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Introduction: Reactive oxygen species (ROS)-mediated therapies have typically
been considered as noninvasive tumor treatments owing to their high selectivity
and efficiency. However, the harsh tumormicroenvironment severely impairs their
efficiency.

Methods: Herein, the biodegradable Cu-doped zeolitic imidazolate framework-8
(ZIF-8) was synthesized for loading photosensitizer Chlorin e6 (Ce6) and CaO2

nanoparticles, followed by surface decoration by hyaluronic acid (HA), obtaining
HA/CaO2-Ce6@Cu-ZIF nano platform.

Results and Discussion: Once HA/CaO2-Ce6@Cu-ZIF targets tumor sites, the
degradation of Ce6 and CaO2 release from the HA/CaO2-Ce6@Cu-ZIF in
response to the acid environment, while the Cu2+ active sites on Cu-ZIF are
exposed. The released CaO2 decompose to generate hydrogen peroxide (H2O2)
and oxygen (O2), which alleviate the insufficiency of intracellular H2O2 and hypoxia
in tumor microenvironment (TME), effectively enhancing the production of
hydroxyl radical (•OH) and singlet oxygen (1O2) in Cu2+-mediated
chemodynamic therapy (CDT) and Ce6-induced photodynamic therapy (PDT),
respectively. Importantly, Ca2+ originating from CaO2 could further enhance
oxidative stress and result in mitochondrial dysfunction induced by Ca2+

overloading.

Conclusion: Thus, the H2O2/O2 self-supplying and Ca2+ overloading ZIF-based
nanoplatform for cascade-amplifiedCDT/PDT synergistic strategy is promising for
highly efficient anticancer therapy.
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1 Introduction

Cancer is one of themost lethal diseases and causesmillions of deaths
annually with increasing mortality worldwide. Considering the high risk
and death rate of cancer, scientists around the world have dedicated
themselves to achieving effective and precise diagnoses as well as safe and
hazard-free therapy to fight against it. With the rapid development in
nanotechnology over the past 2 decades, nanomaterials have provided an
advanced approach from anti-cancer experts and are expected to be used
in cancer imaging and treatment therapy. (Wang et al., 2021a; Yang et al.,
2021a; Zhang et al., 2021; Zhou et al., 2021; Shan et al., 2022; Zhang et al.,
2022; Li et al., 2023; Lu et al., 2023). Metal-organic frameworks (MOFs)
with potential biological performance, such as biocompatibility,
cytotoxicity, and biodistribution, have been extensively studied in
nanotherapeutics. (Wang et al., 2019a; Xie et al., 2019a; Yang et al.,
2019a; Zhang et al., 2019a; Zhao et al., 2019; Pandey et al., 2020). MOFs
are a series of crystallized porous materials coordinated by metal-
containing cores (e.g., metal ions and clusters) and organic linkers
(e.g., carboxylate ligands, phosphonates, sulfonates, and other
negatively charged ligands). MOFs are not only good carriers of
nanocargo (drugs and contrast agents) because of their porous and
oriented structure but also contrast agents themselves due to their
multifunctional building blocks. (Wang et al., 2019b; Cai et al., 2019;
Ren et al., 2019; Rojas et al., 2019). Importantly, with good
biodegradability and biocompatibility, MOF composites could be
constructed as physiological environment-accommodative synergist
therapy platforms. (Wang et al., 2021b; Liang et al., 2021; Bian et al.,
2022). Because of this, incorporating functionalized compositions and
comprehensive structures within MOFs to obtain nanoplatforms with
collective properties and advanced performance has attracted much
attention.

As a major molecule produced during oxidative stress, reactive
oxygen species (ROS) contains singlet oxygen (1O2), superoxide
anions (O2

−), and hydroxyl radicals (•OH), which are considered
to be essential factors in the occurrence, development, and recurrence
of cancer. (Yang et al., 2019b; Li et al., 2021a; Tao et al., 2022; Truong
Hoang et al., 2022; Yu et al., 2022; Cao et al., 2023). Furthermore,
depending on their high selectivity and unrecognized drug resistance,
ROS-mediated therapies such as chemodynamic therapy (CDT)
(Zhao et al., 2021a; Yang et al., 2021b; Zhou et al., 2021) and
photodynamic therapy (PDT) (Zhang et al., 2019b; Zhao et al.,
2021b; Rui et al., 2021) have been considered as noninvasive anti-
cancer treatments. CDT utilizes the Fenton/Fenton-like reaction
between catalysts and hydrogen peroxide (H2O2) to generate
cytotoxic •OH, (Chen et al., 2020; Wang et al., 2020; Cao et al.,
2021), while PDT relies on nontoxic photosensitizers that are
activated by visible or/and near-infrared (NIR) light to convert
oxygen (O2) to 1O2. (Deng et al., 2017; Xie et al., 2019a; Yang
et al., 2019c; Monro et al., 2019; Sivasubramanian et al., 2019).
However, the harsh tumor microenvironment (TME) is an
obstacle against achieving highly efficient therapeutic efficacy.
Compared to normal cells, TME exhibits unique characteristics,
such as mildly acidic conditions (pH = 5.5–6.5), internal hypoxic
environment, high levels of intracellular glutathione (GSH, ~10 ×
10−3 M), excessive H2O2, (50−100 × 10−6 M), and hypoxia conditions.
(Wang et al., 2018; Peng et al., 2021; Chang et al., 2022). The low
intracellular H2O2 concentration and inherent hypoxia at tumor sites
result in the low ROS production efficiency of CDT and PDT,

respectively. In addition, the strong antioxidant GSH in TME also
would downregulate the ROS level, aggravating the attenuation of
antitumor efficiency. Li et al. loaded the chemotherapy prodrug
disulfiram (DSF) and coated glucose oxidase (GOD) on the surface
of Cu/ZIF-8 nanospheres and finally encapsulated manganese dioxide
(MnO2) nanoshells to achieve efficient DSF-based cancer
chemotherapy and dual-enhanced CDT. The MnO2 layer could
achieve GSH depletion and relieve tumor hypoxia in the TME, the
released Mn2+ could initiate T1-MRI for the tracking of the
nanocatalyst in vivo, and the O2 produced in the reaction could
oxidize glucose toH2O2 and gluconic acid in the presence of GOD. (Li
et al., 2021b). Thus, engineering H2O2/O2 self-supplying therapeutic
nanoplatforms to increase in situ the H2O2 and O2 concentration at
tumor sites and constructing a CDT/PDT strategy to achieve a more
synergistic effect than that of single-modemight be possible solutions.

More attractively, most of the latest research has provided
approaches to improve the propagation of H2O2 and relieve hypoxia
at tumor sites. (Wang et al., 2019c; Liu et al., 2019). Among them, a
highly biocompatible metal peroxide, calcium peroxide (CaO2), has
received widespread attention because of its excellent advantages, such
as the simultaneous generation ofO2 andH2O2 immediately following a
reactionwithwater, serving as a donor ofH2O2, and eliminatingGSH in
response to TME. (Sun et al., 2021a; Sun et al., 2021b; Liu et al., 2022a;
Liu et al., 2022b). Additionally, overloaded exogenous Ca2+ could induce
mitochondrial damage and further disorder the oxidative stress,
resulting in the imbalance of calcium transport channel and
accelerating tumor calcification-mediated apoptosis. (Zhang et al.,
2019c; He et al., 2021; Wan et al., 2021; Docampo and Vercesi,
2022; Zheng et al., 2022). Hence, CaO2 could be appreciated as an
advanced candidate for the rational design of multifunctional
nanoplatforms for promoting CDT and PDT efficiency while
achieving mitochondrial-localized Ca2+ overloading, ultimately
allowing amplification of intracellular ROS-mediated therapeutic
effect. (Hu et al., 2020; Shen et al., 2021; Chen et al., 2022).

Zeolitic imidazolate framework-8 (ZIF-8), composed of the
coordination of Zn ions with 2-methylimidazole (2-MeIM), is a
promising MOF for the construction of therapeutic nanoplatforms.
(Xie et al., 2019b; Qin et al., 2019; Yang et al., 2020; Wang et al.,
2021c; Jiang et al., 2022; Li et al., 2022). In this study, the
biodegradable Cu-doped ZIF-8 was synthesized for loading
photosensitizer Chlorin e6 (Ce6) and CaO2 nanoparticles (NPs),
followed by surface modification by hyaluronic acid (HA), finally
obtaining HA/CaO2-Ce6@Cu-ZIF nano platform. Once HA/CaO2-
Ce6@Cu-ZIF targets tumor sites through HA-mediated active
endocytosis and degrading by hyaluronidase (HAase), the
degradation of Ce6 and CaO2 is released from the HA/CaO2-
Ce6@Cu-ZIF in response to the acid environment, while the
Cu2+ active sites on Cu-ZIF are exposed. The released CaO2

decompose to generate H2O2 and O2, which alleviates the
insufficiency of intracellular H2O2 and hypoxia in TME,
effectively amplifying the production of •OH and 1O2 in Cu2+-
mediated CDT and Ce6-induced PDT, respectively. Importantly,
Ca2+ originating from CaO2 could further amplify the oxidative
stress and lead to mitochondrial dysfunction induced by Ca2+

overloading. Thus, the H2O2/O2 self-supplying and Ca2+

overloading MOF-based nanoplatform for cascade-amplified
CDT/PDT synergistic strategy is promising for highly efficient
anticancer therapy.
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2 Experimental section

2.1 Chemicals

Zn(NO3)2•6H2O (0.1 M), 2-MeIM (C4H6N2, 99%),
Cu(NO3)2•3H2O (AR), CaCl2 (97%), and HA (10 k) were
purchased from Shanghai Aladdin Technology Co., Ltd. Ce6,
DAPI, MTT, calcein-AM, and PI were supplied by Sigma-
Aldrich. The annexin V-FITC/PI apoptosis kit was obtained from
MultiScience Biotech Co., Ltd. All liquid chemical reagents were
used without further purification.

2.2 Synthesis of CaO2 NPs

CaO2 NPs were obtained by a hydrolysis–precipitation process.
A specific amount of CaCl2 (1 g) was sent into the HA (50 mL,
0.1 M) solution at room temperature under continuous stirring for
30 min. After that, NH3•H2O (5 mL, 1 M) and H2O2 (1.5 mL, 30%)
were sequentially injected and synthesized for 3 h. Afterward, NaOH
(1.0 mL, 1 M) was added under ultrasound. Finally, the CaO2 NPs
were purified by centrifugation (13,000 rpm, 10 min) and
sequentially washed with NaOH solution, pure water, and
anhydrous ethanol three times.

FIGURE 1
TEM images of (A,B) CaO2 NPs and (C,D) CaO2@Cu-ZIF. (E) Corresponding area-elemental mapping of CaO2@Cu-ZIF. (F) XRD patterns of
stimulated ZIF-8, CaO2, and CaO2@Cu-ZIF. (G) Zeta potentials of CaO2, CaO2@Cu-ZIF, CaO2-Ce6@Cu-ZIF, and HA/CaO2-Ce6@Cu-ZIF. (H) FT-IR
spectrum of CaO2 and HA/CaO2-Ce6@Cu-ZIF. (I) DLS of CaO2, CaO2-Ce6@Cu-ZIF, and HA/CaO2-Ce6@Cu-ZIF. (J) XPS spectrum of HA/CaO2-Ce6@
Cu-ZIF. (K–M) High-resolution XPS spectrum of Zn, Cu, and Ca, respectively.
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2.3 Synthesis of HA/CaO2-Ce6@Cu-ZIF

The HA/CaO2-Ce6@Cu-ZIF was prepared via an unfussy one-step
method. A specific Zn(NO3)2•6H2O (300 mg) and Cu(NO3)2•3H2O
(50 mg) were dissolved in methanol (100 mL) and formed an uniform
solution. Then, 2-MeIM (190 mg), HA-stabilized CaO2 NPs (50 mg),
and Ce6 (20 mg) dissolved in the methanol solution (100 mL) were
added drip by drip and reacted for at least 30 min underN2 atmosphere.
Finally, the HA/CaO2-Ce6@Cu-ZIF was collected by centrifugation
(13,000 rpm, 10 min) and washed with methanol three times.

2.4 Characterizations

TME images and corresponding elemental mapping were
collected from Tecnai T20 at an accelerating voltage of 200 kV.
The size of nanoparticles was calculated using Image J for
100 counting number. XRD patterns were obtained from Bruker
D8 ADVANCE (Cu Kα radiation (λ = 0.154 nm) at 40 kV and
40 mA. Zeta potential and DLS measurements were gained by

Zetasizer Ultra with He-Ne laser (633 nm). UV-vis absorption
spectra were acquired from Shimadzu UV-1601. XPS spectra
were analyzed from Rigaku DMAX-2400. FT-IR spectrum was
accumulated from Nicolet Avatar 360 with the KBr wafer
technique. ICP-OES measurements were surveyed from iCAP
6000 series. CLSM images were captured from Leica SP8. Flow
cytometry was measured using BD accuri C6.

2.5 ROS generation estimation

The generation of •OH was analyzed by TMB chromogenic
reaction in pH, concentration, and time-dependent manners. The
generation of 1O2 was determined by the DPBF chemical probe.

2.6 In vitro experiments

Cellular uptake of as-synthesized materials was operated on
Panc02 cells. Cells were seeded in 6-well plates with a density of 1 ×

FIGURE 2
(A) Particle sizes of HA/CaO2-Ce6@Cu-ZIF within 7 days in cell medium. (B) UV-vis absorption spectra of Ce6, CaO2, CaO2@Cu-ZIF, and HA/CaO2-
Ce6@Cu-ZIF. (C) UV-vis absorption of DPBF mixed with HA/CaO2-Ce6@Cu-ZIF as a function of reaction time under 650 nm laser irradiation. (D) UV-vis
absorption of DPBF mixed with PBS at same condition. (E) Relative intensity value of UV-vis absorption peak at 410 nm for DPBF mixed with HA/CaO2-
Ce6@Cu-ZIF and PBS, respectively. (F) Fluorescence spectra of DCFH-DA mixed with HA/CaO2-Ce6@Cu-ZIF under 650 nm laser irradiation for
different time. (G) UV-vis spectra of TMB + HA/CaO2-Ce6@Cu-ZIF under pH at 4.5, 5.5, 6.5, and 7.4. (H)UV-vis spectra of TMB + HA/CaO2-Ce6@Cu-ZIF
at the concentration of HA/CaO2-Ce6@Cu-ZIF as 0, 5, 15, and 20 μg/mL under pH 6.5. (I) UV-vis absorption peak at 650 nm for TMB + HA/CaO2-Ce6@
Cu-ZIF at the concentration of HA/CaO2-Ce6@Cu-ZIF as 5, 15, and 20 μg/mL with different times. All laser pump powers are 0.5 W/cm2.
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105 cells per well. The MTT cell assay was employed to evaluate the
biocompatibility and toxicity of as-synthesized materials on
L929 and Panc02 cells, respectively. Moreover, the live/dead cell
assay was conducted to verify the cytotoxicity of the material on
Panc02 cells. For intracellular ROS detection, a DCFH-DA chemical
fluorescence probe was used. For the mitochondrial integrity assay,
JC-1 staining kits were used to determine the J-monomer and
J-aggregates separately. The intracellular fluorescence was
observed by CLSM.

2.7 In vivo experiments

To investigate the biodistribution, the Panc02 tumor-bearing
C57BL/6 mice were intravenously administered as-synthesized
materials. For biodistribution investigation, the mice were
sacrificed after 0, 2, 6, 12, 24, and 48 h. The heart, liver, lungs,
spleen, kidneys, and tumors were collected for Cu contraction
measurement. To estimate the anti-tumor efficacy of as-
synthesized materials, the Panc02 tumor-bearing C57BL/6 mice

FIGURE 3
(A)Calcein-AM/PI double staining of Panc02 cells with different treatments and corresponding flow cytometry analysis by annexin V-FITC apoptosis
detection kit. (B) Intracellular ROS level of Panc02 cells with different treatments. (C) Relative cell viabilities of Panc02 cells after treatment with different
samples. (D) JC-1 staining of Panc02 cells after different treatments. (E)CLSM images of Panc02 cells incubated with HA/CaO2-Ce6@Cu-ZIF for different
times.
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were randomly placed into five groups (n = 5): control, CaO2,
CaO2@Cu-ZIF, HA/CaO2-Ce6@Cu-ZIF, and HA/CaO2-Ce6@Cu-
ZIF + Laser. During the treatment process, the tumor sizes and
weights of mice were recorded once every 2 days: tumor volume =
(tumor length) × (tumor width)2/2 (mm3).

2.8 Histology examination

After treatment process, the tumor and main organs (heart,
liver, spleen, lung, and kidney) were collected for (H&E) staining
according to the standard protocol for confirming caused injury.

2.9 Statistical analysis

All results were presented as mean ± S.D. Means were indicated
using the student’s t-test. Statistical significance was determined at a
value of *p < 0.05, **p < 0.01, ***p < 0.001.

3 Results and discussion

3.1 Characterization of HA/CaO2-Ce6@
Cu-ZIF nanoplatform

The synthesis of HA/CaO2-Ce6@Cu-ZIF was done through a
two-step process. At first, CaO2 NPs were synthesized through a
hydrolysis-precipitation process. Then, the HA/CaO2-Ce6@Cu-ZIF
was synthesized through a simple one-step method. In detail, a
specific Zn(NO3)2•6H2O and Cu(NO3)2•3H2O were dissolved in
methanol and formed a uniform solution. Following this, 2-MeIM,
HA-stabilized CaO2 NPs, and Ce6 dissolved in the methanol
solution were added drop by drop and reacted for 30 min to
obtain HA/CaO2-Ce6@Cu-ZIF. As revealed by transmission
electron microscopy (TEM), the CaO2 NPs are about 90 ±
2.3 nm, demonstrating the uniform size distribution. (Figures 1A,
B). X-ray diffraction (XRD) pattern reveals that the synthesized
CaO2 NPs show obvious peaks at 30.1°, 35.6°, and 47.3° (Figure 1F),
which is consistent with the JCPDS, No. 03-0865 according to
previous literature for CaO2. (Sun et al., 2021a). After this, Cu-
ZIF was utilized to encapsulate the CaO2 NPs and Ce6 via a self-
assembly method to obtain the HA/CaO2-Ce6@Cu-ZIF
nanoplatform. The TEM image shows that the HA/CaO2-Ce6@
Cu-ZIF presents a regular octahedral shape with a particle size of
around 110 ± 3.8 nm (Figures 1C, D). The homogeneous
distributions of Zn, Cu, Ca, N, and O elements in HA/CaO2-
Ce6@Cu-ZIF are revealed by the elemental mapping, which
demonstrates the successful loading of CaO2 NPs (Figure 1E).
Moreover, the XRD pattern of HA/CaO2-Ce6@Cu-ZIF is
consistent with that of ZIF-8, indicating that the as-synthesized
materials are well held in the crystal structure of ZIF-8 (Figure 1F).
(Li et al., 2021b) To endow the CaO2-Ce6@Cu-ZIF with higher
hydrophilicity for further biological application, HA with superior
biocompatibility and targeted ability was employed for surface
modification. As displayed in Figure 1G, the zeta potentials of
CaO2, CaO2@Cu-ZIF, CaO2-Ce6@Cu-ZIF, and HA/CaO2-Ce6@
Cu-ZIF are −20.03, +10.12, +23.9, and −25.6 mV, respectively,

indicating that the CaO2 NPs and Ce6 are successfully
introduced into the Cu-ZIF and HA are effectively modified on
the surface of as-synthesized materials. Meanwhile, the size
distribution of CaO2, CaO2-Ce6@Cu-ZIF, and HA/CaO2-Ce6@
Cu-ZIF was obtained from the dynamic light scattering (DLS)
measurements, the polydispersity index of which was 0.18, 0.19,
and 0.17, respectively, demonstrating the good stable ability of HA
modification. Figure 1I shows the hydrodynamic diameter is 142,
164, and 220 nm, respectively. The Fourier transform infrared (FT-
IR) spectrum was recorded in the wavelength range of
500–4,000 cm–1 (Figure 1H), also suggesting the sequential
addition of CaO2, Ce6, and HA, finally forming HA/CaO2-Ce6@
Cu-ZIF. (Li et al., 2021a). As shown in X-ray photoelectron
spectroscopy (XPS), HA/CaO2-Ce6@Cu-ZIF was also performed
to evaluate the valence electron distribution, and the spectra are
presented in which the coexistence of Zn, Cu, Ca, N, and O signals
appear (Figure 1J). The high-resolution XPS of Zn, Cu, and Ca are
shown in Figures 1K–M. In the high-resolution XPS of Cu spectrum,
933.3 and 953.6 eV peaks are assigned to Cu 2P3/2 and Cu 2p1/2,
respectively. In addition, the satellite peaks at around 943.1 eV
demonstrate the presence of Cu2+. (Li et al., 2021b). All the
above materials’ characterizations imply the rational design and
synthesis of H2O2/O2 self-supply and Ca2+ overloading MOF-based
nanoplatform.

3.2 CDT/PDT synergistic effect of HA/CaO2-
Ce6@Cu-ZIF nano platform

The stability experiments of HA/CaO2-Ce6@Cu-ZIF show that
the as-synthesized materials maintain good dispersion within 7 days
in cell medium (Figure 2A).The ultraviolet-visible (UV-vis)
absorption spectra of Ce6, CaO2, CaO2@Cu-ZIF, and HA/CaO2-
Ce6@Cu-ZIF was shown in Figure 2B. Compared with the broad
peak of CaO2 and CaO2@Cu-ZIF ranging from 450 to 800 nm, the
absorption band of HA/CaO2-Ce6@Cu-ZIF not only has the broad
peak of CaO2@Cu-ZIF but also exhibits the typical characteristic
peak of Ce6 around 650 nm. Encouraged by the results from the
photo-properties of HA/CaO2-Ce6@Cu-ZIF, the 1O2 generation of
PDT effect was explored by the UV-vis spectrum, where the 1,3-
diphenylisobenzofuran (DPBF) was used as a real-time probe. The
HA/CaO2-Ce6@Cu-ZIF and PBS solutions were irradiated by
650 nm laser (0.5 W/cm2), respectively. At first, the HA/CaO2-
Ce6@Cu-ZIF could release Ce6 under acidic conditions. Then,
DPBF could be oxidized by 1O2 which was generated from the
combination of the released Ce6, light, and self-supplying O2, so that
the absorption peak of the DPBF (the specific absorption wavelength
was at 410 nm) gradually decreased along with time increase
(Figure 2C). However, the absorption peak of the DPBF solution
that was treated with PBS was almost unchanged (Figure 2D). The
relative intensity value of the UV-vis absorption peak at 410 nm for
DPBF mixed with HA/CaO2-Ce6@Cu-ZIF and PBS, respectively,
further demonstrates the apparent decrease of DPBF absorption
intensity (Figure 2E). To further confirm the production of 1O2, the
2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) was also
used (Figure 2F). And the results are consistent with the above.
For •OH detection, a typical colorimetric analysis based on 3,3′,5,5′-
tetramethyl-benzidine (TMB) was utilized to investigate the CDT
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effect of HA/CaO2-Ce6@Cu-ZIF. HA/CaO2-Ce6@Cu-ZIF can
catalyze the oxidation of TMB to yield blue-colored oxTMB with
typical absorbances at 370 and 652 nm. Considering the
biodegradable properties related to the pH value of HA/CaO2-
Ce6@Cu-ZIF, the influence of the pH on •OH generation was
first analyzed (pH = 4.5, 5.5, 6.5, and 7.4). The result shows that
the pH has a significant influence on the •OH generation
(Figure 2G). There is no evident •OH generation at pH 7.4,
while the ability of •OH generation remarkably increases with
the downregulation of pH. Then the concentration effect of HA/
CaO2-Ce6@Cu-ZIF for •OH generation was also investigated
(Figure 2H). It shows an advanced ability of •OH generation
along with the increased concentration (5, 15, and 20 μg/mL
under pH 6.5). The •OH generation ability of HA/CaO2-Ce6@
Cu-ZIF related to time was also investigated (Figure 2I).

3.3 Invitro experiments of HA/CaO2-Ce6@
Cu-ZIF nanoplatform

Given the successful construction of HA/CaO2-Ce6@Cu-ZIF and
advanced ROS generation capacity, the therapeutic effect of HA/
CaO2-Ce6@Cu-ZIF against Panc02 cells in vitro was further
investigated. The therapeutic performance was first examined
through the calcein-AM and propidium iodide (PI) double-
staining assay (Figure 3A). The confocal laser scanning microscopy

(CLSM) images show that the HA/CaO2-Ce6@Cu-ZIF + Laser group
exhibits the highest red-green ratio, where the red represents dead
cells and green represents living cells, indicating the excellent anti-
cancer effect of HA/CaO2-Ce6@Cu-ZIF. Meanwhile, the flow
cytometric apoptosis assay with Annexin V-FITC and PI staining
was used to calculate the apoptotic cell death mediated by HA/CaO2-
Ce6@Cu-ZIF. The apoptotic ratio induced by HA/CaO2-Ce6@Cu-
ZIF under irradiation was 51.83% (the sum of Q2 and Q3), which was
markedly higher than other groups under the same condition. This is
mainly attributed to synergistic H2O2/O2 self-supplying CDT/PDT
synergistic effect. The intracellular ROS triggered by HA/CaO2-Ce6@
Cu-ZIF under laser irradiation was further investigated using a 2,7-
dichlorofluorescein diacetate (DCFH-DA) probe, which can be
hydrolyzed to DCFH. This can be rapidly oxidized by the
generated ROS and form DCF with green-fluorescent (excited by
488 nm). The CLSM images exhibit that there is almost no green
fluorescence in the control and CaO2 groups. On the contrary, weak
green fluorescence is exhibited in CaO2@Cu-ZIF and HA/CaO2-
Ce6@Cu-ZIF groups. The strongest green fluorescence in the HA/
CaO2-Ce6@Cu-ZIF + Lase group indicates that HA/CaO2-Ce6@Cu-
ZIF under laser irradiation could generate more toxic ROS to induce
tumor cell death (Figure 3B). The cytocompatibility of HA/CaO2-
Ce6@Cu-ZIF on L929 normal cells was evaluated by the 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
method (tetramethylazole salt microenzyme reaction colorimetric
assay). As shown in Supplementary Figure S1, HA/CaO2-Ce6@Cu-

FIGURE 4
(A) Schematic illustration of Panc02 tumor-bearing mice model and treatment process. (B) Body weights and (C) relative tumor volume change
curves of Panc02 tumor-bearingmice after various treatments. (D) Biodistribution of HA/CaO2-Ce6@Cu-ZIF in main organs and tumors at different time
points (n = 3). (E) H&E-stained photographs of tumor slices obtained from Panc02 tumor-bearing mice in different groups after treatment.
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ZIF does not exhibit significant cytotoxicity to L929 cells, and the
viability of cells treated with as-synthesized material for 24 h was
92.5% even at a concentration of 500 μg/mL, demonstrating the
“silent” HA in the normal cellular microenvironment. Afterward,
MTT assay was also used to estimate the cytotoxicity on Panc02 cells.
Compared with others, the inhibition rate of HA/CaO2-Ce6@Cu-ZIF
under laser irradiation is as high as 53.5%, where the concentration of
HA/CaO2-Ce6@Cu-ZIF is 200 μg/mL (Figure 3C). Given that the
Ca2+ overloading originating from CaO2 could further enhance the
oxidative stress and result in mitochondrial dysfunction, the
mitochondrial integrities of different treatment groups were
examined through JC-1 staining flow cytometry (Figure 3D). The
qualitative comparison of J-monomer (green) and J-aggregates (red)
following various treatments shows that the group treated with HA/
CaO2-Ce6@Cu-ZIF under laser irradiation exhibits abundant
mitochondria damage. The endocytosis process of HA/CaO2-Ce6@
Cu-ZIF in Panc02 cells was evaluated using specific fluorescence
properties of Ce6. As is known, when excited with 488 nm light, the
loaded Ce6 can radiate green fluorescence. As shown in Figure 3E, the
results suggest that HA/CaO2-Ce6@Cu-ZIF could be effectively
endocytosed by Panc02 cells and the internalization amount
increased with prolonged time.

3.4 In vivo experiments of HA/CaO2-Ce6@
Cu-ZIF nanoplatform

Inspired by the promising in vitro CDT/PDT synergistic effect of
HA/CaO2-Ce6@Cu-ZIF nanoplatform, the in vivo therapeutic assay in
Panc02 tumor-bearing C57BL/6micemodel was conducted.When the
tumor sizes reached about 100 mm3, twenty-five Panc02 tumor-
bearing mice were randomly divided into five groups, followed by
treatments: control, CaO2, CaO2@Cu-ZIF, HA/CaO2-Ce6@Cu-ZIF,
and v) HA/CaO2-Ce6@Cu-ZIF + Laser. As depicted in Figure 4A,
Panc02 tumor-bearing mice were treated by intravenous
administration on 1 and 7 days with injection doses of 15 mg/kg of
mouse body weight. The body weight (Figure 4B) and tumor volume
(Figure 4C) of mice were measured every 2 days during the treatment
process. Moreover, the time-dependent Cu biodistribution of HA/
CaO2-Ce6@Cu-ZIF at the tumor and major organs were evaluated
(Figure 4D). The results indicate an effective accumulation of HA/
CaO2-Ce6@Cu-ZIF at the tumor site, ensuring the following synergistic
CDT/PDT therapeutics. In Figure 4B, during the treatment period, all
the mice feature slight weight increases, demonstrating the negligible
negative impacts of these treatments on the health ofmice. As exhibited
in Figure 4C, the relative tumor volume was notably suppressed in HA/

FIGURE 5
Representative H&E tissue sections from mice to monitor the histological change in heart, liver, spleen, lung, and kidney excised from different
groups after treatment.
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CaO2-Ce6@Cu-ZIF + Laser group in comparison with the other
groups. Specifically, the suppression rate of the HA/CaO2-Ce6@Cu-
ZIF + Laser group was determined to be 60.8%, calculated from the
variation in the relative tumor volume. This high suppression is
attributed to the HA/CaO2-Ce6@Cu-ZIF induced cascade-amplified
CDT/PDT therapy as follows: 1) CaO2 decomposed to generate H2O2

and O2, which alleviated the insufficiency of intracellular H2O2 and
relieved hypoxia conditions in TME; 2) H2O2/O2 self-supplying
effectively enhanced the production of •OH and 1O2 in Cu2+-
mediated CDT and Ce6-induced PDT, respectively and 3) Ca2+

originated from CaO2 could further enhance the oxidative stress
and result in mitochondrial dysfunction induced by Ca2+

overloading. Intensive therapeutic efficacy was also confirmed by
hematoxylin and eosin (H&E) staining of tumor sections from each
group (Figure 4E). The results were consistent with the above tumor
growth data. Additionally, the histological observations ofmajor organs
(heart, liver, spleen, lung, and kidney) present negligible acute
pathological toxicities and adverse effects during the treatment
duration for the control or treated groups (Figure 5). These results
demonstrate that HA/CaO2-Ce6@Cu-ZIF is of high biocompatibility.

4 Conclusion

In summary, a biodegradable HA/CaO2-Ce6@Cu-ZIF
nanoplatform was rationally constructed for a H2O2/O2 self-
supplying and Ca2+ overloading CDT/PDT synergistic strategy. After
arriving at tumor sites via the specific HA targeted effect, HA/CaO2-
Ce6@Cu-ZIF responded to acidic conditions in TME and releasedCaO2

NPs and Ce6, as well as exposed Cu2+ active sites within Cu-ZIF. The
released CaO2 NPs further decomposed to efficiently generate H2O2

andO2 simultaneously for enhancing •OHand 1O2 production in Cu
2+-

mediated CDT and Ce6-participated PDT, respectively. In addition, the
accompanying Ca2+ overloading generated by the decomposition of
CaO2 NPs could induce mitochondrial dysfunction in tumor cells,
further contributing to the combined CDT/PDT. Thus, this work
provides an alternative strategy for smart reprogramming TME to
improve the efficacy of synergistic CDT/PDT treatment.
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