ model is much
larger and prone to loss of details, so we change the stem module of
downsample_layers in ConvNeXt to change the downsampling
from 4x to 1x, making the size of the output feature map change
from F1 ∈ RC1×H

4×
W
4 , F2 ∈ RC2×H

8×
W
8 , F3 ∈ RC3×H

16×
W
16, and F4 ∈ RC4×H

32×
W
32

to F1′ ∈ RC1×H×W, F2′ ∈ RC2×H
2×

W
2 , F3′ ∈ RC3×H

4×
W
4 , and F4′ ∈ RC4×H

8×
W
8 .

The smaller the restoration multiplier is, the less the detailed
information is lost in upsampling.

3.4 Depth-efficient convolutional block
attention module

The depth-efficient convolutional block attention module (DE-
CBAM) employed in our proposed framework is based on an
enhanced version of the convolutional block attention module
(CBAM) (Woo et al., 2018). CBAM is an effective attention
module for feedforward convolutional neural networks. Given an
intermediate feature map, this module generates the attention map
in sequence along two independent dimensions—channel and
space—and then multiplies the attention map with the input
feature map for adaptive feature refinement. Since CBAM is both
lightweight and general-purpose, it can be seamlessly integrated into
any CNN architecture with minimal overhead and can be trained
end-to-end alongside the base CNN. Performance improvement
across several classification and detection tasks when employing
CBAM has been demonstrated (Woo et al., 2018). As illustrated in
Figure 3, given an intermediate feature map F ∈ RC×H×W as input,
CBAM successively infers a 1D channel attention mapMc ∈ RC×1×1

and a 2D spatial attention map Ms ∈ R1×H×W. The overall attention
process can be summarized as

F′ � Mc F( ) ⊗ F, (1)
F′′ � Ms F′( ) ⊗ F′, (2)

where ⊗ denotes the element-wise multiplication and F″ is the final
refined output. Channel attention first amalgamates the spatial
information of a feature map using both average-pooling and
max-pooling operations, generating two distinct spatial context
descriptors: Favgc and Fmaxc. Both of these descriptors are then
forwarded to a shared network to produce our channel attention
map Fcmax, which is composed of a multilayer perceptron (MLP) with
one hidden layer. After the shared network has been applied to each
descriptor, the output feature vectors are finally merged using
element-wise summation as

Mc F( ) � σ MLP AvgPool F( )( ) +MLP MaxPool F( )( )( ). (3)
The spatial attention module aggregates channel information of a
feature map by using two pooling operations, generating two 2D
maps: Fsavg ∈ R1×H×W and Fsmax ∈ R1×H×W. Each denotes average-
pooled features and max-pooled features across the channel. These

are then concatenated and convolved by a standard convolution
layer as

Ms F( ) � σ f7×7 AvgPool F( );MaxPool F( )[ ]( )( ), (4)
where σ denotes the sigmoid function and f7 × 7 represents a
convolution operation with a filter size of 7 × 7.

We maintain the internal structure of the CBAM intact and,
instead, introduce two consecutive depth-wise separable
convolutions (Chollet, 2017) into its output section (Figure 3).
Compared to conventional convolution, depth-wise separable
convolution is able to increase network parameters with minimal
impact, while ensuring that network depth is preserved. This
modification not only increases the depth of the network but also
enhances the utility of feature maps within the network, thereby
improving overall network performance. Table 5 shows that our DE-
CBAM module provides improvements over results obtained prior
to the modification.

4 NR206 dataset

The NR206 dataset originates from 206 optical coherence
tomography (OCT) retinal images of normal, healthy human
eyes that are part of the OCTID (Gholami et al., 2020) database.
Initially, these images were used for disease classification tasks along
with five other retinal disease image sets. All the images are de-
identified, maintaining the privacy of the patients involved. The
images are taken using a raster scan protocol with a scan length of
2 mm. They were captured using a Cirrus HD-OCT machine at
Sankara Nethralaya Eye Hospital in Chennai, India. An experienced
clinical optometrist selected a fovea-centered image from each
volumetric scan. The scans have an axial resolution of 5 μm and
a transverse resolution of 15 μm (in tissue). The OCTmachine uses a
superluminescent diode with a wavelength of 840 nm as its optical
source. The images are captured at a resolution of 500 × 750 pixels.
We use this dataset for semantic segmentation, which allows us to
study the variations in retinal layer thickness in healthy human eyes.

Having obtained the required permissions from the original
authors of the NR206 dataset, we embarked on a semantic
segmentation annotation of these 206 retinal OCT images of
healthy human eyes, guided by medical ophthalmology
professionals. The process yielded a 10-class semantic
segmentation dataset that includes a background class (refer to
Figure 1). For annotation, we used a professional graphic software,
Inkscape, and designated the eight retinal layers of NFL, GCL + IPL,
INL, OPL, ONL, ELM + IS, OS, and RPE with different colors: red,
brown, yellow, dark green, light green, light blue, dark blue, and pink,
respectively. The remaining area was annotated as the background in
black. Figure 4 presents the average pixel percentage across the OCT
image for all classes excluding the background. It can be observed that
the GCL + IPL and ELM + IS layers have larger pixel percentages,
whereas the OS and NFL layers have smaller percentages. Following
the annotation, each image was examined by a professional
ophthalmologist and then exported as a 500 × 750 pixel PNG
image. We divided the NR206 dataset into training, validation, and
test sets comprising 126, 40, and 40 images, respectively.
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5 Experiment

In order to evaluate our proposed approach, we tested it on
our newly annotated NR206 dataset and two other public OCT
datasets, in comparison with the recent state-of-the-art
methods for semantic segmentation. An extensive ablation
study is also presented to justify the design choices of our
proposed method.

5.1 Experimental Setup

Datasets. The NR206 dataset, consisting of 206 OCT B-scan
images of healthy human eyes, has been described previously. For
each image, the size is 500 × 750. The dataset is partitioned into a
training set of 126 images, a validation set of 40 images, and a test
set of 40 images. Regarding the other two public datasets, 1) the
glaucoma dataset (Li et al., 2021) contains images from 61 different
subjects, with 12 radial OCT B-scans collected per subject at the
Ophthalmology Department of Shanghai General Hospital using

DRI OCT-1 Atlantis. Each image in this dataset has a size of
1,024 × 992. The dataset follows a training–validation–test split of
148, 48, and 48 images, respectively. (ii) The Duke SD-OCT
dataset, which was collected by Chiu et al., comprises 110 OCT
B-scans obtained from 10 patients with diabetic macular edema.
Each image in this dataset has a size of 496 × 768 pixels. More
details about this dataset can be found in the study by Chiu et al.
(2015).

Performance metric. To account for class imbalance in our
datasets, we use the Dice score, mIoU, Acc, and mPA for
quantitative evaluation of segmentation performance. They are
formulated as follows:

Dice � 2TP
2TP + FP + FN

, (5)

mIoU � 1
k + 1

∑
k

i�0

TP

FN + FP + TP
, (6)

Acc � TP + TN

TP + TN + FP + FN
, (7)

and

FIGURE 3
DE-CBAM module. The CBAM module is mainly composed of two sequential modules: CAM and SAM. The DE-CBAM module is plugged with two
depth-separable convolutions into the output of the CBAM module.

FIGURE 4
Average percentage of pixels on OCT images for each tissue layer in addition to the background (the percentage of the background is 85.18%).
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mPA � 1
k + 1

∑
k

i�0

TP

TP + TN + FP + FN
, (8)

where TP represents true positives, where the predictions match the
ground-truth labels, TN represents true negatives, where the
predictions and ground-truth labels are both negative, FP
represents false positives, where the predictions are positive but
ground-truth labels are negative, FN represents false negatives,
where the predictions are negative but ground-truth labels are
positive, and k represents the number of categories.

Implementation details. Our method is implemented using
PyTorch, and the model is trained on NVIDIA GeForce RTX 3090.
We keep the training batch size the same for all the methods,
determined by the capacity of the GPU, and utilize k-fold cross-
validation on the training set; specifically, we employ 4-fold cross-
validation. We adopt the Adam optimizer and use a StepLR
scheduler for adjusting the learning rate during training. The
network is trained using the cross-entropy loss function. In order
to augment the dataset size, we apply data augmentation techniques,
including horizontal flipping, random rotation, additive blur, and
contrast adjustment. Training is set to stop automatically after
300 epochs, and the model weights that deliver the best
performance on the validation set are chosen for testing. For the
NR206 dataset, we set the learning rate to 0.002 with the image size
cropped to (480,736) and conduct 4-fold cross-validation
experiments on it. For the other two public datasets, we set the
image size to (608,608) for the glaucoma dataset (Li et al., 2021) and
(384,480) for the DME dataset (Chiu et al., 2015), respectively.

5.2 Comparison

We compare our proposed approach with several state-of-the-
art methods for image segmentation tasks, including DeepLabV3+
(Chen et al., 2018), Attention U-Net (Oktay et al., 2018), ReLayNet
(Roy et al., 2017), OS_MGU (Li et al., 2021), BiSeNet (Yu et al.,
2018), and UnetR (Hatamizadeh et al., 2022).

Table 1 presents the performance comparison of our method
with other state-of-the-art methods on the NR206 dataset. Overall,
our approach outperforms the compared methods across most of
the layers, resulting in the highest average Dice score, mIoU, Acc,
and mPA, improving upon the second-best method by +0.8% in
mIoU and +0.4% in Acc. Specifically, our method surpasses OS_
MGU in terms of mIoU and Acc by +1.0% and +0.7%, respectively.
We further perform a statistical significance test, using theWilcoxon
rank-sum test, to compare the Dice score performance of different
methods on each layer (Lam and Longnecker, 1983). For instance,
when comparing our method with RelayNet on the same domain,
we observe a p-value of 0.017960 (p< 0.05), indicating a statistically
significant difference. A similar statistically significant difference is
observed with a p-value of 0.007812 (p< 0.05) when comparing our
method with OS_MGU. Although DeepLabV3+ (Chen et al., 2018)
is a widely recognized method for semantic segmentation,
performing well in many scenarios, its segmentation accuracy on
our dataset is found to be lower than our proposed method across all
retinal tissue layers, with the mIoU metric being 1.3% lower. Our
analysis suggests that the key reason for this performance disparity is
that DeepLabV3+ only utilizes two scales for feature extraction,

which could lead to the neglection of some detailed information
during feature map extraction. Furthermore, the coarse feature maps
generated by the 4-fold upsampling operation in DeepLabV3+ may
result in accuracy loss. The prediction map of DeepLabV3+ in
Figure 5 indicates discontinuities in several layers within the
macular region. It is known that the retinal layer thickness is
thinnest in the macular region of the retina (Chan et al.,2006);
therefore, each tissue layer should be continuous and without
disruptions. Moreover, the error distribution map of
DeepLabV3+ demonstrates significant boundary inaccuracies
occurring at the boundary between the OPL layer and the ONL
layer outside the macular area.

In contrast, our method is capable of achieving more detailed
and accurate segmentation of the macular retinal layers, while
maintaining continuity of the tissue layers, due to the multi-scale
feature extraction and reduced upsampling factors in our approach.
ReLayNet (Roy et al., 2017) is an important work in retinal layer
segmentation, using a multi-scale network architecture based on the
U-Net (Ronneberger et al., 2015). However, as shown in Table 1,
ReLayNet falls short in performance when compared to our method
on all retinal layers. Figure 5 shows that ReLayNet generates less
smooth boundaries than our method, with the boundary
inaccuracies further highlighted by the error distribution maps.
Our analysis suggests that the multi-scale network structure of
ReLayNet does not fully leverage its multi-scale feature maps.
Our method, on the other hand, applies the DE-CBAM structure,
specifically designed for each level of the feature map, thereby
improving the efficiency of feature utilization at every level.
Furthermore, as shown in Figure 5, prediction maps of UnetR
(Hatamizadeh et al., 2022) reveal significant segmentation errors
in the GCL layer, as well as visible errors in the macular area.
Similarly, BiSeNet (Yu et al., 2018) and Attention U-Net (Oktay
et al., 2018) exhibit varying degrees of segmentation errors in the
macular layer.

Table 2 shows the segmentation results of various methods on
the dataset (Li et al., 2021), which includes the optic nerve head
region. It is imperative to perform segmentation in this region as
well, given that early stages of numerous diseases have been linked
with optic nerve head atrophy and changes in the outer retina layer
area (Bhartiya et al., 2010; Chrástek et al., 2005). Given the complex
morphology of the retinal biological tissue in the optic nerve head
area, performing layer segmentation in this region is also an essential
step in the evaluation of retinal layer models. According to the
results, our approach achieves the highest Dice score, mIoU, Acc,
and mPA for most of the semantic classes, except for the OPL, ONL,
IS + OS, and choroid classes. However, when considering the
average Dice score, our approach achieves the highest
segmentation accuracy, surpassing the second-best method by
+0.9%. Furthermore, our method outperforms OS_MGU in
terms of mIoU and Acc metrics by +1.3% and +1.9%,
respectively. One additional advantage of our model is its smaller
size in terms of parameters. Specifically, when compared with
Attention U-Net and DeepLabV3+, our model only has
0.05 times and 0.03 times their respective parameter sizes,
demonstrating the efficiency of our model. Figure 6 provides a
comparison of the retinal layer segmentation performance of
different methods in the optic disc (OD) area, illustrating the
superior segmentation capability of our model. As depicted in
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the magnified view in Figure 6C, the DeepLabV3+ method
introduces segmentation errors, incorrectly identifying the NFL
layer as OD tissue. Similarly, as shown in the magnified view in
Figure 6H, the OS_MGU method incorrectly classifies the
background region as RPE layer tissue. Both ReLayNet and
UnetR also display varying degrees of segmentation errors in the
OD layer. These results collectively emphasize the robustness and
precision of our proposed model in challenging retinal layer
segmentation tasks.

The segmentation of retinal layers in retinal images without
significant structural changes in the health or retinal layer is
generally straightforward. However, many ophthalmic diseases,
such as diabetic retinopathy (Stitt et al., 2016), can cause
considerable alterations in the structure of the retinal layer.
Therefore, segmenting retinal layers in images depicting such
disease conditions is a more challenging task and provides a
comprehensive test of the model’s capability. Table 3 compares
our method with other methods on a dataset of patients suffering

FIGURE 5
Retinal layer segmentation prediction graphs and error distribution maps on one random retinal test image in the NR206 dataset for each method.

TABLE 1 Dice score (%), mIoU (%), Acc (%), and mPA (%) of the segmentation results on the NR206 dataset by different methods. The best result is highlighted in
bold.

Method Dice score mIoU Acc mPA

NFL GCL
+ IPL

INL OPL ONL ELM
+ IS

OS RPE Average

UnetR 87.4 ± 0.7 94.2 ± 0.5 87.1 ± 0.7 77.5 ± 1.0 93.8 ± 0.4 91.3 ± 0.4 87.3 ± 0.4 95.3 ± 0.2 89.2 ± 0.4 81.0 ± 0.7 89.2 ± 0.7 98.4 ±
0.0

ReLayNet 88.7 ± 0.5 95.8 ± 0.1 90.1 ± 0.3 81.6 ± 0.2 95.2 ± 0.1 92.2 ± 0.4 87.5 ± 0.0 96.1
± 0.1

90.9 ± 0.1 83.6 ± 0.1 91.0 ± 0.2 98.7 ±
0.0

BiSeNet 88.7 ± 0.5 96.0 ± 0.1 90.8
± 0.1

81.8 ± 0.5 95.0 ± 0.1 91.5 ± 0.4 86.2 ± 0.7 96.0 ± 0.1 90.8 ± 0.2 83.4 ± 0.3 90.7 ± 0.5 98.7 ±
0.0

DeepLabV3+ 88.2 ± 1.4 95.7 ± 0.2 90.0 ± 0.1 81.3 ± 0.8 95.1 ± 0.2 92.4 ± 0.2 86.3 ± 1.4 95.5 ± 0.4 90.6 ± 0.6 83.1 ± 0.7 90.5 ± 1.1 98.7 ±
0.0

OS_MGU 88.8 ± 0.7 95.8 ± 0.3 90.1 ± 0.5 80.9 ± 0.7 94.9 ± 0.2 92.2 ± 0.3 87.4 ± 0.1 96.0 ± 0.2 90.7 ± 0.3 83.4 ± 0.5 90.7 ± 0.4 98.7 ±
0.0

Attention
U-Net

87.7 ± 0.7 95.3 ± 0.3 89.1 ± 0.3 80.4 ± 0.8 94.7 ± 0.3 92.0 ± 0.3 86.5 ± 1.7 95.8 ± 0.2 90.2 ± 0.3 82.5 ± 0.4 89.9 ± 0.6 98.6 ±
0.1

Ours 89.7
± 0.4

96.1 ± 0.1 90.5 ± 0.2 82.4
± 0.2

95.3
± 0.1

92.7 ± 0.1 87.7
± 0.3

96.1
± 0.1

91.3 ± 0.1 84.4
± 0.2

91.4
± 0.3

98.8
± 0.0

Frontiers in Bioengineering and Biotechnology frontiersin.org08

He et al. 10.3389/fbioe.2023.1191803

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1191803


TABLE 2 Dice score (%), mIoU (%), Acc(%), and mPA (%) of the segmentation results on the glaucoma dataset (Li et al., 2021) by different methods. The best
performance is in bold.

Method Dice score mIoU Acc mPA Params
(M)

RNFL GCL IPL INL OPL ONL IS
+ OS

RPE Choroid OD Average

UnetR 80.5 62.6 68.1 73.1 78.1 88.6 84.5 82.0 85.9 75.7 78.4 64.5 76.9 93.8 76.2

ReLayNet 79.3 65.5 70.9 76.9 81.2 90.4 86.0 81.7 87.8 79.3 80.3 67.1 79.4 94.3 0.7

BiSeNet 79.9 63.5 70.0 73.3 78.3 89.2 83.9 80.2 88.0 83.3 79.4 65.9 79.3 94.7 13.1

DeepLabV3+ 79.9 63.9 68.5 75.1 78.7 88.8 83.3 79.5 87.9 82.7 79.3 65.7 78.6 94.6 54.6

OS_MGU 80.8 61.7 70.6 76.3 80.2 90.4 85.9 81.7 88.7 84.0 80.6 67.5 79.6 95.0 2.0

Attention
U-Net

80.4 60.3 69.0 75.1 78.0 90.3 85.9 82.4 88.1 83.2 79.9 66.5 79.7 94.7 34.8

Ours 80.9 67.1 73.8 77.4 80.8 89.9 85.5 82.8 88.6 84.4 81.5 68.8 81.5 95.1 1.9

FIGURE 6
Retinal layer segmentation prediction graphs on one random retinal test image from the glaucoma dataset (A) for the original image, (B) for the
ground-truth, (C) for the prediction of DeepLabV3+, (D) for the prediction of Attention U-Net, (E) for the prediction of ReLayNet, (F) for the prediction of
UnetR, (G) for the prediction of BiSeNet, (H) for the prediction of OS_MGU, and (I) for the prediction of our method. An enlarged graph of the local details
is also given in the prediction image for each method.
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from DME (Chiu et al., 2015). The results show that our approach
outperforms the other methods, surpassing the second-best method
by +0.9% in terms of mIoU and +1.1% in terms of Acc. Our method
shows superior segmentation capabilities in most layers, particularly
in the lesion fluid layer, where it achieves the best results, leading the
second-best method by +2.7% in terms of the Dice score. Figure 7
shows that images (e) and (g) contain evident segmentation errors,
and the edge of the fluid layer in image (c) has visible serrations.
However, our method not only achieves effective segmentation of
the retinal layer but also outperforms the other methods in the
segmentation of the lesion fluid layer. These results highlight the
robustness and precision of our model in the challenging task of
retinal layer segmentation under disease conditions.

While our model achieves the best segmentation performance
on all three datasets and maintains a relatively low model parameter
count, it does entail a somewhat higher computational cost. In our
experiments, the average inference time on a CPU was 2.04 s for the
test images of the NR206 dataset and 1.00 s for those of the DME
dataset. This higher computational cost is primarily due to the
model’s intricate structure, which incorporates a multi-scale feature
extraction structure aimed at harnessing multi-granularity visual
features. This complexity leads to increased memory usage and a
greater number of operations. In real-world clinical settings, most
medical equipment may not meet the high hardware requirements,
such as high-performance GPUs, that are available during the model
development stage. Consequently, in addition to delivering high-

TABLE 3 Dice score (%), mIoU (%), Acc(%), and mPA (%) of the segmentation results on the DME dataset (Chiu et al., 2015) by different methods. The best
performance is in bold.

Method Dice score mIoU Acc mPA

NFL GCL INL OPL ONL ISE OS Fluid Average

UnetR 70.6 81.2 63.5 63.3 80.6 80.0 77.3 38.6 70.6 54.6 68.1 91.5

ReLayNet 81.1 93.1 78.5 76.9 87.1 86.9 86.2 59.0 81.8 69.3 80.1 95.3

BiSeNet 81.7 93.2 78.6 77.8 85.8 86.1 85.2 55.6 81.3 68.5 79.0 95.4

DeepLabV3+ 80.3 92.2 76.7 75.8 85.9 86.8 86.5 55.4 80.8 67.8 79.5 95.3

OS_MGU 81.6 93.1 79.4 79.4 86.6 86.3 86.3 55.6 81.9 69.3 80.0 95.5

Attention U-Net 80.2 91.5 77.7 76.3 87.1 86.5 85.8 54.3 80.8 67.8 79.0 95.0

Ours 81.7 93.1 80.2 77.5 87.2 86.9 86.6 61.7 82.5 70.2 81.2 95.7

FIGURE 7
Retinal layer segmentation prediction graphs on one random retinal test image from the DME dataset (A) for the original image, (B) for the ground-
truth, (C) for the prediction of ReLayNet, (D) for the prediction of BiSeNet, (E) for the prediction of DeepLabV3+, (F) for the prediction of Attention U-Net,
(G) for the prediction of UnetR, (H) for the prediction of OS_MGU, and (I) for the prediction of our method.
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accuracy segmentation results, segmentation models also need to
focus on enhancing the efficiency of image inference. This would
make such models more practically applicable, particularly in
resource-constrained settings. Future work will thus aim to
optimize the trade-off between model complexity and
computational cost, ensuring the model remains accurate while
also becoming more efficient.

5.3 Model interpretation

To interpret the output of our model, we utilize a modified
version of Grad-CAM (Vinogradova et al., 2020) to visualize feature
activations at different layers of the network (see Figure 8).
Specifically, we extract the feature activations from DE-CBAM1
(early layer) and the OC block (deep layer). In Figure 8, the heatmap
generated by DE-CBAM1 exhibits edge-like structures. The
activated region in the heatmap (Figure 8E) bears a resemblance
to the outline of the prediction map for that specific layer shown in
Figure 8D. This observation indicates that the superficial network
primarily captures low-level image features. Furthermore, the
activated region in the heatmap (Figure 8H) roughly corresponds
to the upper and lower boundaries of the OS layer. This finding
aligns with the notion that the deeper layers of the network capture
higher-level features and contextual information. By visualizing the

feature activations at different layers, we gain insights into the
model’s decision-making process and understand which image
regions contribute more strongly to the segmentation results.

Upon analyzing the deep feature activation map, we observe that
not only are the regions corresponding to the prediction layer
prominently highlighted but the feature weights of adjacent layers
are also significantly amplified. This phenomenon suggests that the
model leverages information from neighboring layers to enhance its
predictions. For instance, in Figure 8F, the focus is primarily on the
GCL layer, but the neighboring layers, such as NFL and INL, also
exhibit varying degrees of activation. Similarly, in Figure 8O, the
background area of the retinal layer is the main focus, while
information from the NFL and RPE layers at the upper and lower
boundaries of the retinal layer is also utilized. To understand this
behavior, we conducted further analysis and found that the
boundaries of retinal layers exhibit a high degree of correlation
with adjacent layers. This observation suggests that the deeper
layers of the model network extract image features that contain
richer and more insightful semantic information. By incorporating
information from neighboring layers, the model improves its ability to
capture the fine details and contextual information necessary for
accurate segmentation. Overall, the visualization of deep feature
activations provides valuable insights into the model’s decision-
making process and highlights the integration of information from
multiple layers for more robust segmentation results.

FIGURE 8
Heatmap of the deep network layer and superficial network layer obtained by different categories, respectively, (A–C) for the NFL, (D–F) for the GCL
+ IPL, (G–I) for the OS, (J–L) for the RPE, and (M–O) for the background.
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In our segmentation task, each pixel is associated with multiple
category output probabilities. We use the entropy measure (Kapur
and Kesavan, 1992) to quantify the uncertainty of the model’s
output. The entropy is defined as follows:

H X( ) � −∑
i

p xi( )log p xi( )( ), (9)

where p (xi) denotes the output probability of category xi.
Specifically, when a retinal image is processed by a segmentation
model, each pixel is associated with m values (m represents the
number of retinal layers segmented), and each value represents the
output probability of each category. We translate these values so that
the minimum value is greater than 0 and the sum of thesem values is
1. The transformed values are p (xi), where i ∈ (0, m]. The higher the
probability of certain categories is, the lower the entropy is. The
more uniform the probability of the categories is, the higher the
entropy is. In Figure 9F, we observe that the entropy values of the
GCL layer to the OPL layer, the OS layer, and the background region
are relatively lower, indicating lower uncertainty of the model in
these regions. However, in the ONL layer and macular region, there
is a significant increasing trend of uncertainty. This trend may be
attributed to the wider interval of pixel value distribution in this
region, leading to a more uniform probability distribution output by

the model, as depicted in Figure 9D. Interestingly, although the
uncertainty is higher in the ONL layer and macular region, as shown
in Figure 9E, the segmentation results in this region do not exhibit
significant errors. This finding suggests that the occurrence of
segmentation errors increases when the uncertainty reaches a
certain level, beyond which the model struggles to provide
accurate predictions. The analysis of uncertainty provides insights
into the reliability and confidence of the model’s predictions. By
examining the entropy values, we can identify regions with higher
uncertainty, which may require further investigation or additional
expert input to ensure reliable segmentation results.

5.4 Ablation studies

We perform ablation experiments on the NR206 dataset with the
main objectives to verify 1) the impact of various feature backbones
on the segmentation performance and 2) the role of the DE-CBAM
module on the whole framework.Impacts of feature backbones.We
compare ConvNeXt with Vgg16 (Simonyan and Zisserman, 2014),
ResNet (He et al., 2016), Xception (Chollet, 2017), ViT (Dosovitskiy
et al., 2020), and other mainstream backbones in the framework for
DeepLabV3+ without the ASPP module. Table 4 shows that the

FIGURE 9
Uncertainty visualization of segmentation probabilities. (A) and (D) are the same retina layer graph, (B) and (E) are the segmentation result graphs for
Attention U-Net and our method respectively, and (C) and (F) are two corresponding uncertainty probability graphs, respectively.

TABLE 4 mIoU (%) of the segmentation results on the NR206 dataset by different mainstream backbones in the framework for DeepLabV3+ without the ASPP
module. The best performance is in bold.

Vgg16 ResNet101 ResNet152 ViT16 ViT32 Xception ConvNeXt-B

81.1 81.8 84.0 68.9 71.1 82.4 84.7

TABLE 5 Ablation experiment of the DE-CBAM in our framework performed by comparing the Dice score (%) on the NR206 dataset. The settings aremarkedwith an
asterisk (+), and the best performance on the two scales and four scales is in bold.

CBAM DE-CBAM NFL GCL INL OPL ONL ELM + IS OS RPE Average

+ 86.2 91.8 85.8 74.4 89.5 91.8 86.9 95.3 88.0

+ 89.4 96.0 90.4 82.4 95.4 92.7 87.8 96.1 91.5
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ConvNeXt enables us to achieve a higher segmentation quality and
outperforms the second-best place, ResNet152, by 0.7% on
mIoU.Impacts of DE-CBAM. The experimental results are
shown in Table 5. By using the DE-CBAM module, we can
improve the performance over the CBAM module; specifically,
we achieve a +3.5% Dice score on average. We observed
improved performance of DE-CBAM by increasing the depth of
the network. As described in Section 3.4, we do not change the
internal structure of the CBAM and insert two consecutive depth-
wise separable convolutions at its output, which improves the
network’s utilization of the feature map.

6 Conclusion

Wepresented a novelmulti-scale end-to-end network for improved
retinal layer segmentation in normal healthy human eyes. Our network
incorporates a state-of-the-art attention module to efficiently utilize
feature information and utilizes a ConvNeXt-based backbone for
accurate segmentation. In addition, we provide a semantic
segmentation dataset comprising 206 retinal layer OCT images of
healthy human eyes, with each image annotated into nine classes.
The dataset has an average percentage of annotated pixels in the retinal
layer of 14.82%, excluding the background. This dataset is readily usable
without requiring any pre-processing steps. We validate our approach
on the NR206 dataset and a glaucoma dataset, demonstrating superior
segmentation performance compared to other state-of-the-art methods.
Our approach achieves an average Dice score of 91.3% and mIoU of
84.4% on the NR206 dataset and similar excellent performance on the
glaucoma dataset. Furthermore, we evaluate our method on a DME
dataset to demonstrate its generalization capability, achieving the best
performance with a smaller number of parameters. In future research,
we suggest exploring the application of retinal layer segmentation in the
early detection of ophthalmic diseases. This field holds significant
potential for improving disease diagnosis and treatment monitoring
in ophthalmology.
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