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With the increasing demand for biomarker detection in wearable electronic
devices, flexible biosensors have garnered significant attention. Additionally,
graphene field-effect transistors (GFETs) have emerged as key components for
constructing biosensors, owing to their high sensitivity, multifunctionality, rapid
response, and low cost. Leveraging the advantages of flexible substrates, such as
biocompatibility, adaptability to complex environments, and fabrication flexibility,
flexible GFET sensors exhibit promising prospects in detecting various biomarkers.
This review provides a concise summary of design strategies for flexible GFET
biosensors, including non-encapsulated gate without dielectric layer coverage
and external gate designs. Furthermore, notable advancements in sensing
applications of biomolecules, such as proteins, glucose, and ions, are
highlighted. Finally, we discuss the future challenges and prospects in this field,
aiming to inspire researchers to address these issues in their further investigations.
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1 Introduction

Graphene-base biosensors, including graphene field-effect transistors (GFETs), enable
continuous label-free detect of biomarkers with exceptional sensitivity and selectivity. (Cai B
J et al., 2014; Li Y J et al., 2017; Hao Z et al., 2018). GFETs also offer fast response times,
making them well-suited for rapid detection of biomarkers. These features make GFET
biosensors an ideal candidate for in-vitro detection of biomarkers.

Most of the GFET sensors uses a three-electrode structure, namely, drain, gate, and
source electrodes. The drain and source electrodes are connected by graphene, which serves
as the sensing element. Graphene holds a theoretical carrier mobility greater than
200,000 cm2 V−1 s−1 (Du X et al., 2008), which translates into high electrical conductivity
in GFETs and enhances their sensitivity as sensors (Adzhri R et al., 2016). Furthermore, the
high mechanical flexibility of graphene enables FETs to employed in wearable applications,
expanding their potential utility. Graphene also functions as the biomolecule functioning
sites. When biomolecules bind to the graphene surface, they modify the local charge density
and electrical properties of the graphene, resulting in changes in the conductance of the
GFET. These changes can be measured as a shift in the GFET’s transfer characteristic,
enabling the detection and quantification of biomolecules (Tsang et al., 2019). By
functionalizing GFETs with various types of biomolecules such as DNA, proteins, and
aptamers, a wide range of analytes including ions (Sriram B et al., 2019; Tseliou F et al., 2019;
Feng J et al., 2020), proteins (Manavalan S et al., 2019; Ku M et al., 2020; Seo G et al., 2020),
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bacteria (Jampasa et al., 2019; Chen TW et al., 2020) and other kinds
of biomarkers (Zhan B et al., 2014; Bai Y et al., 2020) can be detected.

Flexible graphene field-effect transistor (F-GFET) biosensors are
a new type of GFET sensor emerged recently (Meng S et al., 2021).
Comparing with conventional GFET, which are typically fabricated
on rigid and planar substrates like silicon (Jahromi A K et al., 2022).
F-GFETs, on the other hand, are fabricated on flexible or stretchable
substrates such as polyimide (Huang C et al., 2020), paralyene and
other polymers (Kim S et al., 2022). Although rigid substrate
provides a stable and flat surface for graphene deposition and
device fabrication, which allows for precise control of device
parameters and reproducibility, they lack flexibility, making them
unsuitable for applications that require the use of conformal
surfaces. Flexible substrates, however, provide the necessary
mechanical flexibility. F-GFET offer several advantages over
conventional GFET, such as conformal contact with biological
tissues and improved device biocompatibility, which are critical
for implantable and wearable devices. Additionally, F-GFETs enable
real-time monitoring of physiological signals like muscle activity
and heart rate, as well as environmental monitoring for gas sensing
and humidity detection.

Currently, there is a paucity of literature reviews on flexible
graphene biosensors, prompting us to author this comprehensive
review article. This work summarizes the latest advancements in
flexible graphene field-effect transistors (GFETs) for biomolecular
sensing and identifies their limitations. It also presents future
research prospects and solutions to address the current
challenges in the field.

2 F-GFET biosensor design

Existing F-GFET device design mostly uses a liquid-gate
configuration and can be further categorized into two sub-
groups according to the gate electrode positions: the non-
external gate (Hao Z et al., 2022) and the external gate (An J
H et al., 2013).

In a typical flexible liquid gate GFET, graphene is used as the
channel material for the source and drain. Chemical vapor

deposition (CVD) is mainly used for synthesizing high-quality
graphene, which is transferred to the substrates using either
polymer-assisted transfer (Bahri M et al., 2021) or wet transfer
methods (Hao Z et al., 2022). The electrical properties and
biomarker responses of the F-GFET biosensor are investigated by
introducing biological molecules of interest into the solution. The
conductivity of the graphene channel in GFET can be modulated by
changing the gate voltage (Vg) at a constant drain-source voltage
(Vds). Two main designs of gate electrode are commonly used: non-
external and external. In the non-external design, the gate electrode
is deposited onto the flexible substrate by metal deposition, the
graphene channel region is directly exposed without any dielectric
layer covering, making the graphene susceptible to environmental
contamination, resulting in a degradation of GFET performance
(Figure 1A). While in the external design, liquid electrodes such as
Ag/AgCl or Pt electrodes are used for electrochemical sensing
(Figure 1B).

3 Applications of F-GFET biosensors

Given graphene’s capability to undergo functionalization with
different types of biomolecules, F-GFET holds significant promise
for detecting an extensive array of analytes, encompassing DNA,
proteins, small molecules, and various other substances. The
following section categorizes the application of F-GFET by its
analytes.

3.1 F-GFET for protein detection

In 2012, Oh Seok Kwon et al. firstly proposed that conducting
polymers containing heteroatoms could be used to prepare doped
graphene and successfully fabricated nitrogen-doped few-layer
graphene (PPy-NDFLG) from polypyrrole (Figure 2A). They
integrated the PPy-NDFLG with RNA aptamers specific to anti-
vascular endothelial growth factor (VEGF) onto a flexible field-effect
transistor (FET) platform based on a polyethylene naphthalate
(PEN) substrate for electronic control. This work was the first to

FIGURE 1
Flexible liquid-gated GFET (A) Non-encapsulated gate GFET without dielectric layer coverage. Adapted with permission from (Hao et al., 2022).
Copyright© 2022, ACS. (B) External gate GFET. Adapted with permission from (An et al., 2013). Copyright© 2013, ACS.
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use nitrogen-doped graphene to manufacture a flexible FET-based
aptamer sensor for the detection of VEGF as a cancer biomarker,
and a detection limit of 100 fMwas achieved (Kwon O S et al., 2012).
In 2015, Cheng et al., 2015. Prepared a PDMS-supported GFET
gated in phosphate-buffered saline (PBS) with an Ag/AgCl reference
electrode solution. The highlight of this work was the use of a flexible
PDMS substrate modified with APTES to form an amino-group-
ended surface, graphene nanosheets were then self-assembled by
covalent bonding with the terminal amino group on the PDMS

substrate. The device was subsequently utilized for the label-free
identification of the tumor marker alpha-fetoprotein (AFP), with a
sensitivity threshold extending to 300 ng/mL (Ju C et al., 2015). In
the same year, Sidra Farid et al. fabricated a F-GFET sensor also on
PDMS substrate for the detection of interferon-gamma (IFN-γ), a
biomarker for pneumonia and cancer. In this work, a DNA aptamer
probe was employed to achieve precise and specific detection. The
flexible sensor demonstrated remarkable sensitivity, enabling the
detection of IFN-γ protein across a wide concentration range from

FIGURE 2
(A) (i) Schematic illustration of reaction steps for the fabrication of aptasensor platforms based on PPy-NDFLG conjugated with anti-VEGF RNA
aptamer. (ii) Schematic diagram of a liquid-ion gated FET using aptamer-conjugated PPy-NDFLG (Ag/AgCl reference electrode, R; platinum counter
electrode, C; source and drain electrodes, S and D). (iii) Real-time responses and a calibration curve (S in the inset indicates ΔI/I0) of aptasensor with
various vascular endothelial growth factor concentrations. Adapted with permission from (Kwon et al., 2012). Copyright© 2012, ACS. (B) (i)
Schematic of the GFET biosensor fabricated on an ultrathin film. Photograph of the flexible device conformably attached onto the. (ii) Humanwrist and (iii)
artificial eyeball. (iv) Stretchable biosensor can be stretched with the activity of the human body. Adapted with permission from (Wang et al., 2020b).
Copyright© 2020, MDPI. (C) (i) Schematics for the biochemical functionalization steps. (ii) Illustration of the PEI-modified GFET-based aptameric
nanobiosensor. (iii) SEM image of the graphene conducting channel. Scale bar: 10 μm. (iv) The ultrathin flexible aptameric nanobiosensor is folded around
a metal needle with a radius of 0.5 mm. Photograph of the stretchable aptameric nanobiosensor extended from 0% (v) to 120% (vi). Adapted with
permission from (Hao et al., 2022). Copyright© 2022, ACS. (D) (I) Synthetic protocol of flexible graphene-based aptasensor on PEN film. (ii) Chemical
reactions among 1,5-diaminonaphthalene (DAN), glutaraldehyde (GA) and the aptamer (3'-amine-TTC TTT CTT CCCCTT GTT TGT-C10 carboxylic acid-
5'). (iii) Interaction of Hg2+ ions with thymine base pairs in the aptamer immobilized on the surface of the modified graphene layer. Adapted with
permission from (An et al., 2013). Copyright© 2013, ACS.

Frontiers in Bioengineering and Biotechnology frontiersin.org03

Hu et al. 10.3389/fbioe.2023.1218024

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1218024


nanomolar to micromolar levels, with an exceptional threshold as
low as 83 pM (Farid S et al., 2015).

In 2017, Yang et al. developed a F-GFET sensor with a sensing
element composed of a graphene nanomesh (GNM) featuring 3 nm
pores. The GNM is a continuous two-dimensional graphene
nanostructure with a high density of holes punched in the basal
plane, introducing lateral confinement and improving the on/off ratio.
Additionally, the graphene carrier concentration and mobility can be
adjusted to enhance the sensor’s performance. By modifying the
GFET with an aptamer, the sensor successfully detected human
epidermal growth actor receptor 2 with a minimum detectable
level of 0.6 pM (Yang Y et al., 2017). In 2018, Hao et al.
engineered a GFET sensor incorporating oligonucleotides as the
functional group on a 125 µm thick PEN substrate. By using
VR11 DNA aptamers with high specificity to TNF-α, they
investigated the effects of substrate bending on the equilibrium
dissociation constant between the oligonucleotides and the
biomarker as well as the graphene transconductance. This work
demonstrated that the sensor could specifically respond to changes
in TNF-α concentration within 5 min and an ultra-low detection
capability o 26 pM in a repeatable manner (Hao Z et al., 2018). In
2019, Ziran Wang et al. fabricated a flexible and stretchable GFET
sensor on a 2.5 μm Mylar substrate. Owing to its excellent flexibility,
the sensor can conform to non-planar surfaces such as human skin or
contact lenses and withstand large bending, twisting, and stretching
deformations without significant mechanical damage, while
maintaining consistent electrical performance. TNF-alpha was used
as the target analyte, and a highly precise measurement down to 5 pM
was achieved (Wang Z et al., 2019). The same group developed a
F-GFET biosensor composed of graphene-Nafion composite. The
graphene-Nafion composite film minimizes nonspecific adsorption
and endows the biosensor with regenerability. This biosensor can
detect cytokine storm biomarkers, including IFN-γ, in undiluted
human sweat with a lower bound for detection at 740 fM Also,
experimental results demonstrated that the biosensor maintained a
consistent sensing response during regeneration and wrinkling tests
without mechanical damage (Wang et al., 2020a). The same group
also engineered a wearable and deformable F-GFET sensor on a
ultrathin 2.5 μm thick substrate with a high mechanical durability.
The authors used wet transfer and lithography process method to
transfer graphene and gold electrode onto the substrate. The biosensor
achieved a specific and sensitive detection of inflammatory cytokines
TNF-a and IFN-γ, with detection limits of 2.75 and 2.89 pM,
respectively (Figure 2B). This highly deformable biosensor may
provide stable and sensitive detection of human cytokines, and is
promising for the development of wearable biosensing systems (Wang
et al., 2020b). Build on this work, Hao et al. developed a dual-channel
F-GFET biosensor that enables multiplex detection of biomarkers. In
this work, IFN-γ, TNF-a, and IL-6 in biological fluids were
characterized in parallel under 7 min. The authors also integrated
a customized Android application to potentially allow on-site
detection (Hao Z et al., 2021).

In 2022, another aptamer-based F-GFET sensor was engineered by
Hao and colleagues to rapidly detect hemoglobin in undiluted biological
fluids. The sensor uses polyethyleneimine (PEI) as a low-cost linking
molecule for the immobilization of aptamers. The experimental results
indicate that the graphene sensor modified with PEI can respond to
changes in hemoglobin concentration within 6–8min, with a minimal

measurable quantity of 10.6 fM in 1× PBS, 14.2 fM in undiluted serum,
and 11.9 fM in undiluted urine, respectively. Additionally, the optimal
PEI modification concentration was determined to be 0.4 μM based on
comparison experiments of hemoglobin detection in undiluted serum.
(Figure 2C). Therefore, this sensor has potential to accurately monitor
hemoglobin in a clinical setting (Hao Z et al., 2022). In the same year,
Laliberte et al. fabricated an F-GFET biosensor on a 25 μm thick
polyimide substrate. By depositing a 50 nm thick silicon dioxide layer,
the graphene was transferred to a relatively flat surface to ensure its high
mobility. The authors showed that the silicon dioxide layer did not affect
the biosensor’s flexibility, and coating the Kapton film with SiO2

significantly improved the transconductance and consistency of the
device, and through continuous monitoring of IL-6 and real-time
detection with a sensitivity threshold of 10 pM, this biosensor
exhibited promising potential as a highly functional wearable device.
(Laliberte K E et al., 2022).

3.2 F-GFET for other biomarkers detection

Compared to proteins, the application of F-GFET biosensors in
detecting other types of biomolecules is far less common. In 2012,
Yeon Hwa Kwak et al. developed a flexible glucose GFET sensor on a
PET substrate, which exhibited ambipolar transfer characteristics. In
its planar state, the sensor was capable of detecting glucose
molecules in the range of 3.3–10.9 mM in PBS, with a detection
limit of 3.3 mM. Even under deformation, the sensor was able to fit
the model curve well and provide high-resolution, continuous real-
time monitoring. This technology has significant potential for use in
portable, wearable, and implantable glucose level monitoring
applications (Kwak Y H et al., 2012).

In 2013, Ji Hyun An et al. reported the fabrication of a F-GFET
sensor with rapid response to the heavy metal Mercury ion (Hg2+),
which was designed for the detection and monitoring of the
potential harm caused by Mercury ions to human health and the
environment. (Figure 2D). The sensor used a 150 µm thick PEN
substrate and DNA nucleic acid as the probe, achieving an ultra-low
detection capability of 10 pM for Hg2+. The response time was less
than 1 s and the sensitivity was 2-3 orders of magnitude higher than
previous studies (An J H et al., 2013). In the same year, Oh Seok
Kwon et al. engineered for the first time a large-scale patterned
F-GFET immunosensor array on a PEN substrate. By densely
stacking carboxylated polypyrrole nanoparticles (CPPyNP) on the
graphene surface, a larger specific surface area was provided and
HIV-2gp36 antigen (HIV-2 Ag) was immobilized on the particle
surface for HIV detection, with a detection limit of 1 pM (Kwon O S,
et al., 2013).

In 2022, Huang C et al. developed an ultra-flexible and transparent
wearable GFET biosensor on a 1 μm thick PET substrate. The biosensor
was designed to detect body fluid biomarkers, with a focus on L-cysteine
and was able to detect L-cysteine in undiluted human sweat as well as
artificial tears with a sensitivity threshold of 0.022 × 10−6 M, and 0.043 ×
10−6 M, respectively. Considering its ultra-thin thickness and
transparency, this F-GFET is expected to be used in applications such
as contact lenses, which promotes the development of wearable
biosensors in medical detection applications (Huang C et al., 2022).
An overview of sensing performance of various GFET based biomolecule
sensors are given in Table 1.
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4 Conclusion and future research
prospects

F-GFET biosensors have gained significant attention due to their
potential for highly sensitive detection of biomolecule. GFET biosensors
facilitate label-free, rapid and accurate detection of biomarkers, and
flexible liquid-gated GFET biosensors exhibit excellent reusability,
mechanical flexibility, and durability. Consequently, biosensors
utilizing F-GFET technology hold immense potential in transforming
into wearable devices for continuous health monitoring. However, the
flexible liquid-gated GFETs are limited by the external gate electrode and
the exposed properties of graphene that are susceptible to environmental
contaminations, leading to limitations in application scenarios and
inaccurate experimental results. Nevertheless, by regulating the charge
movement in the graphene channel region through the back gate
structure, it is possible to make its application scenario unrestricted,
while effectively protecting the graphene from contamination through
the dielectric layer, thus enhancing the sensitivity of flexible back-gated
GFET biosensors. In the future, various back-gated GFET biosensors
based on ultra-thin flexible substrates will become a promising real-time
application device. At the same time, paper has the potential to become a
flexible substrate for GFET biosensors, which can further reduce the
manufacturing cost (Jia Y et al., 2020). In addition,With the development
of virus real-time prediction analysis technology (Kukushkin V, et al.,
2022) combined with AI technology on chips (Sun H, et al., 2022),
research on F-GFET biosensors and the use of AI technology to enhance
virus detection ability may enable the identification of various viral
strains.
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TABLE 1 An overview of sensing performance of various GFET based biomolecule sensors.

Ref Sensor type Target Limit of detection Sensitive range

Kwon et al., 2012 PPy-GFET VEGF 100 fM 10fM-10nM

Cheng et al., 2015 PDMS-GFET AFP 300 ng/mL -

Farid et al., 2015 PDMS-GFET IFN-γ 83 pM 2-100 µM

Hao et al., 2018 PEN-GFET TNF-a 26 pM 50 pM-500 nM

Wang et al., 2019 Mylar-GFET TNF-a 5 pM 50 pM-100 nM

Wang et al., 2020b Mylar-GFET TNF-a、INF-γ 2.75 pM、2.89 pM 0.2–500 nM
0.2–500 nM

Hao et al., 2022 PET-GFET hemoglobin 10.6 fM 0.001nM–1000 nM

Laliberte et al., 2022 Kapton-GFET IL-6 10 pM 10 pM-100 nM

Yang et al., 2017 PET-GFET HER2 0.6 pM 0.0001–200 ng/mL

Kwak et al., 2012 PET-GFET Glucose 3.3 mM 3.3–10.9 mM

An et al., 2013 PEN-GFET Hg2+ 10 pM 10 pM-100 nM

Kwon et al., 2013 PEN-GFET HIV 1 pM 1 pM-10 nM

Huang et al., 2022 PET-GFET L-cysteine 22 nM 0–4.8 nM
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