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The optimization of genetically engineered biological constructs is a key step to
deliver high-impact biotechnological applications. The use of high-throughput
DNA assembly methods allows the construction of enough genotypic variants to
successfully cover the target design space. This, however, entails extra workload
for researchers during the screening stage of candidate variants. Despite the
existence of commercial colony pickers, their high price excludes small research
laboratories and budget-adjusted institutions from accessing such extensive
screening capability. In this work we present COPICK, a technical solution to
automatize colony picking in an open-source liquid handler Opentrons OT-2.
COPICK relies on a mounted camera to capture images of regular Petri dishes and
detect microbial colonies for automated screening. COPICK’s software can then
automatically select the best colonies according to different criteria (size, color
and fluorescence) and execute a protocol to pick them for further analysis.
Benchmark tests performed for E. coli and P. putida colonies delivers a raw
picking performance over pickable colonies of 82% with an accuracy of 73.4%
at an estimated rate of 240 colonies/h. These results validate the utility of COPICK,
and highlight the importance of ongoing technical improvements in open-source
laboratory equipment to support smaller research teams.
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1 Introduction

Recent developments in genome editing tools and protocols [i.e., Golden Gate (Engler
et al., 2008), MoClo (Weber et al., 2011) or BASIC (Storch et al., 2015; Storch et al., 2017)]
have enabled molecular biologists to build modular DNA sequences with an unprecedented
velocity and success rate (McGuire et al., 2020). As a consequence, the assembly of complex
functional genetic devices, such as artificial operons (Hérisson et al., 2022) or logic circuits
(Jones et al., 2022) has become technically and economically accessible (Storch et al., 2020).
The inherent tendency of such constructs to exhibit unpredictable outcomes due to their
intrinsic biological complexity (Gardner, 2013) can be compensated by the high-throughput
assembly capability that these techniques may deliver. However, the effort required to test all
candidate constructions grows as well (Leavell et al., 2020). Typical clone screening stage
requires the separation of cells by plating onto a solid substrate, followed by a further
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discrimination step between negative and positive colonies. Then, a
user chosen selection criteria is applied to select the ones preferred
for final phenotypic validation and genomic sequencing analysis.

This process can be performed manually in those cases where
displaying the target phenotype involves low metabolic burdening,
and the number of DNA subunits required to assemble designed
genetic sequence is reduced. On the contrary when genetic design
grows in complexity (i.e., large number of subunits, large
concatenation of preassembled modules, etc.) and functionality
(regulation), the combinatorial possibilities required to cover the
whole design parametric space skyrockets, and the screening
workload scales up above allowable values for human labor
(Appleton et al., 2017; Leavell et al., 2020). At this point, the
automation of selection and screening becomes the unique viable
solution in terms of time and resource consumption (Chao et al.,
2017; Hillson et al., 2019).

Colony pickers are well developed technical alternatives
available on the market that alleviate the mentioned bottleneck
in colony screening (Moffat et al., 2021). These devices consist of
a processing unit that synchronizes two hardware blocks: an
imaging system that captures an image of the solid plate
(where colonies grow), and a robotic platform that allows the
physical interaction between a picking tip and the colony plate.
Prior to picking, a specialized software processes the image to
detect, locate and characterize the colonies in the plate. This
enables the discrimination and selection of the best colonies
according to flexible criteria: colony size, geometry, color,
luminescence or fluorescence (Stephens et al., 2002; Fabritius
et al., 2018).

Despite the successes of these solutions, two major drawbacks
have prevented them from being a common tool in microbiology
laboratories. First, this technology was originally developed to cover
the needs of high-edge research institutions and companies (Hansen
et al., 1993). The design features, work capabilities and price of
commercial units are fitted for customers dealing with heavy
workloads. As a consequence, these devices are oversized (in
terms of features and capacities) with respect to those required
by smaller laboratories. Furthermore, the extra capabilities incur in
an unaffordable price for such small customer profiles. Second, most
commercial brands have developed their own programming
ecosystems, enforcing customers to hire specialized technicians to
operate the equipment, investing on costly training courses for their
own staff or paying the manufacturer under demand for the design
of custom-made protocols. Again, small actors are excluded from
expanding their screening capabilities because of their lack of
financial resources.

However, latest advances in open-source software and hardware
may turn aside such situation (Villanueva-Cañas et al., 2021;
Rodrigues et al., 2022; Sanders et al., 2022). The release of
Opentrons, the first open-source liquid handler, has promoted
the use of robotic automation in many laboratories due to its
affordable price (around 7k$) and its accessibility via Python API
(Villanueva-Cañas et al., 2021). Taking advantage of its native
programming environment, a custom-made software package can
be developed to couple hardware actuation in robot with analysis
software specifically designed to infer colony positions. The use of
convolutional neural networks (CNNs) has already demonstrated
their potential to segment objects of interest within images provided

that a good training stage is performed. A good example of this
application is Detectron, an AI based software system designed by
Facebook development team (Wu et al., 2019). It was successfully
applied to different contexts, such as the profiling of Facebook
accounts to create targeted propaganda (Rosenberg et al., 2018) or
the analysis of medical images (Amerikanos and Maglogiannis,
2022). This inference model, released on GitHub under an open-
source license in 2018, offers a good opportunity for community-
driven applications to exploit its powerful features in other fields of
study.

Here we present COPICK, a technical modification of the native
OT-2 framework to integrate on-board image acquisition with a
Detectron 2 based inference motor for on-line colony segmentation.
Pixel-based inference is screened according to user criteria and
mapped to physical domain, empowering OT-2 onboard pipette
to pick individual colonies from solid-plate media. The content of
this manuscript is presented as follows: the description of COPICK
technical solution is detailed in Section 2 (methods), which is
subdivided in 5 parts. Sections 2.1–2.3 describe the inference
algorithm, the dataset preparation and the training and
optimization process of the model; Sections 2.4, 2.5 covers the
colony coordinate calculation and applied numeric criteria for
the implemented screening methods. Results (Section 3) includes
the description of the implemented hardware adaptation (Section
3.1), the designed orchestrator software (Section 3.2) and the
performed benchmark tests (Section 3.3). Section 4 presents a
general comparison with commercial solutions (remarking strong
and weak points), and an extended discussion about its technical
tradeoffs and limitations of COPICK, together with some possible
solutions to improve its performance. Finally, we retrieve some
conclusions in Section 5.

2 Methods

2.1 Inference model description

Inferring the position of colonies in solid plates required the
support of an image analysis software to process the pictures
gathered by the imaging hardware and identify the pixel regions
showing actual real colonies. Although traditional image
segmentation algorithms have shown good performance in this
context, they are prone to generate detection artifacts under
uneven illumination conditions (Huang et al., 2005; Dey,
2019). Their performance is thus limited to a set of particular
conditions (i.e., color of the solid media composition,
morphology of colonies, color and intensity of light), and any
change in those would require a time-consuming calibration.
Colony screening should be ideally performed by a more flexible
algorithm able to obtain good performance with minimal code
modification, which would benefit a broader community of users.
In an attempt to overcome such constrain, we chose to integrate a
deep-learning algorithm because of their robust prediction
capabilities under different image scenarios and its native
flexibility to learn arbitrarily complex image patterns (Li et al.,
2017; Ha and Jeong, 2021). Concretely, we used Detectron 2, a
neural network-based object detection software created by
Facebook development team (Wu et al., 2019). Detectron 2 has
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a heavily dense layer architecture involving multi-scale feature
map extraction, region proposal network and ROI head
evaluation that makes it a robust multi-purpose image
detection model (Lin et al., 2016; Ren et al., 2017). Among the
available set of architectures, this work implemented
PanopticFPN, which was specially designed to train panoptic
segmentation models (He et al., 2020). Panoptic segmentation is
an extended image recognition task, as it simultaneously
combines semantic and instance segmentation (Kirillov et al.,
2018). Its output is a pixelmap containing not only the class label
of each pixel in the target image but also the detected and
segmented objects instances. This essentially generates a global
and more complete inference about the analyzed image, including
both the target object to identify and their related context. This
feature, combined with the native robustness of deep neural
networks against noise (generated during image acquisition
due to experimental fluctuations in light), allows producing
better inference results compared with traditional image
processing segmentation at the cost of a more complex
training dataset. An extensive dataset with annotated images
of real Petri Dishes containing microbial colonies was fed to
train the Detectron 2 model. Dataset preparation and annotation
is described next.

2.2 Dataset preparation

Detectron 2 is a machine-learning algorithm that requires a
training process using a custom dataset of images containing the
ground truth to model, that is, the empirical objects to predict. In
the chosen format (panoptic prediction), the dataset must
provide segmentation data containing not only objects of
interest (colonies), but also about every region present in every
image. In this work, we decided to implement a colony prediction
model to detect P. putida and E. coli colonies grown on
commercial Petri Dishes of different diameters (outer diameter
of 85–89 mm) filled with two different media: LB-agar and
M9 salts-Agar (Maniatis et al., 1982). To create the dataset
(see Figure 1), we first obtained a high-quality set of images. A
sample of 200 images of real agar plates containing a total number
of 18,660 colonies was gathered using a reflex camera with a
macro objective (Nikon D60 with AF-S Micro NIKKOR 60 mm f/
2.8G ED lens) assembled into a copy stand (Gelprinter).
Illumination of images was optimized by using a commercial
circular white LED lamp (inspire Manoa) coupled with an in-
house diffusor filter composed by translucent layers of
Polyethylene terephthalate (PETG). Each image was annotated
into an info database in *.csv format containing data about plate

FIGURE 1
Informative tradeoff between the required input data and delivered output for different segmentation techniques to discriminate colony presence
on agar plates. Identification of colonies has been historically addressed by image treatment segmentation techniques based on detecting local changes
of pixel intensity values in the image (up). As a consequence, this approach demands tightly controlled imaging acquisition conditions to ensure robust
results. The use of object segmentationmodels (middle) allows to relax this strict constrain by applying a learning stage in which a dedicated dataset
with object-level annotations is required. These models perform object discrimination by detecting specific geometric and pixel intensity patterns of
target bodies, and typically output the regions of interest (ROI) enclosing identified objects. However, COPICK makes use of a panoptic segmentation
model (bottom), which performs a class-based inference at pixel- and segment-level on input images. This is achieved by feeding the algorithmwith raw
images, panoptic and semantic masks and detailed annotations about the different segments composing each image.

Frontiers in Bioengineering and Biotechnology frontiersin.org03

del Olmo Lianes et al. 10.3389/fbioe.2023.1202836

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1202836


preparation (i.e., number of colonies, type of medium, etc.) that
was used during image segmentation step. Next, we used
augmentation techniques to multiply the training data
available to feed the model (Shorten and Khoshgoftaar, 2019).

From each image, we obtained 15 derivatives by applying
operations of rotation and mirroring. The final dataset totals
3,000 images and 279,900 colonies. Once the expanded image
dataset was generated, we applied a customized segmentation
algorithm to generate the pixel mapping of each image, which
was required for training panoptic inference. Figure 2 shows a
general scheme illustrating the image processing applied to each
image of the augmented dataset.

Briefly, raw input images were grayscaled and reduced in size
by cropping the Petri dish bounding box. A masking process
divided the plate in two parts that were treated separately: the
inner part was binarized using a combination of Gaussian
blurring and adaptive Gaussian thresholding method (Shapiro
and Stockman, 2001; Roy et al., 2014), and further treated with a
2D Sklansky algorithm (Sklansky, 1982) to obtain the convex hull
of binarized colonies. Petri dish border image was treated by
applying a speckle noise addition step to ease the removal of
plastic borders using a canny edge detection operator (Canny,
1986), and a final sequential filtering stage using erosion, hole
filling and top hat operations (Shapiro and Stockman, 2001).
Parameters of algorithms were manually fitted to obtain
estimations in colony counting with errors below 5% of
annotated values in the info database. Panoptic segmentation
data was created using discrete categories labeled as “colonies”
and “background.” Additionally, “colonies” objects were
sublabeled according to the number of actual colonies:
“1 colony,” “2 colonies,” etc. Regions categorized as
“background” were sublabeled into “out of plate” (raw
background) and “0 colonies” (regions within the plate with
no colonies: agar) categories. Finally the augmented image
repository and its complementary panoptic segmentation info
were parsed and stored into a set of annotated *.json and *.png
files following the data structure given by COCO dataset style for
PanopticFPN models (Lin et al., 2014).

2.3 Training, evaluation and optimization of
inference model

Figure 3 shows a description of the workflow followed to train
and optimize the inference model for colony detection. Input dataset
was split into a training and validation subsets containing 75% and
25% of images respectively. Prior to training, it was necessary to set
up the hyperparameters that control the behavior of the model
related to neural network performance (i.e., the architecture of data
processing layers, the duration of the training process or the learning
rate, etc.). Once chosen, the training algorithm ran for a variable
duration between 1 and 24 h. At the end of the run, the resulting
model was stored. Panoptic segmentation inference for any input
image takes just a few seconds. The predicting power of the trained
model was monitored after each training run. During this stage, a set
of metric scores were computed based on the inference performed
on the validation subset. In this work we selected two proxies
assessing panoptic prediction performance: Panoptic Quality
(PQ) and Segmentation Quality (SQ) (Kirillov et al., 2018).
Where PQ informs about the estimated performance of the
model to properly segment and classify all the present category
types and objects in the images, SQ focuses on evaluating the
capacity of the model to properly segment the morphology of
detected objects within the images. The value of these scores was
dependent directly on the hyperparameter choice, thus it was
necessary to select them properly.

In order to choose good values, we used the Optuna
optimization package to implement the execution of a Tree-
structured Parzen Estimator algorithm combined with a trial
pruner using a median stopping rule (Bergstra et al., 2011; Akiba
et al., 2019). The optimizer executed recurrent runs of the object
function (a complete Detectron 2 training-evaluation session)
making tentative guesses to the hyperparameter set given as
input, trying to maximize the output performance score. We
performed two rounds of optimization with a sample size of at
least 50 trials using PQ and SQ separately, storing the output set of
weights generated at each trial. Next, we evaluated the inference
capability of the whole set of weights by benchmarking their

FIGURE 2
Dataset creation workflow. A batch of 200 Petri dishes containing E. coli and P. putida colonies grown on different media were manually
photographed and annotated. This image set was next augmented 15-fold by applying different image transformations. Finally, each image was
processed using a custom-made image treatment algorithm to infer panoptic segmentation and create and parse associated annotations and masks in
COCO style format, one of the file structures accepted as valid input by Detectron 2 model.
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precision on detection (number of detected colonies and size
deviation) for a random selection of images in the dataset (see
Discussion section for more details). Finally, we analyzed the
predictive nature (conservative vs. greedy) of the preselected set
of weights and chose a balanced triad for operational purposes in
real colony detection tasks. The final output of the inference stage
was estimated as the consensus at pixel level between the three
predictions performed using this set of weights.

2.4 Robotic picking of colonies

To physically perform colony picking, OT-2 must know the
exact physical coordinates of each colony to pick in robot coordinate
reference system. However, colony coordinates are natively obtained
in local pixel reference system of the image captured by the camera.
Coordinate mapping between local pixel-based reference to robot-
based reference (in mm) involved a set of transformations described
in detail in Supplementary Material and summarized in Figure 4.
Briefly, the robot positions the camera onto the transilluminator
area and gather an image of the plate. The image is analyzed to infer
the center of the Petri Dish (Figure 4A). Petri dish area is cropped
using its bounding box (Figure 4B) and segmentation algorithm is
run to infer the binary footprint of detected colonies (Figure 4C).
Coordinates of colonies are shifted from crop image reference
system to labware image reference system (Figure 4D). Then,
shifted colony coordinates are rescaled from pixel units to

physical units (mm), and referenced to robot coordinate system
by rotating 90° anticlockwise (Figure 4E). Finally, colony centers are
parsed into a *csv file that will be uploaded to OT-2 via ssh for
colony picking execution (Figure 4F).

2.5 On-board colony screening methods

Panoptic segmentation inference delivered the outputs of the
footprint of detected colonies. This footprint was used to gather
visually related properties. In this implementation we analyze three
features typically checked in colony screening protocols: colony size,
colony color and colony brightness.

Colony size was directly obtained from panoptic prediction as
the raw pixel area occupied by every segment contained in colony
footprint. Size discrimination in real mm was derived by estimating
the pixel to mm scaling factor associated with image acquisition
camera. Colony color was retrieved by computing the pixel-average
HSV color within the colony footprint. With this information, a
color filter was programmed to select or exclude candidate colonies
based on a manually selected color range.

The screening system was programmed to generate a
normalized unitary score of every detected colony based on a
user-configurable function. In this work we selected a weighed
sum of individual marks attending to the three above mentioned
features (size, color, fluorescence) to make available the possibility of
using a multicriteria screening capability.

FIGURE 3
Schematic illustration of the training, validation and optimization workflow applied to COPICK inference model. The Detectron 2 loaded with the
PanopticFPN model was configured by assigning tentative values to a set of hyperparameters setting up its architecture. The model was trained and
evaluated using two subdivisions of the input dataset. Obtained performance scores (Panoptic Quality PQ and Segmentation Quality SQ) were separately
used as proxies to guide a fine-tuning of hyperparameter configuration by using an optimizer algorithm in two independent rounds of >50 iterations.
All resulting model weights were benchmarked using a colony counting and geometry matching test to select top 10 performers. Finally, a prediction
threshold analysis was applied to select three final sets of weights yielding a conservative, moderate and greedy predictions that were used to generate
the final inference in the robot by consensus.
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3 Results

3.1 Hardware adaptation

COPICK relies on the following hardware components:

1- A camera, to capture the spatial distribution of colonies.
2- A lighting gadget to improve the quality of captured snapshots.
3- A CPU that processes the image, segments and chooses a
defined number of colonies according to several features and
outputs their corresponding coordinates.
4- A computer numerical control (CNC) hardware in charge of
physically accessing colonies to selectively pick biomass and
transfer it to a target destination.

This technical upgrade was designed to be implemented into an
Opentrons OT-2, an automated liquid-handler platform that can
execute custom protocols with a predefined distribution of labware
and modules. All labware needs to conform to the Society for
Biomolecular Screening (SBS) microplate standard. Consequently,
we created a hardware assembly (see Figure 5A) that fits on two slots,
and which contains three parts: a custom platform in which solid
media plates are placed during the entire screening, an image

acquisition device and a master computer in charge of
connecting the whole set and synchronizing its operation.

First, a transilluminator (Figure 5B) was assembled using an
RGB led panel controlled by a shielded Raspberry Pi 4B. The labware
was designed in vertical orientation to allow the use of circular Petri
Dishes up to 89 mm. A 3D-printed structure holds the electronic
RGB panel and a translucent plastic plate that acts as top cover to
support solid media plates and diffuses emitted light during image
acquisition. The Raspberry Pi was loaded with Python scripts to
switch light remotely using SSH protocol. Image capturing
capability was provided by an Alvium 1800 U-500c USB camera
with fixed focal distance (Allied Vision) fitted onto the OT-2 pipette
arm using a drill-free 3D printed scaffold (Figure 5C). The master
computer was connected to each part of the assembly to control the
execution of the picking protocol: the OT-2 robot and the camera
were connected via USB, and the transilluminator was connected via
Ethernet using a user-defined local network supported by a network
switch (Figure 5D).

Additional screening capabilities based on fluorescence emission
were implemented by mounting a 500 nm low-pass filter (Edmund
Optics Hoya Y50) in combination with the blue light channel of the
RGB led panel (intensity peak around 460 nm) to excite and capture
the GFP signal associated to each colony.

FIGURE 4
Coordinate mapping of detected colonies from image coordinate frame to Opentrons 2 OT-2 robot frame. (A) Images acquired by USB camera on
transilluminator are analyzed to infer the pixel offset (ΔDpix

OPet−Olab
, in black) between the center of the labware (Olab) and the geometrical center of Petri dish

(OPet). Cropping the agar plate region ROI encased by its bounding box and discarding plastic borders allows to obtain (B) a clean image to feed into the
inference model. (C) Segmentation and object binarization of detected colonies allows calculating the pixel offset (Δdpix

ci−OPet ′ , in green) between the
colony centroids (ci) and the local center of the Petri dish (OPet’) in the crop image. (D) The pixel offset between the colony center and the center of the
labware is the vectorial sum of both offsets (ΔDpix

ci−Olab
IM, in blue). (E) Pixel offset vector is scaled to mm using the camera pixel-mm conversion factor and

the coordinates are rotated 90° anti-clockwise to match robot reference coordinate system (ΔDmm
ci−Olab

ROBOT , in pink). (F) Finally, the process is repeated
for each detected colony and the computed offsets are annotated into a *.csv file that will be uploaded to Opentrons to perform physical picking.
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3.2 Automated workflow and orchestrator
software

After assembling the hardware parts and training the inference
model, it was necessary to define a workflow addressing the different
actions to execute by the hardware (OT-2 robot, transilluminator,
camera) and software (inference model) during colony screening
and picking. This set of instructions, illustrated in Figure 6, can be
summarized as follows:

1- Place camera in acquisition point
2- Activate transilluminator
3- Image acquisition
4- Generate prediction with Detectron 2
5- Correct prediction artifacts
6- Filter colonies based on user-defined criteria
7- Create *.csv file with physical coordinates of target colonies
8- Perform physical picking

To synchronize the execution of this workflow, a custom-made
orchestrator software was programmed to interface operations
performed in peripherals with the main workflow executed by
the PC. Communication between PC, transilluminator and OT-2
was generated via SSH.

Following the mentioned scheme, the robot must first place the
camera in position and wait for *.csv file containing positions of
colonies to proceed with picking. As OT-2 does not provide
possibilities to remotely control the robotic arm using unitary

instruction commands, we implemented a naïve solution based
on uploading an OT-2 protocol containing a file-content based
flagging condition. This script is executed at the beginning of any
colony picking protocol via SSH by the orchestrator. The script
sends instructions to OT-2 to allocate the camera in position, and
then execute a while loop in which the content of an auxiliary.*txt
file is recurrently inspected. The picking protocol cannot continue
unless such content is updated with the proper keyword. While OT-
2 is looping, the orchestrator software continues with the execution
of the rest of the workflow until coordinate file is generated and
uploaded to OT-2. The content of the auxiliary file is then updated,
allowing the OT-2 script protocol to reach the loop exit condition
and order the robot to first retrieve the uploaded coordinates from
its ownmemory and finally proceed with the picking process. Details
about each step of this workflow can be found in Supplementary
Material, code repository readmes and code commentaries.

3.3 Benchmark tests

The performance of the proposed technical adaptation was
benchmarked by executing colony picking protocols under three
different screening scenarios: raw colony picking (no screening) and
phenotype cherry-picking based on visible color and fluorescent
reporter.

First, we measured the accuracy and precision of colony
detection and picking without any selection criteria. A total
number of 7,446 colonies distributed in 44 Petri Dish plates

FIGURE 5
COPICK assemblymounted onto anOpentronsOT-2 liquid handler. (A) The additional hardware consists of (B) a custom-made transilluminator and
(C) a USB-camera mounted onto the OT-2 robotic arm (over a P20 pipette) with a 3D-printed scaffold connected to a (D)Master PC acting as amultiport
connection Hub.
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containing E. coli and P. putida colonies within the range
12–453 were gathered and screened. For each plate, we annotated
counts of detected and picked colonies, detected and picked artifacts
(noise), not pickable colonies (colonies next to the plastic border),
not detected colonies, single colonies picked multiple times and
colony groups detected as single colonies. Evaluation metrics (raw
performance, accuracy, misclassification rate, sensitivity and
precision) were computed after deriving aggregated data of true
positive (TP), False positive (FP) and false negative (FN). Details
about metrics and data processing are explained in Supplementary
Material and accessible in the Supplementary Table S1. Also, the
benchmark image set containing gathered pictures of the plates and
the inferred panoptic predictions are available.

Figure 7A shows a summary of the obtained results. Generally,
all metrics are satisfactory, with all values above 70%. Obtained raw
performance over total screened colonies scores 73%, a number that
raises up to 82% if only pickable colonies are considered. By
“pickable colonies” we mean those colonies which are not in
close contact with the border of the Petri Dish, in such a way
that an attempt of the robot to access the colony would have a large
risk of hitting the Petri plate. This security margin was applied to

avoid causing mechanical ruptures of the plastic dish or bending the
tip. The sensitivity level of 92% indicates low levels of noise-related
issues, whereas a 73% of accuracy in combination with a precision of
78% points towards the existence of issues counting colonies inside
groups that diminish the overall effectiveness.

Next, we tested the screening capacity of COPICK based on
color measurement. To do that, we prepared LB-agar plates
supplemented with X-gal at 50 μg/mL, and inoculated them at
proper dilution factor with a 50%–50% mixture of E. coli DH5α
carrying two pSEVA plasmids: pSEVA637 (colonies exhibit a white
color) and pSEVA 6819[gD] (colonies exhibit a blue color in
presence of X-gal) (Martínez-García et al., 2023). Based on a
predefined target RGB color (corresponding to an arbitrary
selection of blueish color displayed by pSEVA 6819[gD] strain),
we programmed the selection of 64 clones exhibiting the most
dissimilar color respect to the given reference in descending
order (column-wise order), transferring them into a single-well
plate (Nunc Omnitray, ThermoFisher Scientific). As a color-
based colony filtering test, we performed a selection of colonies
showing a mixture of white and blue phenotypes based on a
dissimilarity criteria respect to a chosen reference color (blue). As

FIGURE 6
Algorithmic pipeline executed by COPICK package to execute a colony screening and picking protocol. After placing the agar plate onto the
transilluminator, the orchestrator software [blue area, (A)] sends an SSH command to the OT-2 server to execute a custom Jupyter notebook containing
the colony picking instructions. The robot [green area, (B)] initializes the protocol by first homing and next moving the pipette to a preset image
acquisition position. A flag-dependent loop halts further execution of picking protocol in OT-2, allowing the orchestrator to start the image
acquisition process: an SSH command is sent to the Raspberry PI hosted in the transilluminator to switch the activation of white light, and then gather an
image using the USB camera. If a GFP based screening is required, the process is repeated with a blue light instead. After images are gathered, they are
processed and fed to Detectron 2 model to obtain a preliminary colony segmentation, which is further refined using image treatment techniques.
Screening of detected colonies is implemented next by performing a score-based selection using the user-defined criteria (size, color, fluorescence).
Coordinate mapping is computed to obtain the positions of colonies in robot coordinates, and its result parsed into a *.csv file uploaded to OT-2 via SSH
scp protocol. Finally, the content of the auxiliary file (“flag_txt_file.txt”) is updated to raise the loop flag and unlock OT-2workflow: the robot accesses the
file with the colony coordinate list and start the physical picking process.
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observed in Figure 7B, COPICK correctly executed a picking
protocol where those colonies with best matching color (blue)
were picked last (picking order is set by column), whereas the
most different (white) were picked first.

To further check COPICK selection capabilities, an additional
validation test was prepared to benchmark its proficiency during a
fluorescence based screening. P. putida TA245 (Aparicio et al., 2020)
and P. putida KT-GFP (Espeso et al., 2016) strains were plated
together in order to check whether the implementation could
discriminate both genotypes based on the different levels of GFP-
based fluorescence that their colonies display (the former was as
negative control of GFP signal, compared with the later showing a
strong fluorescent signal). Respective overnight cultures of both
strains grown in LB-Lennox broth were mixed using a 50:50 ratio,
and plated on a LB-agar plate at required dilution to incubate
overnight at 30°C. Colony screening consisted on selecting the
30 most fluorescent clones in descending order (column-wise
order) of fluorescent brightness, transferring them into a single-
well plate. The output of the fluorescence-based screening under a
blue light transilluminator (Figure 7C) resulted into a correct colony
picking process following a descending order in average intensity.

4 Discussion

The obtained results in the different screening tests demonstrate
a good competency of COPICK to support automatic colony
screening. Compared to commercial alternatives COPICK
performs similarly in picking rate to medium-throughput devices

(~250 colonies/h), and is far from the 1,500–3,000 colonies/h
achieved by high-capacity equipment. In terms of efficiency and
precision, some brands report a picking efficiency of 70%–99% with
a picking tolerance below 1 mm in the most optimistic case scenario,
which exceeds the capacities of COPICK (73% of raw efficiency and
size limit of 1 mm). Nevertheless, the implementation of COPICK in
Opentrons OT-2 robot is cost-wise advantageous: whereas
commercial pickers may cost around 50–150k depending on the
brand and purchased capacity, COPICK solution is around 10–13k,
a 5–10 fold less. Moreover, COPICK is a Python based open-source
solution (compared with proprietary software included other
alternatives), which offer any user the option of customize the
adaptation for its own needs.

Despite its interesting performance, COPICK has some
limitations found at hardware and software level that are worth
mentioning. Regarding the software, results delivered by inference
model suggest a technical issue during the training stage. By
visualizing the classification results delivered by Detectron 2, it
can be observed a very poorly object classification performance:
the number of colonies detected as “objects” roughly exceed the 50%.
We hypothesize that the poor yield exhibited by the model
identifying colony objects might be caused by a combination of
two issues. First, an error in the dataset input format could be
interpreted by Detectron 2 as an unrecognized data, and thus
ignored. This is somehow in agreement with the results obtained
during hyperparameter optimization process: we realized that, on
average, larger values of PQ and SQ delivered better inference
results. However, we oppositely found that those sets of weights
obtaining the largest scores were not the best predictors. Next, more

FIGURE 7
Results of benchmark tests performed to COPICK implementation. (A) Sample distribution of screened colonies and quality metrics obtained during
raw picking test. (B) Naked eye and (C) fluorescence images showing the correct sorting obtained during validation assays of phenotype screening in
agreement with chosen screening criteria. Screening criterions in each essay were based on the dissimilarity degree respect to a target visible color
(blueish) and colony average intensity of GFP signal, respectively.
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images could be required to improve colony prediction, as the
overall pixel-area occupied by colonies in the current dataset
might not be enough to produce a robust panoptic segmentation
(microbial colonies are relatively sparse tiny regions inside images).
This would be in agreement with the fact that the model performs an
excellent segmentation of agar footprint, and with the result of
delivered output: where the model cannot identify a colony and the
pixel is not agar, the segment is assigned with a zero-value label.
Interestingly this result delivers a de facto accurate prediction: the
inference of microbial colonies is indirectly obtained by combining
the segments positively predicted as colonies with the subset of non-
recognized pixel regions.

A second point to consider is the cost of using a panoptic
segmentation model. In this work we had to develop a custom-made
script based on image treatment algorithms to obtain the required
segmentation and annotations of dataset images, at a cost of
investing time and resources. At present time (early 2023), there
is still a lack of open-source tools on the web to label and create
datasets of images using a panoptic segmentation format in a
straightforward fashion. Any user interested on using COPICK to
identify other type of colonies will need to create its own
segmentation script or modify the one included in this package
to successfully create a good dataset for training. As a remark, using
a panoptic dataset allowed us to obtain a remarkable picking score
and to generate a robust portable model to be used into OT-2
transilluminator device (despite the fact optic and illumination
settings were worse than those use for database creation).

Another limitation observed when analyzing the results of the
presented inference model was the correct detection and
interpretation of colony groups. With the presented dataset,
COPICK inference model was unable to learn how to split
properly individual colonies forming part of colony groups.
The reasons of such limitation could be the relative low
number of colony groups (respect to individual colonies)
presented to the inference model during the training stage. To
fix this issue, we implemented a postreatment stage during
orchestrator workflow execution in which grayscale regions
matching inferenced objects were further analyzed using a
local maximum search algorithm to find multicolony patterns.
This approach succeeds on dividing most of segments composed
by more than one colony at a cost of introducing spurious
divisions of single colony footprints colonies at low event
frequency. Although we attempted to remove this source of
error using different approaches (such as object filtering
criteria based on aspect ratio or circular pattern search based
on Hough transform), we did not no succeed on it. In fact, a
general solution to this problem could be hard to achieve for those
cases in which colonies exhibit different growth rates or a non-
circular growth pattern. As a suggestion, a trivial solution to this
issue would be the development of a graphic interface to allow the
user discard or include elements of the generated inference.

When talking about the hardware, we found that OT-2
stepper motors in charge of positioning the robotic arm in
place introduce an intrinsic error when picking colonies. We
speculate that OT-2 NEMA motors were not assembled to work
with such degree of spatial accuracy, but to target positions in
(open) well plates. As a consequence, picking small colonies is a
task biased not only by the positional error introduced by the

inference model, but also enhanced by the addition of this error
source. In fact, we observe substantial picking error when trying
to transfer colonies with diameters below 1 mm. This issue,
however, can be easily overcome by screening plates with
larger colony sizes. Additionally, we detected that OT-2 was
causing inconsistent picking patterns due to the generation of
vibrations in the labware deck, associated to default settings of
robotic pipette movements (displacement and tip picking). To
solve this issue, we designed an adaptor to tightly hold Petri
Dishes of different diameters on place (can be found in package
repository), although this solution implied a less comfortable
manipulation.

Finally, we realized that performing a good selection of
colonies based on fluorescence and color was dependent of
achieving minimal quality background levels of brightness and
contrast. Concretely we identified issues related to this
observation close to the right and left borders of the RGB
panel. Although COPICK inference model was able to
properly discriminate colony footprints on these problematic
areas, screening filters sporadically failed on evaluating their
correct color/brightness values. A larger RGB panel should fix
the problem, but occupying more slots of the OT-2 deck.

A similar situation was observed when fluorescent brightness
based discrimination was evaluated: succeeding was only possible
when using strains exhibiting a medium-high light intensity signal.
The long-pass filter assembled during the fluorescence based cherry-
picking validation test was not able to provide enough dynamic
range to discriminate those colonies exhibiting a poor GFP signal.
Furthermore, other fluorophores excitated at similar wavelengths
and broadly used to discriminate strains or genetic constructs
(i.e., mCherry) were not discriminated either. Acquiring a more
specific and sensitive filter should fix this issue.

As a final remark, the performance of COPICK could be further
increased by using last generation neural-networks specialized in
image segmentation, like SAM (Kirillov et al., 2023). These networks
have already demonstrated stunning results when segmenting
arbitrary images by using a generic pretrained weight set.
Although requiring a powerful computer with a last-generation
GPU, a supervised training with a dataset similar to the one used
in this work could increase COPICK detection performance,
reducing the gap between this solution and commercial colony
pickers.

5 Conclusion

Benchmark tests performed under three different screening
scenarios (raw colony picking, color based and fluorescence-
based cherry-picking) validates the utility of COPICK as a
reliable technical solution to provide a colony picking solution
into an OT-2. The setup can be easily deployed by connecting an
OT-2 robot to an open-source hardware assembly composed of a
custom 3D-printed labware, a USB camera and a computer able to
run the trained inference model. Its minimal implementation cost
(in terms of time, expertise and resources), compared to
commercial solutions for picking operations, converts this
solution in an attractive alternative to introduce automated
colony screening workflows in microbiology laboratories.

Frontiers in Bioengineering and Biotechnology frontiersin.org10

del Olmo Lianes et al. 10.3389/fbioe.2023.1202836

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1202836


Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found below: https://github.com/sysbio-cnb/
COPICK https://sysbiol.cnb.csic.es/EMBBT/COPICK_
DATASET.zip.

Author contributions

DE and JN contributed to conception and design of the study.
DE and IO programmed the Python scripts for database creation
and parsing. IO created and structured the image database,
performed the training, validation, and optimization of the
inference model. DE, IO, and PY designed and tested CAD
models of image acquisition system. PY programmed the
acquisition scripts for USB camera. DE designed and
programmed the transilluminator labware. DE programmed
orchestrator software and OT-2 picking scripts. IO and AG-L
performed the hardware benchmark tests. DE wrote the first
draft of the manuscript. All authors contributed to the article
and approved the submitted version.

Funding

This work was supported by the European Union’s Horizon
2020 Research and Innovation Programme under Grant agreements
no. 814650 (SynBio4Flav), 870294 (MixUp), and 101060625
(NYMPHE). Funding was likewise provided by the Spanish
Ministry of Science and Innovation under “Severo Ochoa”
Programme for Centers of Excellence in R&D, grant SEV-
2017–0712 (AEI/10.13039/501100011033) and the RobExplode
project: PID 2019-108458RB-I00 (AEI/10.13039/501100011033).
JN and AG-L acknowledge the financial support of CSIC’s

Interdisciplinary Platform for Sustainable Plastics towards a
Circular Economy+(PTI-SusPlast+). IO and AG-L were funded
by GARANTIA JUVENIL CAM 2020 program of the
Comunidad de Madrid—European Structural and Investment
Funds –(FSE, FECER) through grants PEJ-2020-AI/BMD-
18724 and PEJ-2020-AI/BIO-18028, respectively.

Acknowledgments

We thank Ana Anhel, Blas Blázquez, and Juan Poyatos for
helpful discussion.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fbioe.2023.1202836/
full#supplementary-material

References

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019). Optuna: A next-
generation hyperparameter optimization framework. arXiv 1907, 10902. doi:10.48550/
arXiv.1907.10902

Amerikanos, P., and Maglogiannis, I. (2022). Image analysis in digital pathology
utilizing machine learning and deep neural networks. J. Personalized Med. 12 (9), 1444.
doi:10.3390/jpm12091444

Aparicio, T., Nyerges, A., Martínez-García, E., and de Lorenzo, V. (2020). High-
efficiency multi-site genomic editing of Pseudomonas putida through thermoinducible
ssDNA recombineering. iScience 23 (3), 100946. doi:10.1016/j.isci.2020.100946

Appleton, E., Madsen, C., Roehner, N., and Densmore, D. (2017). Design automation
in synthetic biology. Cold Spring Harb. Perspect. Biol. 9 (4), a023978. doi:10.1101/
cshperspect.a023978

Bergstra, J., Bardenet, R., Kégl, B., and Bengio, Y. (2011). Algorithms for hyper-parameter
optimization. United States: Neural Information Processing Systems Foundation.

Canny, J. (1986). A computational approach to edge detection. IEEE Trans. Pattern
Analysis Mach. Intell. PAMI 8 (6), 679–698. doi:10.1109/TPAMI.1986.4767851

Chao, R., Liang, J., Tasan, I., Si, T., Ju, L., and Zhao, H. (2017). Fully automated one-
step synthesis of single-transcript TALEN pairs using a biological foundry. ACS Synth.
Biol. 6 (4), 678–685. doi:10.1021/acssynbio.6b00293

Dey, N. (2019). Uneven illumination correction of digital images: A survey of the
state-of-the-art. Optik 183, 483–495. doi:10.1016/j.ijleo.2019.02.118

Engler, C., Kandzia, R., and Marillonnet, S. (2008). A one pot, one step, precision
cloning method with high throughput capability. PLoS One 3 (11), e3647. doi:10.1371/
journal.pone.0003647

Espeso, D. R., Martínez-García, E., de Lorenzo, V., and Goñi-Moreno, Á. (2016).
Physical forces shape group identity of swimming Pseudomonas putida cells. Front.
Microbiol. 7, 1437. doi:10.3389/fmicb.2016.01437

Fabritius, A., Ng, D., Kist, A. M., Erdogan, M., Portugues, R., and Griesbeck, O.
(2018). Imaging-based screening platform assists protein engineering. Cell. Chem. Biol.
25 (12), 1554–1561.e8. doi:10.1016/j.chembiol.2018.08.008

Gardner, T. S. (2013). Synthetic biology: From hype to impact. Trends Biotechnol. 31
(3), 123–125. doi:10.1016/j.tibtech.2013.01.018

Ha, S., and Jeong, H. (2021). Unraveling hidden interactions in complex systems with
deep learning. Sci. Rep. 11 (1), 12804. doi:10.1038/s41598-021-91878-w

Hansen, A., Pollard, M., Searles, W., Uber, D., and Jaklevic, J. (1993). A high-speed
automated colony picking machine. United States: Lawrence Berkeley National
Laboratory.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2020). Mask R-CNN. IEEE Trans.
Pattern Analysis Mach. Intell. 42 (2), 386–397. doi:10.1109/TPAMI.2018.2844175

Hérisson, J., Duigou, T., du Lac, M., Bazi-Kabbaj, K., Sabeti Azad, M., Buldum, G.,
et al. (2022). The automated Galaxy-SynBioCAD pipeline for synthetic biology design
and engineering. Nat. Commun. 13 (1), 5082. doi:10.1038/s41467-022-32661-x

Frontiers in Bioengineering and Biotechnology frontiersin.org11

del Olmo Lianes et al. 10.3389/fbioe.2023.1202836

https://github.com/sysbio-cnb/COPICK
https://github.com/sysbio-cnb/COPICK
https://sysbiol.cnb.csic.es/EMBBT/COPICK_DATASET.zip
https://sysbiol.cnb.csic.es/EMBBT/COPICK_DATASET.zip
https://www.frontiersin.org/articles/10.3389/fbioe.2023.1202836/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbioe.2023.1202836/full#supplementary-material
https://doi.org/10.48550/arXiv.1907.10902
https://doi.org/10.48550/arXiv.1907.10902
https://doi.org/10.3390/jpm12091444
https://doi.org/10.1016/j.isci.2020.100946
https://doi.org/10.1101/cshperspect.a023978
https://doi.org/10.1101/cshperspect.a023978
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1021/acssynbio.6b00293
https://doi.org/10.1016/j.ijleo.2019.02.118
https://doi.org/10.1371/journal.pone.0003647
https://doi.org/10.1371/journal.pone.0003647
https://doi.org/10.3389/fmicb.2016.01437
https://doi.org/10.1016/j.chembiol.2018.08.008
https://doi.org/10.1016/j.tibtech.2013.01.018
https://doi.org/10.1038/s41598-021-91878-w
https://doi.org/10.1109/TPAMI.2018.2844175
https://doi.org/10.1038/s41467-022-32661-x
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1202836


Hillson, N., Caddick, M., Cai, Y., Carrasco, J. A., Chang, M. W., Curach, N. C., et al.
(2019). Building a global alliance of biofoundries. Nat. Commun. 10 (1), 2040. doi:10.
1038/s41467-019-10079-2

Huang, Q., Gao, W., and Cai, W. (2005). Thresholding technique with adaptive
window selection for uneven lighting image. Pattern Recognit. Lett. 26 (6), 801–808.
doi:10.1016/j.patrec.2004.09.035

Jones, T. S., Oliveira, S. M. D., Myers, C. J., Voigt, C. A., and Densmore, D. (2022).
Genetic circuit design automation with Cello 2.0.Nat. Protoc. 17 (4), 1097–1113. doi:10.
1038/s41596-021-00675-2

Kirillov, A., He, K., Girshick, R., Rother, C., and Dollár, P. (2018). Panoptic
segmentation. ArXiv 1801, 00868. doi:10.48550/arXiv.1801.00868

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., et al. (2023).
Segment anything. arXiv 2304, 02643. doi:10.48550/arXiv.2304.02643

Leavell, M. D., Singh, A. H., and Kaufmann-Malaga, B. B. (2020). High-throughput
screening for improved microbial cell factories, perspective and promise. Curr. Opin.
Biotechnol. 62, 22–28. doi:10.1016/j.copbio.2019.07.002

Li, H., Ellis, J., Zhang, L., and Chang, S. (2017). PatternNet: Visual pattern mining
with deep neural network. arXiv 1703, 06339. doi:10.48550/arXiv.1703.06339

Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., and Belongie, S. (2016). Feature
pyramid networks for object detection. arXiv 1612, 03144. doi:10.48550/arXiv.1612.03144

Lin, T.-Y.,Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., et al. (2014).Microsoft
COCO: Common objects in context. arXiv 1405, 0312. doi:10.48550/arXiv.1405.0312

Maniatis, T., Fritsch, E. F., Sambrook, J., and Sambrook, J. (1982). Molecular cloning:
A laboratory manual. Cambridge, United States: Cold Spring Harbor Laboratory.

Martínez-García, E., Fraile, S., Algar, E., Aparicio, T., Velázquez, E., Calles, B., et al.
(2023). Seva 4.0: An update of the standard European vector architecture database for
advanced analysis and programming of bacterial phenotypes. Nucleic Acids Res. 51 (1),
D1558–D1567. doi:10.1093/nar/gkac1059

McGuire, A. L., Gabriel, S., Tishkoff, S. A., Wonkam, A., Chakravarti, A., Furlong, E.
E. M., et al. (2020). The road ahead in genetics and genomics. Nat. Rev. Genet. 21 (10),
581–596. doi:10.1038/s41576-020-0272-6

Moffat, A. D., Elliston, A., Patron, N. J., Truman, A. W., and Carrasco Lopez, J. A.
(2021). A biofoundry workflow for the identification of genetic determinants of
microbial growth inhibition. Synth. Biol. 6 (1), ysab004. doi:10.1093/synbio/ysab004

Ren, S., He, K., Girshick, R., and Sun, J. (2017). Faster R-CNN: Towards real-time
object detection with region proposal networks. IEEE Trans. Pattern Analysis Mach.
Intell. 39 (6), 1137–1149. doi:10.1109/TPAMI.2016.2577031

Rodrigues, P. M., Luís, J., and Tavaria, F. K. (2022). Image analysis semi-automatic
system for colony-forming-unit counting. Bioengineering 9 (7), 271. doi:10.3390/
bioengineering9070271

Rosenberg, M., Confessore, N., and Cadwalladr, C. (2018). Cambridge
analytica and Facebook: The scandal and the fallout so far. New York: The New
York Times.

Roy, P., Dutta, S., Dey, N., Dey, G., Chakraborty, S., and Ray, R. (2014). “Adaptive
thresholding: A comparative study,” in 2014 International Conference on Control,
Instrumentation, Communication and Computational Technologies (ICCICCT),
Kanyakumari, India, 10-11 July 2014 (IEEE), 1182–1186.

Sanders, J. G., Yan, W., Mjungu, D., Lonsdorf, E. V., Hart, J. A., Sanz, C. M., et al.
(2022). A low-cost genomics workflow enables isolate screening and strain-level
analyses within microbiomes. Genome Biol. 23 (1), 212. doi:10.1186/s13059-022-
02777-w

Shapiro, L. G., and Stockman, G. C. (2001). Computer vision. Netherlands: Prentice
Hall.

Shorten, C., and Khoshgoftaar, T. M. (2019). A survey on image data augmentation
for deep learning. J. Big Data 6 (1), 60. doi:10.1186/s40537-019-0197-0

Sklansky, J. (1982). Finding the convex hull of a simple polygon. Pattern Recognit.
Lett. 1 (2), 79–83. doi:10.1016/0167-8655(82)90016-2

Stephens, S., Figg, A., Mann, C., Atkinson, R., and Woodrough, R. (2002).
Automation for high-throughput identification and picking of GFP expressing
colonies. JALA J. Assoc. Laboratory Automation 7 (3), 41–43. doi:10.1016/S1535-
5535-04-00193-5

Storch, M., Casini, A., Mackrow, B., Ellis, T., and Baldwin, G. S. (2017). “Basic:
A simple and accurate modular DNA assembly method,” in Synthetic DNA:
Methods and protocols. Editor R. A. Hughes (New York, NY: Springer New
York), 79–91.

Storch, M., Casini, A., Mackrow, B., Fleming, T., Trewhitt, H., Ellis, T., et al. (2015).
Basic: A new biopart assembly standard for idempotent cloning provides accurate,
single-tier DNA assembly for synthetic biology. ACS Synth. Biol. 4 (7), 781–787. doi:10.
1021/sb500356d

Storch, M., Haines, M. C., and Baldwin, G. S. (2020). DNA-BOT: A low-cost,
automated DNA assembly platform for synthetic biology. Synth. Biol. 5 (1),
ysaa010. doi:10.1093/synbio/ysaa010

Villanueva-Cañas, J. L., Gonzalez-Roca, E., Gastaminza Unanue, A., Titos, E.,
Martínez Yoldi, M. J., Vergara Gómez, A., et al. (2021). Implementation of an
open-source robotic platform for SARS-CoV-2 testing by real-time RT-PCR. PLoS
One 16 (7), e0252509. doi:10.1371/journal.pone.0252509

Weber, E., Engler, C., Gruetzner, R., Werner, S., and Marillonnet, S. (2011). A
modular cloning system for standardized assembly of multigene constructs. PLoS One 6
(2), e16765. doi:10.1371/journal.pone.0016765

Wu, Y., Kirillov, A., Massa, F., Lo, W. Y., and Girshick, R. (2019). Detectron2.
Available at: https://github.com/facebookresearch/detectron2.

Frontiers in Bioengineering and Biotechnology frontiersin.org12

del Olmo Lianes et al. 10.3389/fbioe.2023.1202836

https://doi.org/10.1038/s41467-019-10079-2
https://doi.org/10.1038/s41467-019-10079-2
https://doi.org/10.1016/j.patrec.2004.09.035
https://doi.org/10.1038/s41596-021-00675-2
https://doi.org/10.1038/s41596-021-00675-2
https://doi.org/10.48550/arXiv.1801.00868
https://doi.org/10.48550/arXiv.2304.02643
https://doi.org/10.1016/j.copbio.2019.07.002
https://doi.org/10.48550/arXiv.1703.06339
https://doi.org/10.48550/arXiv.1612.03144
https://doi.org/10.48550/arXiv.1405.0312
https://doi.org/10.1093/nar/gkac1059
https://doi.org/10.1038/s41576-020-0272-6
https://doi.org/10.1093/synbio/ysab004
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.3390/bioengineering9070271
https://doi.org/10.3390/bioengineering9070271
https://doi.org/10.1186/s13059-022-02777-w
https://doi.org/10.1186/s13059-022-02777-w
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1016/0167-8655(82)90016-2
https://doi.org/10.1016/S1535-5535-04-00193-5
https://doi.org/10.1016/S1535-5535-04-00193-5
https://doi.org/10.1021/sb500356d
https://doi.org/10.1021/sb500356d
https://doi.org/10.1093/synbio/ysaa010
https://doi.org/10.1371/journal.pone.0252509
https://doi.org/10.1371/journal.pone.0016765
https://github.com/facebookresearch/detectron2
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1202836

	Technical upgrade of an open-source liquid handler to support bacterial colony screening
	1 Introduction
	2 Methods
	2.1 Inference model description
	2.2 Dataset preparation
	2.3 Training, evaluation and optimization of inference model
	2.4 Robotic picking of colonies
	2.5 On-board colony screening methods

	3 Results
	3.1 Hardware adaptation
	3.2 Automated workflow and orchestrator software
	3.3 Benchmark tests

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


