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Cell counting is a fundamental measurement for determining viable cell numbers
in biomanufacturing processes. The properties of different cell types and the range
of intended uses for cell counts within a biomanufacturing process can lead to
challenges in identifying suitable countingmethods for each potential application.
This is further amplified by user subjectivity in identifying the cells of interest and
further identifying viable cells. Replacement of traditionally used manual counting
methods with automated systems has alleviated some of these issues. However, a
single cell type can exhibit different physical properties at various stages of cell
processing which is further compounded by process impurities such as cell debris
or magnetic beads. These factors make it challenging to develop a robust cell
counting method that offers a high level of confidence in the results. Several
initiatives from standards development organizations have attempted to address
this critical need for standardization in cell counting. This study utilizes flow-based
and image-based methods for the quantitative measurement of cell
concentration and viability in the absence of a reference material, based on
the tools and guidance provided by the International of Standards (ISO) and
the US National Institute of Standards and Technology (NIST). Primary cells
were examined at different stages of cell processing in a cell therapy workflow.
Results from this study define a systematic approach that enables the identification
of countingmethods and parameters that are best suited for specific cell types and
workflows to ensure accuracy and consistency. Cell counting is a foundational
method used extensively along various steps of cell and gene therapy. The
standard used in this study may be applied to other cell and gene therapy
processes to enable accurate measurement of parameters required to guide
critical decisions throughout the development and production process. Using a
framework that confirms the suitability of the cell counting method used can
minimize variability in the process and final product.
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1 Introduction

Cell counting measurements are used in cell and gene therapy
applications to evaluate cell viability and concentration to assess
quality and quantity of cells for use in a variety of processes. In gene
therapy workflows, viral production cells are transfected with
plasmid DNA to generate viruses, including lentivirus (LV).
These cells need to be carefully counted to ensure that the
amounts of key components such as cell culture nutrients,
transfection agent, and plasmid DNA are appropriate for the cell
number present in the culture vessel. The viable cell density at the
time of transfection can greatly impact the resulting vector
production and impact the downstream process steps and
product quality (Segura et al., 2007; Manceur et al., 2017). Cell
counts should therefore be performed using a cell counting method
that is reproducible and provides accurate results in order to
maximize the yield of high-quality virus. The lentivirus produced
can be designed to harbor genes encoding the chimeric antigen
receptor (CAR) (Levine et al., 2017), which is then used to create
CAR-T cells for cell therapy products.

The T cells required for generation of CAR-T therapies can be
acquired by isolation from leukapheresis products or from
peripheral blood mononuclear cells, and there are two main
methods used to select these cells from the bulk population.
Positive selection utilizes beads that bind to the cells of interest
and allow the removal of non-target cells (Neurauter et al., 2007),
while negative selection involves beads that bind to and remove non-
target cells, leaving the desired cells. The beads used in positive
selection may also activate the cells, while cells isolated by negative
selection require separate activation steps (Brimnes et al., 2012;
Noaks et al., 2021). One of the most important factors in both
isolation and activation is the number of cells present in the sample,
and the resulting bead to cell ratio. The ratio of beads to cells and the
seeding density used post-isolation have a direct impact on cell
expansion post-isolation (Neurauter et al., 2007; Ghaffari et al.,
2021), which is essential for scale-up in cell therapy product
development. When beads are attached to the cells, cell counting
instruments using automated algorithms can be skewed by the
presence of the beads, which makes achieving accurate cell
counts especially challenging and influences the selection of an
appropriate counting method.

Scaling cell expansion can be especially challenging for
developing autologous cell therapy products, where it may not be
possible to obtain a large number of healthy cells from a patient.
Transitioning from autologous to allogeneic cells may help increase
availability of cell therapy products by increasing the starting cell
number and sourcing cells from healthy individuals (Depil et al.,
2020), and clinical trials utilizing allogeneic products have shown
success (Cruz et al., 2013; Brudno et al., 2016). Optimizing
expansion is an essential part of the production of cell therapy
products, and accurate cell counts play a vital role in scale-up and
scale-out culture conditions (Scibona and Morbidelli, 2019).
Evaluating the quality of a cell counting method begins with an
experimental design that includes samples at varying dilutions,
replicates to allow for statistical analysis, and clear criteria to
determine suitability (“ISO 20391-1, 2018 Biotechnology–Cell
counting–Part 1: General guidance on cell counting methods”
2018; Sarkar et al., 2017; Lin-Gibson et al., 2016). The

experimental methods utilized in this study were designed in
accordance with ISO 20391-2 (“ISO 20391-2, 2019:
Biotechnology—Cell counting—Part 2: Experimental design and
statistical analysis to quantify counting method performance”
2019; Huang et al., 2021). This standard offers guidance on
sample preparation, required replicates and dilution levels, as
well as evaluation of pipetting and/or user error and requires the
reporting of several metrics including, for example, a proportionality
index and %CV (coefficient of variation) across replicate
observations (Sarkar et al., 2019).

The guidance offered by the ISO 20391-2 standards was used to
evaluate the performance of three counting methods and four
sample types to determine the most appropriate method for
measurement of cell count and viability throughout the example
cell therapy production process. Additionally, a flowchart is shown
in Figure 1 of an approach to evaluate new counting methods and
integration of new cell types to aid researchers in qualifying new
counting methods for use in non-GMP and GMP laboratory
settings. This flowchart outlines recommended steps to be taken
in integrating new cell processing steps and methods while being
flexible to best fit into each laboratory’s individual processes. The
flowchart also includes proposed evaluation criteria for use in
determining the most suitable cell counting method, and the
results of the given study in those categories.

2 Materials and methods

2.1 Sample preparation

A one-quarter cryopreserved Leukopak (Stem Cell Technologies,
Cat #200-0132) was thawed using the PlasmaTherm Blood Program
(Barkey) until no ice remained, then diluted 1:4 in wash buffer
containing HBSS (Hanks’ Balanced Salt Solution, Gibco, Cat
#14025092), ICSR (CTS™ Immune Cell SR, Gibco, Cat
#A2596101), and EDTA (UltraPure™ 0.5M EDTA, Invitrogen,
15575020). Then, a sample was taken for cell counting method
evaluation. Preliminary cell counts were performed to determine
the estimated concentration in the leukopak and compare to the
value given by the manufacturer. For leukopak cell counts, the blood
sample was mixed with a lysis buffer to remove red blood cells and
incubated. Cell counts were performed on Method 3 only using a
method for whole blood samples.

Ficoll-Paque gradient separation was used to isolate peripheral
blood mononuclear cells from the Leukopak. The thawed Leukopak
was carefully layered onto Ficoll (Cytiva, Cat #17144002) in conical
tubes (Thermo Cat #AM12501). These tubes were centrifuged to
create the density gradient, and the buffy coat was removed and
washed to generate a cell solution containing PBMCs for evaluation.
From these cells, an approximate cell count was performed using
Method 2 to evaluate approximate concentration before creation of
the dilution series. After the approximate concentration was
measured, the dilution series was created as in Section 2.2 and all
three methods were evaluated.

T cells were isolated using either positive or negative
selection. The positive selection method used magnetic beads
(Dynabeads™ Human T-Expander CD3/CD28, Gibco, Cat
#11141D) that bind to the T cells to be isolated and are used
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to separate these cells from the bulk cell population. In the
negative selection method (Dynabeads™ Untouched™ Human
T cells Kit, Invitrogen, Cat #11344D), antibodies directed
towards CD14, CD16, CD19, CD36, CD56, CD123, and
CD235a are added to the cell solution and incubated. Then,
magnetic beads are added to bind to the antibodies and remove
unwanted cells, leaving enriched T cells. Samples were taken from
both the positively and negatively selected T cells for use in cell
counting evaluations. Again, approximate cell counts were
measured for the beaded and non-beaded cells using Method

2, and then the dilution series was created and all three methods
were evaluated.

2.2 Experimental design

The estimated cell counts for each sample type were used to
generate a dilution series containing 5 dilutions (1:1, 1:2, 1:3, 1:4, 1:5)
of the cell solution (Figure 2). The dilutions for all samples were
created using isolation buffer composed of dPBS and Human Serum

FIGURE 1
Proposed flowchart for evaluation of new methods and integration of new cell types into cell counting workflows. Additionally, results of the given
evaluation comparing three different evaluation methods given with positives and negatives given to indicate suitability of each method in various areas,
where higher “+” indicates a more suitable method, and higher “-” indicates a less suitable method. Relative cost is given per sample analyzed.

FIGURE 2
Dilution fraction design in accordance with recommendation from ISO Cell Counting Part 2. (Figure generated using BioRender).
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Albumin (DPBS, Gibco, Cat #14190144 and HSA, InVitroCare, Cat
#2101). While these dilutions were useable for this experiment, it
should be noted that an ideal dilution series more evenly spans the
range from smallest to largest dilution. Concentrations for the
dilution series ranged between 5X10̂5 and 1X10̂6 cells/mL to
maintain all sample concentrations within the operating range of
the instruments being evaluated. Evaluation of pipetting accuracy
was not performed, due to the sensitive nature of the primary cells
being evaluated. For each dilution, 3 sample tubes were generated for
evaluation. Sample tubes within each sample type were assigned
random ID numbers between 1 and 15 to prevent bias in counting
measurements. Each tube was counted 3 times using each counting
instrument and the same method as the initial count. The leukopak
samples were counted using the instrument for Method 3 only, due
to lack of protocols for whole blood on the other two instruments.

2.3 Counting methods

Each of the instruments used for cell counting were evaluated at
each of the 5 dilutions. All methods utilize a different instrument
and protocol, although all protocols used are intended for use in
measurement of cell concentration and viability. Each sample was
mixed well before cell counts were taken, and the sample volumes
were confirmed to be sufficient to prevent air bubbles in automated
counting systems.

For Method 1, samples were analyzed using parameters set
specifically for PBMC and T cells. These parameters included cell
size, circularity, brightness, and sharpness. This method utilized trypan
blue and brightfield imaging to determine cell concentration and
viability. The samples were loaded into the instrument, the cell type
was selected, and the cell counts were performed. Method 2 utilized a
cassette loaded with the stains necessary for cell counting, the cells were
loaded into the cassette and the samples were analyzed using the cell
count and viability measurement method. Both Method 2 and
3 utilized acridine orange (AO) and DAPI (4’,6-diamidino-2-
phenylindole) to measure cell concentration and viability. There
were two different analysis procedures used on Method 3 for
evaluation. The first was used only for the samples taken directly
from the Leukopak. This method used red blood cell lysis buffer that
was added to the cells and incubated at 37°C for 10 min for staining.
Then, samples were mixed and measured using the instrument’s
analysis tool. The second procedure was used for the PBMC and
T cell (both positive and negative selection) samples. For each sample
the staining solution and the cells weremixed, and samples were loaded
into the instrument for analysis using the cell count and viability
measurement method. The default gating was found to be appropriate
for the cell samples measured in this study using Method 2 and
Method 3.

2.4 Data analysis

Values including total cell concentration, viable cell concentration,
percent viability, and average cell diameter were recorded for each cell
countmeasurement. Each of these values was tied to the specific sample
number and replicate, and to the instrument on which the
measurement was performed. Data analysis was performed using

the COMET (Counting Method Evaluation Tool, https://github.
com/usnistgov/COMET or https://cell-counting.shinyapps.io/
COMET/) application as well as JMP data analysis software (JMP
Statistical Discovery). Excel sheets used are provided in the
supplementary data, and templates with information on how to use
the software are available on the COMET website.

For each cell type the cell count data was added into the COMET
template (available through the online tool) and uploaded into
COMET for statistical analysis. The variance was assumed to be
proportional to mean variance, the default order of smoothing
polynomial was selected, the number of bootstrap iterations was
set to 1,000, and the confidence level was set to 0.95. The
proportionality index used was smoothed scaled sum squared
error. Equations for calculation of proportionality index (PI) (Eq.
1) and smoothing (Eq. 2) are given below.

SSEsmooth,scaled � ∑
i
∑

j

e s( )
ij

λ̂ij
⎛⎝ ⎞⎠2

(1)

Smoothing: yi � β̂0 + β̂1DFi + β̂2DF2
i + β̂3DF3

i + β̂4DF4
i (2)

COMET was used to calculate the %CV, R2, and PI values, using
the equations and values given. JMP was then used to compare values
for viability and cell concentration between instruments, using an
ANOVA and pairwise comparison and alpha value of 0.05. After
analysis, p-values were collected for each dilution of each cell type.

3 Results

3.1 Proportionality analysis

Viable cell density (cells/mL) was measured for the different cell
preparations using different cell counting methods across a range of
dilutions (Figure 2). The dilution series data was used to generate
proportional model fits for each cell preparation and each cell
counting method (Figure 3).

The equation for the proportional model fits is represented as,

λij � β1DFtarget
i (3)

Where i represents the index for the target dilution fraction
(DFtarget), and j represents the sample index nested within the ith

target dilution fraction. λij represents the true cell concentration for
a particular (i, j) and β1 is the proportionality constant.

The proportionality constant, an estimate of the stock cell solution
concentration is presented for each method and cell preparation in
Figure 4 and can serve to identify systematic biases between methods.
For PBMCs a significant bias was only observed between Method
1 and Method 3. For T cell positive selection and T cell negative
selection cell preparations, all methods were significantly biased from
one another. This indicates that, particularly for the T cell cell
preparations, the different cell counting methods can be expected
to provide different values for cell count. Therefore, in the absence of a
reference cell counting method or cell count reference material, it is
critical to understand the quality of these different measurement
processes and the fitness-for-purpose of the methods when selecting a
cell counting method. The dilution series data can also be evaluated
with respect to linearity (i.e., allowing for a non-zero y-intercept) and
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FIGURE 3
(A–D) display target dilution fraction on the x-axis and cell concentration (viable cell density in cells/mL) on the y-axis. Each point represents an
average of the replicate observations for a particular replicate sample. The black diagonal line represents the fitted proportional model. The above button
toggles prediction intervals computed using the fitted flexible (polynomial) model. Prediction intervals that do not overlap with the proportional model
suggests potential non-linearity.

FIGURE 4
Proportionality constant (slope of the proportional model fit) estimates for each countingmethod and each cell preparation (shown in (A–C)), along
with bootstrap confidence intervals (shown by bars on plots, 1,000 bootstrap iterations). Statistically different proportionality constants are indicated by
an Asterix (*). Note that this difference does not suggest one method is more accurate than the other, only a difference in their proportional fits. Plots
generated in COMET.
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comparing to an expected cell count value obtained by one of the cell
counting measurement processes) (Supplementary Figure S1).

The values for R2 for the proportional model fit for cells at each
stage of the cell processing workflow are shown in Figure 5. R2 values
remained above 0.9 for all samples, indicating that measured values
for each dilution were close to the modeled values. Both random
variability and systematic variability contribute to R2. There is no
minimum value for R2 given by the standard used in this analysis,
however values in the range generated are considered acceptable for
this study. By looking further into the results and considering the
proportionality index, differences emerge between the 3 methods
evaluated here.

Proportionality index values for cells at each stage of processing
are shown in Figure 5. The PI values indicate the level of deviation
from proportionality for each measurement, after the effects of
random variability have been reduced. The PI values for this
experiment were calculated using the smoothed scaled sum
squared error. For values calculated using this method, lower PI
index values are representative of more proportional measurements,
and higher PI values indicate greater deviation from proportionality.
PI was lower for Method 3 for PBMCs and positively selected cells,
compared to Method 1 and Method 2. For negatively selected cells,
Method 3 had the highest PI of the three methods investigated.
Method 2 had a significantly higher PI than Method 1 and Method
3 for positively selected cells, indicating a loss of proportionality in cell
counting for these cells whenMethod 2 is used. The presence of beads
in these samples may be contributing the loss in proportionality for
Method 2, while Method 1 and Method 3 appear less affected by the
presence of beads in the positively selected samples.

3.2 Precision of the cell counting methods

The coefficient of variation across replicate observations from
each sample was calculated for each instrument, with samples from
each stage of the cell processing workflow analyzed separately. The
%CV values indicate the precision of the instrument being analyzed.
These values are displayed in Figure 6 For each cell sample. The %

CV values for Leukopak, PBMC, and Negative Selection were <10%
and values for Positive Selection were <15%.

3.3 Quality of the percent cell viability
measurements

COMET also provides analysis of the quality of cell viability
measurements across the dilution series. In this analysis it is assumed
that for an ideal % cell viability method, % cell viability would be the
same for each sample regardless of dilution (in practical
circumstances, it is expected that there may be some small
amount of random variability in % viability across samples). In
Figure 7, % cell viability is presented for the different methods and
the different cell preparations, as a histogram to illustrate the
frequency of % cell viability values across all of the samples
evaluated in the dilution fraction study. For Leukopaks, % cell
viability using method 1 ranges from approximately 65% to
approximately 75% with a peak at approximately 71%. For
PBMC samples, % cell viability peak frequencies occur at
different values for % viability and have different but relatively
narrow distributions in % cell viability across replicate samples, The
difference in frequency distribution between Method 1 and Method
3 for the PBMC samples was not statistically significantly different
(p-value = 0.97). For positively selected T cells, there is a large
discrepancy between cell viability results from Method 1 compared
to Methods 2 and 3. This may be due to interference from the beads
in the positively selected T cell samples inMethod 1, where the beads
can be miscounted as non-viable cells, thus reducing the % viability
reported by this method. For negatively selected T cells, the range of
% cell viability values is between approximately 87% viability and
98% viability. Interestingly, Method 3 has a broader distribution in%
cell viability and does not have a distinct highest frequency peak, as
Methods 1 and 2 display. This indicates that Method 3 has higher
variability in % cell viability than the other methods for negatively
selected T cells. ANOVA analysis was also conducted to compare
viable cell density and % cell viability across the different methods
(Supplementary Table S1).

FIGURE 5
(A) R2 values of each proportional model fit for each counting method and cell preparation. (B) Proportionality Index (PI) values based on smoothed
scaled sum of squared error from the proportional model fit to smoothed data. The vertical bars represent bootstrap confidence intervals computed at a
confidence level of 95% and over 1,000 iterations.
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FIGURE 6
Coefficient of variation for each cell type measured, including (A) Leukopak, (B) PBMC, (C) T cell positive selection (T cells with beads attached), and
(D) T cell negative selection (T cells without beads attached). Values are plotted separately for each dilution fraction. Only one instrument was evaluated
for Leukopak samples. Each cell type has N = 15 per method.

FIGURE 7
Percent viability for each cell type and method evaluated, where proportion of results is given on the Y-axis and percent viability is given on the
X-axis. (A) Leukopaks, (B) PBMCs, (C) Positively selected T cells, and (D) Negatively selected T cells. Note that the X-axis ranges vary between plots. Plots
generated by COMET.
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4 Discussion

4.1 Outcomes of evaluation at each stage of
cell processing

Samples taken at different stages of a cell processing workflow
present varying challenges based on the process impurities,
phenotype and characteristics of the cells in each sample. This is
especially evident in cell therapy production workflows, where cells
often exist in heterogeneous populations or are bound to various
types of beads. At the start of the workflow evaluated in this study,
the leukopak samples contained a mix of various cell types including
peripheral blood mononuclear cells, granulocytes, red blood cells,
and platelets (Dean and Dean, 2005), which can potentially present
challenges when using automated counting systems. However, the
data produced in this study using Method 3 showed high linearity
and the coefficient of variation was below 10%, indicating that the
method used is acceptable for measuring whole blood samples.
These results may be compared to methods like flow cytometry
with the addition of counting beads to quantify cell density and
identify specific cell types present in each sample.

When performing cell counts for PBMC samples, the cell
counting parameters on Method 1 required user inputs to
determine parameters used by the instrument’s measurement
algorithm. Analysis of concentration and viability values indicated
significant differences for viability between Method 1 and Methods
2 and 3, indicating that there may be potential for optimization of the
pre-set parameters for PBMC samples on this instrument. COMET
analysis showed goodness of fit (R2) over 0.98 for all instruments,
while PI values remained low and showed significant differences only
between Methods 2 and 3, in which samples were measured using
2 different formats (slide and cassette).

The final stage of cell processing evaluated in this study was post-
isolation of T cells from the PBMC population. Negative selection did
not significantly impact the cell counts recorded on any instrument. The
slope of the dilution series was close to theoretical, linearity was high,
and the coefficient of variation was low. The PI values were higher for
negatively selected T cells than PBMCs, and there were significant
differences between Methods 1 and 2 as well as between 1 and 3. This

indicates that further studies should be performed to identify the source
of these differences, however the results show that all methods are
suitable for use on similar cell samples that contain a single cell type and
do not include beads or other particles in the sample. The T cells which
were positively selected and bound to magnetic beads presented issues
withMethod 1, whichwas likely due to the presence of dark beads in the
sample identified incorrectly by the instrument as cells stained with
trypan blue (Tennant, 1964; Strober, 2015). The viability measurements
for this analysis were significantly different for samples measured on
Method 1 compared to the other two methods. Concentration
measurements were also impacted for Method 1 and Method 2.
This is due to the presence of the beads interfering with
quantification of viable cells for Method 1, and potentially due to
the beads interfering with the microfluidic flow pattern utilized
by the cassettes for Method 2. The interference of the beads also
led to significantly increased PI values and decreased linearity for
Method 2, when compared to the other two methods. While the
viability was negatively impacted for Method 1, linearity
remained high and was similar to Method 3.

4.2 Relevance and applicability of the study
to other processes

Over the entire cell therapy workflow evaluated in this study, the
most suitable method evaluated was Method 3, which produced
consistent results with fewer areas of variability. However, for other
cell processing workflows there may be other methods that are more
or less appropriate for the samples being evaluated. The lack of
accuracy for Methods 1 and 2 in relation to bead-bound cells
presents challenges in workflows where cells are regularly
attached to beads for the purpose of isolation and activation. The
staining method in Method 3 uses fluorescent acridine orange and
DAPI stains (Robbins and Marcus, 1963; Kubista et al., 1987), which
are less impacted by the presence of beads and can identify
fluorescent nuclei and non-viable cells. Methods 2 and 3 allow
for the user to adjust the gating mechanism used by the instrument
to identify live and dead cells, which may be helpful for quantifying
new cell types, while Method 1 uses a numerical parameter-based

TABLE 1 Example selection table that may be used to select an appropriate system for use in cell counting operations. “Performance” referees to the metrics
described in ISO 20391-2. Evaluation categories and scoring may be modified to fit into other workflows, values given are only listed in relation to the three
systems evaluated in this study and are summarized across cell preparations (i.e., for the different cell preparations investigated, the scoring may vary). In this
scaling, the “-” indicates less desirable characteristics, while the “+” indicates more desirable characteristics.

Metric Method 1 Method 2 Method 3

Scalability ++ - +

Hands-on time ++ - - +

Processing time - ++ +

Overall precision ++ ++ +

Counting performance for cells without beads + + +

Counting performance for cells with beads - - + ++

Ability to evaluate % viability of cells -- + -

Cost per sample Medium High Low
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system to set up the analysis algorithm. The utility of a counting
method is also impacted by the number of samples that can be
processed in a set amount of time, and by the hands-on time
required per sample. Methods 1 and 3 allow for a higher
throughput of samples to be processed in a shorter amount of
time, with less hands-on time required, which is preferable
compared to Method 2, which only allows for one sample to be
processed at once with greater hands-on time per sample. An
example of a selection guide that may be used in determining the
most appropriate method of cell counting is given in Table 1. The
parameters used were determined to be relevant for this study,
however further criteria may be added as needed if utilized in future
comparison or establishment studies.

While this study compared 4 different subsets of cells that
may be measured in a typical CAR-T production process, there
are numerous other applications for this evaluation platform.
Non-viral modification has emerged as a way to both generate
CAR-T cells (Eyquem et al., 2017) and increase their efficacy
(Salas-Mckee et al., 2019; Razeghian et al., 2021). Prior to non-
viral modification, cell count and viability are critical values in
setting up electroporation parameters with the correct number of
cells and ensuring that cells are healthy going into the
modification process. The challenge associated with generating
CAR-T cells using electroporation is that with larger knock-in
constructs, efficiency is lower and cell death increases (Lesueur
et al., 2016; Søndergaard et al., 2020). This balance can be
monitored through traditional cell counting methods, in
addition to more complex tools such as flow cytometry which
may be used to measure expression of knocked-in genes. When
flow cytometry is performed, researchers use cell count values to
prepare and stain cells with multiple antibodies in order to
evaluate the efficiency of the genetic modification performed
(Litwin et al., 2020). Inaccurate cell counts may negatively impact
the staining process and skew results related to phenotyping and
evaluation of modification processes. The results of flow
cytometry analysis are used to determine purity and identity
of the cell therapy product, and are a critical component in
quality release testing (Wang and Rivière, 2016).

From beginning to end, cell counts play a vital role in the cell
therapy production workflow. This begins with either viral
production or cell isolation and culture, and feeds into viral or
non-viral modification, and post-modification analytical methods.
After modification, cells are expanded and seeding densities must be
closely monitored until the point at which doses can be portioned
out and delivered to the patient (Wang and Rivière, 2016; Levine
et al., 2017). At each control point and at most steps where cells are
manipulated, cell counts are used to make decisions that may impact
the yield and quality of the final cell therapy product. These counts
are also used during process development to determine step and
overall process yields and optimize processes to ensure desired
outcomes are met. Additionally, regulatory agencies require cell
therapy manufacturers to set acceptability criteria related to cell
concentration and viability, which are then used for dosing purposes
(Guidance for Human Somatic Cell Therapy and Gene Therapy,
1998). For these treatments, getting the dose to the patient is
typically time-sensitive and it is crucial that the concentration
and viability of the cells being infused is sufficient (Tyagarajan
et al., 2020; Bachmeier et al., 2021). All of these applications

necessitate accurate measurements, and standards to ensure that
cell counting methods being utilized are accurate for designated
control points in the workflow.

5 Conclusion

The results of this study indicate that the stage of cell processing
and physical characteristics of the samples being tested can have
significant impacts on the quality and consistency of cell counting
measurements. Cell processing applications require cell counts at
various stages, which are used to make decisions regarding cell
health and seeding, amounts of reagents for viral and non-viral
modification, dosing, and analytical evaluation. The cell counting
methods evaluated here represent a small fraction of the instruments
and methods currently on the market (Cadena-Herrera et al., 2015;
Camacho-Fernández et al., 2018; Patel et al., 2022; Stella et al., 2022).
As new methods become available, it is critical for researchers to
perform proper evaluation of the cell counting measurement process
(including instruments, reagents and data analysis procedures) to
ensure that sources of variability in the counting method do not lead
to errors in the production or use of therapeutic products.

The ISO standard used for this study and the COMET
application, can be used to effectively compare cell counting
measurement systems and determine the suitability of the
systems tested for a specific cell type (Sarkar et al., 2017). The
outputs from the analysis are useful in reporting, precision,
proportionality, linearity, and more. Added features include
evaluation of dilution integrity and variability between users and
timepoints as well as evaluation of the consistency of cell viability
measurements across dilutions. As a whole, the standard creates
clear guidelines for use in laboratories that use either manual or
automated cell counting to make decisions during cell processing
operations and for dosing.
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