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Robot-assisted rehabilitation has exhibited great potential to enhance the motor
function of physically and neurologically impaired patients. State-of-the-art
control strategies usually allow the rehabilitation robot to track the training
task trajectory along with the impaired limb, and the robotic motion can be
regulated through physical human-robot interaction for comfortable support and
appropriate assistance level. However, it is hardly possible, especially for patients
with severe motor disabilities, to continuously exert force to guide the robot to
complete the prescribed training task. Conversely, reduced task difficulty cannot
facilitate stimulating patients’ potential movement capabilities. Moreover,
challenging more difficult tasks with minimal robotic assistance is usually
ignored when subjects show improved performance. In this paper, a control
framework is proposed to simultaneously adjust both the training task and robotic
assistance according to the subjects’ performance, which can be estimated from
the users’ electromyography signals. Concretely, a trajectory deformation
algorithm is developed to generate smooth and compliant task motion while
responding to pHRI. An assist-as-needed (ANN) controller along with a feedback
gain modification algorithm is designed to promote patients’ active participation
according to individual performance variance on completing the training task. The
proposed control framework is validated using a lower extremity rehabilitation
robot through experiments. The experimental results demonstrate that the
control scheme can optimize the robotic assistance to complete the subject-
adaptation training task with high efficiency.
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1 Introduction

Due to the rapidly increasing number of physically and neurologically impaired patients
around the world, rehabilitation robots have been developed to assist in the therapeutic
training of impaired limbs, which improves rehabilitation efficiency and saves human labor
through highly autonomous assistance (Xu et al., 2020a; Xu et al., 2020b). The control
strategy of a rehabilitation robot significantly influences rehabilitation efficacy. Most clinical
cases enable physiotherapists to feed the task trajectories into the robot controller before
rehabilitation starts. However, patients can only modify the robot’s current trajectory
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through physical human-robot interaction (pHRI) without affecting
the future task trajectory. Particularly for patients with severe
impairment, it is hardly possible to continuously exert adequate
force to change the robot’s movement trajectory for a period, and
their recovery, comfort, and safety cannot be guaranteed
accordingly. Therefore, online adaptation of desired trajectories
to patients’ performance is indeed necessary. Dynamic movement
primitive (DMP) (Schaal, 2006) and central pattern generator
(CPG) (Sproewitz et al., 2008) are two common tools for
trajectory generation, and they have been applied in
rehabilitation robotics research (Luo et al., 2018; Yuan et al.,
2020). In (Xu et al., 2023), coupled cooperative primitives are
formulated, where pHRI is expressed as a first-order impedance
model and assumed as a modulation term in DMP. The problems
existing in tuning the impedance model parameters have been
explained above. The human-robot interaction energy is
combined with adaptive CPG dynamics to plan gaits for
exoskeletons (Sharifi et al., 2021); however, this introduces many
uncertain parameters, the resolution of which is time-consuming. In
addition, it is found that the robot’s desired trajectory can be
deformed in response to subject actions (Lasota and Shah, 2015),
but it is unclear which deformed trajectory is optimal. The robot’s
future desired trajectory can be modified, and the optimal solution
of the trajectory deformation is derived by detecting the human-
robot interaction force (Losey and O’Malley, 2018). Similarly,
trajectory deformation is applied to robotic rehabilitation, where
a position controller is adopted to track the deformed trajectory,
ignoring the rehabilitation effectiveness of the AAN training (Zhou
et al., 2021). Apart from movement trajectory planning, users’
voluntary participation should be stimulated by adjusting the
robotic assistance.

Additionally, passive control is usually employed to drive
impaired limbs to move along the predefined task trajectory,
where the active participation of patients cannot be encouraged
to stimulate motor function recovery (Hogan et al., 2006). To
overcome this problem, the assist-as-needed (AAN) control
strategy is introduced to adapt the robotic assistance to the
patients’ performance (Marchal-Crespo and Reinkensmeyer,
2009). An impedance/admittance control scheme is a common
solution for addressing the physical relationship between humans
and robots. An impedance controller based on a virtual tunnel
regulates the robotic assistance while responding to the tracking
error between the current trajectory and the desired trajectory
(Krebs et al., 2003). A torque tracking impedance controller is
proposed for lower limb rehabilitation robotics to generate
assistance while ensuring acceptable trajectory deviation (Shen
et al., 2018). An admittance control incorporating
electromyography (EMG) signals is developed to improve
human-robot synchronization (Zhuang et al., 2019). Both
impedance and admittance control can regulate the relationship
between the trajectory deviation and interaction effect by tuning the
inertia-damping-stiffness parameters. In fact, different patients or
even the same patient at different rehabilitation stages can exhibit
varying motor capabilities; so, accurate determination of these
parameters is essential to realize AAN training for different
subjects and tasks. Furthermore, as for practical application in
rehabilitation, dynamic human force and uncertain external
disturbances often occur and cannot be measured intuitively and

accurately. Both inappropriate impedance/admittance parameters
and unknown dynamic interactive environments can lead to
unstable and oscillating robot behaviors, which may decrease
motion smoothness and even threaten human safety (Ferraguti
et al., 2019). Furthermore, current AAN controllers are designed
to provide only the necessary robotic assistance to complete the
prescribed training task, which is not suitable for encouraging
patients to challenge themselves with more difficult tasks and
stimulate their potential motor capabilities for improved
rehabilitation efficacy.

In this article, a control framework is proposed for the
simultaneous adaptation of training tasks and robotic assistance
according to patient performance. The main contributions of this
article are listed as follows.

(1) A trajectory deformation algorithm is developed to plan the
robot’s desired trajectory as the high-level controller, where the
continuity, smoothness, and compliance of the robotic motion
are achieved in response to the subject’s biological performance.

(2) An AAN control strategy with a feedback gain modification
algorithm is employed to regulate the robotic assistance as the
low-level controller. The controller is designed to encourage
active participation by learning the patient’s residual motor
capabilities and accurately tracking the deformed trajectory.

(3) Both the training task and robotic assistance adaptation
algorithms are integrated into a framework to realize human-
in-the-loop optimization, and this control framework is
validated using a lower extremity rehabilitation robot.

The remainder of the article is organized as follows. The
biological signal processing is described in Section 2. The
trajectory generation is presented in Section 3, and the subject-
adaptive AAN controller is explained in Section 4. The proposed
control framework is verified through experiments in Section 5.
Finally, this study is concluded in Section 6.

The schematic view of the proposed control framework is
presented in Figure 1, and the detailed explanation is elaborated
in the following sections.

2 Biological signal processing

For rehabilitation, robotic motions should be regulated by
adapting to the user’s muscle strength, which can be derived
from the human skin surface EMG signals. In this section, the
EMG-driven musculoskeletal model for torque estimation is
presented. EMG sensors (ETS FreeEMG300) are used to measure
EMG signals, and the electrodes are attached to the relevant skin
surface. Specifically, in the application of lower extremity
rehabilitation, six electrodes are attached to gluteus maximus,
semimembranosus, biceps femoris iliopsoas, sartorius, and rectus
femoris for hip flexion/extension; six electrodes are attached to
rectus femoris, vastus medialis, vastus lateralis, biceps femoris,
semimembranosus, and semitendinosus for knee flexion/
extension. The raw EMG signals are sampled at 1,024 Hz,
bandpass filtered from 10 Hz to 500 Hz, and then notch filtered
at 50 Hz to remove noise. The muscle activation is calculated by the
neural activation function as
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a u( ) � eAuR
−1 − 1

eA − 1
(1)

where u is the post-processed EMG value, R is the maximum
voluntary isometric contraction, and A< 0 is a nonlinear shape
factor, defining the curvature of the function.

Subsequently, a Hill-typed muscle model is constructed to
describe the relationship between muscle activation and muscle
force (Yao et al., 2018). The force produced by the muscle-tendon
unit Fmt is given by the following set of equations:

Fmt � Fm cos∅ � α Fpe + Fce( ) cos∅ (2)
lmt � lt + lm cos∅ (3)

where Fmt, Fm, Fce, and Fpe represent the force generated by the
muscle-tendon unit, the tendon force, contractile element, and
passive element, respectively; lt is the length of the muscle
tendon; α is a scaling factor; ∅ is the pinnation angle that is
given by

∅ � arcsin
sin ∅0( )

l0
( ) (4)

where∅0 is the optimal pinnation angle and l0 is the optimal length
of muscle fiber. The scale factor α will be used in the optimization
process. The human joint torque was produced by the coupling
function of both the agonistic and antagonistic muscles, that is,

τ̂h � ∑J

i�1τi
∣∣∣∣∣ ∣∣∣∣∣agonist − ∑L

j�1τj
∣∣∣∣∣∣ ∣∣∣∣∣∣antagonist (5)

where τi � Fm
i r

m
i and τj � Fm

j r
m
j denote the torques exerted by the

agonistic and antagonistic muscles, respectively. Fm
i and Fm

j are the
muscle-tendon forces, rmi and rmj are the muscle moment arms of the
muscle-tendon unit and can be estimated by determining the

muscle-tendon length lmt and joint angle q; that is, rm � ∂lmt
∂q . The

parameters J and L denote the number of agonistic and antagonistic
muscles acting on the joint, respectively.

In the proposed EMG-driven musculoskeletal model, it is
essential to determine the model parameters, i.e., the shape factor
A and scaling factor α. Furthermore, the human joint torque during
the exercise could be directly detected via AnyBody Modeling
System (AMS) (Damsgaard et al., 2006). However, the torque
generated by AMS is not continuous and realistic. The real joint
torque can be measured through calibration experiments with EMG
signals, which are quite complex and time-consuming. Therefore, it
is proposed that the optimization is undertaken to adjust the EMG-
drivenmusculoskeletal model parameters tominimize the difference
between the torque estimated by the EMG signals τ̂h and the torque
detected via AMS τAMS.

The optimization procedure is illustrated in Figure 2. The
processed EMG signals are converted to muscle activation using
(2) including the uncertain shape factor A. Then the muscle
contraction model (Yao et al., 2018) is established to calculate
the muscle-tendon force and the muscle torque through
Equations 2–5, where the muscle-tendon length lmt and the
moment arm rm can be obtained from AMS. On the other hand,
certain driving motion is loaded to AMS and the human joint torque
τAMS can be achieved. The optimization aims to shrink the
difference between τ̂h and τAMS. Select the parameters to be
optimized as p � [A α ]T. The optimization problem is defined
as (6).

min J p( ) � ∑N

i�1
τ̂ ih − τ iAMS( )2

N
(6)

where N is the number of samples. The
Broyden–Fletcher–Goldfarb–Shanno algorithm (Peña et al.,

FIGURE 1
Control framework of simultaneous adaptation of training tasks and robotic assistance.
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2019), together with a penalty barrier algorithm, is employed to find
the optimal parameters.

3 Trajectory adaptation

Prior to operating the rehabilitation robot, the training task needs to
be predetermined by feeding the reference trajectory (task trajectory)
into the robot controller, which is usually the natural gait trajectory of
healthy subjects. The patient is then encouraged to complete the task
with robotic assistance. Once the reference trajectory is preset and fed
into the robot controller, however, it is not reasonable to maintain the
task difficulty invariant throughout the rehabilitation procedure. In
order to ensure the smoothness and compliance of the robotic motion,
the robot’s desired trajectory should be modified intuitively and
continuously in response to the human force (Losey and O’Malley,
2018). In this regard, the physical human-robot interaction (pHRI)
should alter not only the robot’s current state but also its future
behavior. In this section, a trajectory deformation algorithm is
studied to explore the pHRI influence on the training task, and the
modification is made on the original reference trajectory, generating the
desired trajectory for the further controller design.

The reference trajectory (predetermined before the training) is
defined as q*d, and the desired trajectory (altered during the training)
is defined as qd. When the human-robot interaction torque τh is
exerted on the robotic joints at time ti, the original desired trajectory
q*d starts to deform; such trajectory deformation ends at time tf, and
accordingly, the duration of the trajectory deformation is p � tf − ti.
Moreover, the deformed trajectory between ti and tf can be evenly
divided into an arbitrary number of waypoints, and the time interval
between the consecutive waypoints is δ. Concisely, the deformation
process can be expressed as q*d(t) → qd(t), where t ∈ [ti, tf], and a

diagram of the trajectory deformation is presented as Figure 3. It can
be seen that both the magnitude and direction of the human-robot
interaction torque influence the shape of the deformed trajectory.
The larger the force exerted on the robot, the greater the deviation
between the original and deformed trajectories; conversely, smaller
human force results in smaller trajectory change. Besides, human
force with opposite direction can lead to alteration in the
deformation direction. So, both the amplitude and direction of
the trajectory deformation should be taken into consideration
while proposing the trajectory adaptation method.

FIGURE 2
Optimization procedure of pHRI estimated from biological signals.

FIGURE 3
Diagram of the trajectory deformation.
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Apparently, deformed from the reference trajectory may follow
different curves to shape qd, and there are many possible trajectory
deformations. Constrained over the time interval [ti, tf], Γsd(t) is
defined as the deformation curve function, in which s is the
deformation factor, and changing the value of s can derive
different shapes of trajectories. When s � 0, the segment of the
desired trajectory between times ti and tf is represented as

γd t( ) � Γ0d t( ) ∀t ∈ ti, tf[ ]
γd � q*d ti( ), q*d ti + δ( ) . . . q*d tf − δ( ), q*d tf( )[ ] (7)

where γd(t) � q*d(t) when t ∈ [ti, tf], and γd is not defined outside
this time interval. All other values of s refer to deformations of γd. As
shown in Figure 3, in the time interval [ti, tf], the original trajectory
γd(t) can be deformed to Γs1d (t) and Γs2d (t).

When the subject starts to exert force at time ti, the robot’s
desired trajectory is changed from γd to ~γd when s � 1, which is
defined as

~γd t( ) � Γsd t( )
~γd � Γsd ti( ), Γsd ti + δ( ) . . . Γsd tf − δ( ), Γsd tf( )[ ] (8)

Once ~γd is determined, the robot’s desired trajectory is updated
as qd(t) � ~γd(t). After time tf, the robot follows its reference
trajectory q*d again.

Comparing (7) with (8), the vital factor that causes the trajectory
deformation can be formulated as a vector field functionΦ(t), which
linearizes the dependency of Γsd(t) on the deformation factor s, i.e.,

Γsd t( ) � γd t( ) + sΦ t( ) (9)
The vector field function V(t) is distributed along γd and yields

that Φ(t) � ∂sΓ0d(t), ∀t ∈ [ti, tf], in particular, when s � 1,
~γd � γd + Φ(t). The determination of Φ(t) should ensure the
continuity, smoothness, and compliance of the deformed
trajectory. Specifically, the transition from q*d(ti) to qd(ti) and
from qd(tf) to q*d(tf) should be as continuous as possible. Also,
a minimum-jerk model (Li et al., 2017) is utilized to generate a
smooth trajectory profile to guarantee patients’ comfort and
security. The vector field function Φ(t) is highly correlated to the
human-robot interaction torque τh, and a cost function is designed
and minimized to optimize the deformed trajectory for high
compliance. The detailed explanation of determining the vector
field function is presented in Appendix 1, and the resultant
formulation of the vector field function is obtained as

Φ t( ) � μδHβτh ti( ) (10)
where

H � G

p + δ( ) G‖ ‖ (11)

G � I − ATA( )−1BT B ATA( )−1BT( )−1B( ) ATA( )−1 (12)

The parameter I ∈ RN×N in (12) is an identity matrix, where N
denotes the number of waypoints. The determination of the matrix
A and B is introduced in Appendix 1. The parameter H influences
the shape ofΦ, and it is formulated in (11). The parameter β ∈ RN in
(10) is the prediction vector of the interaction torque, i.e., the future
interaction torque can be formulated as βτh(ti), with τh(ti) being

the interaction torque applied at time ti. The direction of the
interaction torque is included in the prediction vector so that the
proposed algorithm can address the magnitude and direction of the
trajectory deformation well. Even so, when the human force
direction is altered, the deformed trajectory is suggested to be
recalculated with the updated prediction vector for delicate
modulation of the training task. Besides, in robotics-assisted
rehabilitation, the duration of pHRI is relatively long because the
patient mostly tries to participate actively to guide the robot, which
is different from the statement in (Losey and O’Malley, 2018). The
parameter μ in (10) denotes the assistance level, and it can be tuned
to arbitrate between human and robot. When μ increases, the
induced trajectory deformations arbitrate toward the human,
which means smaller input forces cause larger deformations; and
vice versa. Herein, the assistance level is formulated as μ � τh/τ̂h,
where τ̂h is the expected human joint torque to complete the task
trajectory in the absence of robotic assistance, and it can be obtained
from Section 2.

Combining (9), (10), (11), and (12), the relationship between the
vector field function and the interaction torque is clarified, and the
deformed trajectory is thus obtained as

~γd � γd + μδHβτh ti( ) (13)
After ~γd is derived from (13), qd is updated to include ~γd, and the

process iterates at the next trajectory deformation when pHRI
occurs again.

4 Assist-as-needed controller

Based on the abovementioned trajectory generation scheme, an
actuation controller needs to be designed to track the desired
trajectory. More importantly, in response to various motor
capabilities of different patients, a subject-adaptive controller is
required to realize AAN training. In this section, an AAN
control strategy along with a feedback gain modification
algorithm is proposed to complete the training task motion and
provide the minimum required assistance to encourage patients’
active engagement.

The robot dynamics in joint space can be presented as follows
whilst considering pHRI.

M q( )€q + C q, _q( ) _q + G q( ) + f _q( ) + τdis � τact + τh (14)
where q ∈ Rn (n denotes the number of the robotic joints) is the
position coordination of the robotic joints, and accordingly, _q and €q
denote the joint velocity and acceleration, respectively. The
parameter M(q) ∈ Rn×n is the inertia matrix, C(q, _q) ∈ Rn×n is
the centripetal and Coriolis matrix, G(q) ∈ Rn is the gravity
torque, f( _q) ∈ Rn is the friction, τdis ∈ Rn is the external
disturbance, τact ∈ Rn is the robotic joint torque generated by the
actuators, and τh ∈ Rn is the human-robot interaction torque.

Although the robot dynamics have been modeled as (14), it is
impossible to accurately formulate disturbances that may decrease
the compliance of robotic motion and the safety of pHRI. The total
disturbances τd include the estimation error of the human force
(τh − τ̂h), external disturbance (τdis) and unmodeled dynamics. So,
the dynamics (14) can be rewritten as
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M̂ q( )€q + Ĉ q, _q( ) _q + Ĝ q( ) + f̂ _q( ) � τ̂h + τact + τd (15)
where M̂(q), Ĉ(q, _q), Ĝ(q), and f̂( _q) are the estimation of M(q),
C(q, _q), G(q), and f( _q), respectively; τd ∈ Rn denotes the total
disturbances. The position tracking error is defined with respect to
the desired trajectory as ~q � q − qd, and the sliding variables are
defined as

e � _~q + Λ~q (16)
where Λ is a constant. In order to help subjects complete the desired
tasks while providing the minimum required assistance, the AAN
controller for the robotic actuation can be presented as

τact � M̂ _e + Ĉe + Ĝ + f̂ − τ̂h−KDe (17)
where M̂, Ĉ, Ĝ, and f̂ are the estimation ofM(q),C(q, _q),G(q), and
f( _q), respectively, and KD ∈ Rn×n is a positive-definite feedback
gain. The selection of the parameter KD will be elaborated in the
subsequent feedback gain modification algorithm.

Through the stability analysis in Appendix 1, we can conclude
that the proposed control system yields a tracking error with
uniformly ultimately bounded stability. The ultimate bound on
the tracking error e can be expressed as Be, and its formulation
is given in Appendix 1. Should ~M→ 0, ~C→ 0 and τd → 0, the
appended analysis demonstrates that ‖e‖ → 0, and the system
proves globally asymptotically stable. The inequality (39)
concludes that the trajectory tracking error r is uniformly
bounded, and, more importantly, this bound can be explicitly
calculated in the following. The Lyapunov function can be
basically bounded as α1(‖e‖)≤V≤ α2(‖e‖), where α1(·) and α2(·)
are certain functions and will be defined later. Then, the ultimate
bound Be on the tracking error e can be defined as

Be � α−11 α2 zl‖ ‖( )( ) (18)
where zl is the limiting term that satisfies _V< 0∀‖e‖≥ zl ≥ 0.

Since the inertia matrixM is positive-definite and bounded, the
subsequent inequality can be derived as

1
2
M e‖ ‖2 ≤V≤

1
2
�M e‖ ‖2 (19)

where M and �M are the minimal and maximal eigenvalues of the
inertia matrix M, respectively. It should be noticed that the left and
right sides of (40) correspond to α1(‖e‖) and α2(‖e‖), respectively.
By adopting the right side of (39) as the limiting term zl and
substituting the inequality (42) into (41), the bound on the tracking
error can be calculated as

Be �

�����������������
�M ~M _e + ~Ce − ed
���� ����2

Mθ2K

2

D

√√
(20)

Noticeably, the feedback gain KD is included in the formulation
of the bound Be, which means that the bound on the allowable
trajectory tracking error can be manipulated by directly varying the
value of KD, and the amount of robotic assistance can be
consequently adjusted. Although adequately large values of KD

results in minimal bound on tracking error, perfect tracking
effect is not desirable to stimulate patients’ potential motor
capabilities (Pehlivan et al., 2015). Appropriate allowable tracking

error can facilitate improved rehabilitation efficacy, especially
aiming to promote the patient’s active participation. The
increased or decreased value of KD is suitable in the following
practical situations.

Situation 1: When the patient with severe motor disability has
difficulty in completing the training task or learning a motion,
increasing the value ofKD leads to reduced allowable tracking error,
and larger robotic actuation is provided for assistance.

Situation 2: When the patient attempts to stimulate muscle
strength to challenge themselves with more difficult tasks,
decreasing the value of KD leads to increased allowable tracking
error, and smaller robotic actuation is provided to spare more space
for the patient’s effort.

Therefore, the selection of the feedback gain KD plays an
important role in addressing the trade-off between accurate
trajectory tracking and sufficient participation encouragement. To
solve this problem, a feedback gain modification algorithm is put
forward to render patients complete and even challenge the task
according to their residual motor capabilities and motion intention.

A parameter e* is introduced to define the maximum allowable
trajectory tracking error. The average tracking error in a certain task
is recorded as ei with the feedback gain KD,i, which will be updated
as KD,i+1 in the next task based on the patient’s performance. The
performance metric is the human-robot interaction torque to
evaluate voluntary movement ability. The muscle activation in
the current task can be normalized as ui � |τh,i|/|τ̂h,i|, where τh,i
denotes the average interaction torque in the current task, and |τ̂h,i|
denotes the human’s joint torque to complete the task in the absence
of robotic assistance. Similarly, the human’s performance in the
prior task can be expressed as ui−1 � |τh,i−1|/|τ̂h,i|. Comparison of the
human’s performance in the current task to the previous task is
considered the variance tendency of the subject’s motor capability.
Concretely, if ui < ui−1, the patient shows a downward tendency in
muscle strength stimulation, the future feedback gain KD,i+1 should
be increased to meet Situation 1; otherwise, if ui > ui−1, the patient
shows an upward tendency in rehabilitation efficacy, and the future
feedback gain KD,i+1 should be decreased to meet Situation 2. The
updating of the feedback gain occurs at the end of each task
trajectory, and it conforms to the following law

KD,i+1 � 1 + ϖi( )KD,i (21)
where ϖi is the change rate and satisfies −1<ϖi < 1. Specifically,
ϖi ∈ (−1, 0)means decreasing the future feedback gain with respect
to the current one, whereas ϖi ∈ (0, 1) means increasing the
tendency. The formulation of the change rate is defined as

ϖi � ui−1 − ui

τh,i
exp · ui

ui−1
( )sign ui−1−ui( )

ϖnom (22)

where ϖnom is the nominal change rate and is predetermined as a
constant to limit the maximal tracking error to less than e*. The sign
of ϖi depends on the variance tendency of the subject’s motor
capability. For instance, if ui is larger than ui−1, ϖi ∈ (−1, 0), the
algorithm dictates that the subject has the potential to exhibit better
performance in the next task, and the feedback gain decreases for
larger error bound. Conversely, if ui is larger than ui−1, ϖi ∈ (0, 1),
the algorithm dictates that the subject fails to complete the current
task with improved voluntary muscle strength, and the feedback
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gain increases for more assistance in the next task. The magnitude of
ϖi is decided by both the maximum tracking error and the
performance variance.

Combining the AAN controller (17) with the feedback gain
modification algorithm (21) and (22), the control framework can
provide a highly efficient and autonomous training strategy for
robot-assisted rehabilitation.

5 Experiments

In order to validate the proposed control framework, the lower
extremity rehabilitation robotmentioned in Xu et al. (2019), Xu et al.
(2021) was utilized to conduct a series of experiments. The
experiments were carried out on three healthy subjects. All
subjects were informed of the detailed operation procedures and
potential risks and signed consent forms before participation. The
experiments were approved by the ethics committee of Hefei
Institutes of Physical Science, Chinese Academy of Sciences
(approval number: IRB-2019-0018). Two DOFs of the robot,
including hip flexion/extension and knee flexion/extension, were
involved in the training. Before operation, the reference trajectories
were prescribed by physiotherapists to ensure rhythmic and
comfortable training motion, and they were then fed into the
robot controller. During the training, the subjects were asked to
track the reference trajectories with the assistance of the
rehabilitation robot actuation. Once the interaction force exerted
by the subjects was detected by sensors, the reference trajectory was
deformed to generate another optimal desired trajectory, and the
robot was controlled to cooperate with the subject to complete the
modified task motion. It should be noted that the subjects were not
allowed to voluntarily move in the opposite direction from the task
trajectory for accurate calculation of the deformed trajectory and
safety guarantee.

Three groups of experiments were performed for the three
subjects, and three different reference trajectories were configured.
The time interval between the consecutive waypoints was set at
δ � 0.01 s, and the prediction vector of the interaction torque was
set at β � �1. The vector field function was updated four times for
hip flexion, hip extension, knee flexion, and knee extension in one
walking cycle, where the computation efficiency was adequate to
ensure instantaneous and accurate trajectory deformation. The
amount and variance of pHRI differed across the three subjects due
to their individual motor capabilities and motion intentions. The
experimental results are shown in Figures 4–6. The subfigures A
and B demonstrate the trajectory deformation and tracking of the
hip and knee joint, respectively. The variance of the interaction
torque at the hip and knee joints is illustrated in subfigure C, and
the robotic actuation torque is presented in subfigure D. The
experimental results indicate that the proposed trajectory
generator can continuously produce a smooth and optimal
desired trajectory once the subject exerts force on the robot.
When the interaction torque disappears, the desired trajectory
gradually converges back to the predetermined reference
trajectory. In this regard, the shared control between the robot’s
desired trajectory and the human’s voluntary effort is realized.
Additionally, based on the proposed AAN controller, the actual

trajectory output from the robot actuation can track the desired
trajectory well.

In order to exhibit the control performance more intuitively,
quantitative evaluation with three metrics was conducted. In terms
of trajectory smoothness, the dimensionless squared jerk (Hogan
and Sternad, 2009) was adopted, and its definition is presented in
(23). A smaller DSJ value indicates a smoother movement trajectory.
As for the compliance assessment, the energy per unit distance
(EPUD) (Lee et al., 2018) was selected as (24). When improved
compliance was shown, the subject could drive the robot with less
interaction torque. A smaller EPUD value indicates higher robot
compliance. The root mean square error (RMSE) defined in (25) was
utilized to reveal the position error between the desired trajectory
and actual trajectory. A smaller value of RMSE indicates better
tracking effect. The three metrics are formulated as follows.

DSJ � ∫tb

ta

q
...

t( )2dt tb − ta( )5
q 2

max

(23)

EPUD � ∑N
j�1 τh tj( )Δd tj( )∣∣∣∣∣ ∣∣∣∣∣∑N

j�1 Δd tj( )∣∣∣∣∣ ∣∣∣∣∣ (24)

RMSE �
��������������������
1
N
∑N

j�1 q tj( ) − qd tj( )( )2√
(25)

In (23), the parameters ta and tb are the start and end time of the
trajectory, q max is the maximum amplitude of the trajectory, and
q
...(t) is the third time-derivative of the trajectory. In (24), j �
1, 2, . . . , N is the sample number, τh(tj) is the human-robot
interaction torque at the time tj, and Δd(tj) is the deviation
between the reference trajectory and desired trajectory at the
time tj. In (25), q(tj) and qd(tj) are actual and desired
trajectory at the time tj, respectively.

Additionally, to better manifest the advantage of the proposed
control framework, comparison experiments were performed with
an admittance control without trajectory deformation and feedback
gain modification algorithms (Li et al., 2017). The admittance
control was implemented with the same robot and subject. The
admittance parameters were regulated while responding to the
subjects’ biological actions. The trajectory deformation and
tracking performance of both control systems were evaluated
with the abovementioned three metrics. Additionally, in order to
evaluate rehabilitation efficacy, muscle activation improvement was
normalized and recorded, and the Fugl-Meyer assessment (FMA)
was also deployed for clinical evaluation. Higher normalized EMG
value and FMA score indicate rehabilitation improvement. Each
trial was conducted three times for accuracy, and the mean values of
these metrics are recorded in Table 1. The robot motion compliance
and movement smoothness of the hip and knee joint trajectories
generated by the deformation trajectory algorithm are much better
than those with the admittance control. Furthermore, the tracking
performance under the feedback gain algorithm proved more
satisfactory compared to the admittance control. The
enhancement of the muscle strength and clinical assessment
scores is evident compared with the performance without the
proposed control framework. Overall, the comparison results
prove that the control framework can effectively help the patient
learn to move in the proper trajectory, and the training becomes
more challenging and brings better rehabilitation efficacy.
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FIGURE 4
Experimental results of subject 1. (A) Trajectory deformation and tracking of the hip joint. (B) Trajectory deformation and tracking of the knee joint.
(C) Interaction torque at the hip and knee joints. (D) Actuation torque at the hip and knee joints.

FIGURE 5
Experimental results of subject 2. (A) Trajectory deformation and tracking of the hip joint. (B) Trajectory deformation and tracking of the knee joint.
(C) Interaction torque at the hip and knee joints. (D) Actuation torque at the hip and knee joints.
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Next, the feedback gain modification algorithm for the AAN
controller was experimentally examined during the optimized
training task. The subjects were required to voluntarily exert
forces on the robot, and the feedback gain KD was adapted
according to the subjects’ performance, producing subject-
adaptive robotic assistance. At the end of each training task,
questionaries were set and filled in to identify whether the current
task was easier or more difficult compared to the previous task. The
questionnaire responses only helped assessments of the pilots’
subjective intention without affecting the robot controller. After
that, the subsequent training task was operated immediately. The
tracking performance of the AAN controller, variance of the feedback

gain KD, and the human-robot interaction torque were measured in
real time and are depicted in Figure 7. It can be seen from the figure
that the feedback gain and tracking error are functions of the
interaction torque. The experimental results demonstrate that the
feedback gain KD can respond correctly to the subjects’ motor
capabilities. When subjects complete the task with more active
involvement, KD decreases and the allowable trajectory tracking
error increases, and the magnitude of robotic assistance decreases for
further encouragement, and vice versa. The variance tendency of KD

is consistent with the questionnaire results. Furthermore, no matter
how the tracking error varies, the user-selected maximum allowable
trajectory tracking error r* is always larger than or equal to the error

FIGURE 6
Experimental results of subject 3. (A) Trajectory deformation and tracking of the hip joint. (B) Trajectory deformation and tracking of the knee joint.
(C) Interaction torque at the hip and knee joints. (D) Actuation torque at the hip and knee joints.

TABLE 1 Comparison results.

Control strategy Trajectory Trajectory
tracking

Muscle activation Clinical assessment

Deformation

DSJ EPUD RMSE (rad) Normalized EMG
values

FMA

Hip Knee Hip Knee Hip Knee Hip Knee

Proposed Control 7.66 × 108 3.1 × 13.24 13.58 0.07 0.05 0.87 0.91 30.4

108

Admittance Control 3.78 × 1012 1.24 × 16.37 16.61 0.19 0.16 0.48 0.53 18.8

1012

Frontiers in Bioengineering and Biotechnology frontiersin.org09

Xu et al. 10.3389/fbioe.2023.1244550

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1244550


in each task. Therefore, it can be concluded that the feedback gain
modification algorithm can effectively adjust the robotic assistance
according to the subjects’ changing performance, hopefully
encouraging impaired patients’ active participation and facilitating
rehabilitation efficacy.

6 Conclusion

In this paper, a control framework is proposed for the
simultaneous adaptation of training tasks and robotic
assistance for robot-assisted rehabilitation. Specifically, a
trajectory deformation algorithm is developed to enable
pHRI to regulate the task difficulty in real time, generating a
smooth and compliant desired trajectory. Furthermore, an
AAN controller, along with a feedback gain modification
algorithm, is designed to motivate patients’ active
participation, where the robotic assistance is adjusted by
evaluating the patients’ performance variance and
determining the trajectory tracking error bound. Appropriate
training difficulty and assistance level are two important issues
in robot-assisted rehabilitation. In this study, the appropriate
training difficulty is expressed in the form of making a proper
trajectory, which is realized with the proposed trajectory
deformation algorithm; and the appropriate assistance level
is expressed in the form of increasing the user’s EMG level,
which is realized with the proposed AAN controller with the
feedback gain modification algorithm. The balance between
these two issues is essential for better rehabilitation efficacy,
and the proposed control framework can address this balance
well. A lower extremity rehabilitation robot with MR actuators
is then employed to validate the effectiveness of the proposed
control framework. Experimental results demonstrate that the
training task difficulty and robotic assistance level can be
regulated appropriately according to subjects’ changing
motor capabilities.

In future work, more novel methods will be explored to estimate
human motor capabilities and improve pHRI control strategies.
More diverse training tasks will be involved to meet the
rehabilitation requirements of different degrees and types of
impairments. Machine learning may be adopted to ensure better

time efficiency and greater adaptability of robotic assistance
modification. Furthermore, more clinical trials will be carried out
to expand the proposed control framework into clinical application.
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Appendix

AppendixDetermination of Vector Field
Function

As presented in (9), the vector field function Φ(t) is applied to
shape the deformed trajectory, and its determination should follow
the subsequent rules.

Rule 1: Continuity.Once the human force τh is exerted at ti, the
predefined reference trajectory q*d starts to be deformed to qd; after
time tf, the robot again follows its reference trajectory q*d. Hence, in
order to ensure the continuous transitioning between the original
and deformed trajectories, the field vector function Φ(t) and its
time-differential _Φ(t) is constrained as

Φ ti( ) � Φ tf( ) � 0

_Φ ti( ) � _Φ tf( ) � 0 (26)

Then, the trajectory configuration on the boundary condition
can be satisfied, i.e., γd(t) � ~γd(t) and _γd(t) � _~γd(t) at both the start
ti and the end tf.

Specifically, the deformed trajectory between ti and tf can be
evenly divided into an arbitrary number of waypoints. We define the
number of waypoints as N and the time interval between
consecutive waypoints as δ. As introduced before, the time
duration of pHRI is p, such that the number of waypoints along
γd and ~γd can be calculated as N � p

δ + 1.
Consequently, the original and deformed desired trajectory

within the time interval [ti, tf] can be written as

γd � q*d ti( ), q*d ti + δ( ) . . . q*d tf − δ( ), q*d tf( )[ ]
~γd � Γsd ti( ), Γsd ti + δ( ) . . . Γsd tf − δ( ), Γsd tf( )[ ]

Applying this waypoint parameterization, the continuity
statement (26) can be rewritten as

Γsd ti( ) − q*d ti( ) � Φ ti( ) � 0
Γsd ti + δ( ) − q*d ti + δ( ) � Φ ti + δ( ) � 0
Γsd tf − δ( ) − q*d tf − δ( ) � Φ tf − δ( ) � 0

Γsd tf( ) − q*d tf( ) � Φ tf( ) � 0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
The above equation can be further rewritten as

B ~γd − γd( ) � BΦ � 0 (27)
where

B �
1 0 0 / 0 0 0
0 1 0 / 0 0 0
0 0 0 / 0 1 0
0 0 0 / 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ R4×N

Rule 2: Smoothness. Although the reference trajectory q*d has
been set to be as smooth as possible through modeling from the
healthy subject gait database, the naturality of the deformed desired
trajectory qd should also be maintained to guarantee the patient’s
comfort and security. Numerous observations have demonstrated
that the healthy human’s movement complies well with the
minimum-jerk model (Li et al., 2017). Similarly, the minimum-
jerk deformed trajectory can be derived by satisfying the vector field
function as

Φ
... � δ−3 · AΦ (28)

where

A �

1 0 0 . . . 0
−3 1 0 . . . 0
3 −3 1 . . . 0
−1 3 −3 . . . 0
0 −1 3 . . . 0
0 0 −1 . . . 0
..
. ..

. ..
.

1 ..
.

0 0 0 . . . 1
0 0 0 . . . −3
0 0 0 . . . 3
0 0 0 . . . −1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R N+3( )×N

Rule 3: Compliance. It is pHRI that initiates the trajectory
deformation and decides the deformed trajectory shape; the vector
field function Φ(t) is highly correlated with the interaction torque
τh. Analogous to (Losey and O’Malley, 2018), a cost function is
formulated to reveal the variation of the trajectory deformation
energy as

J ~γd( ) � ~γd − γd( )T −βτh ti( )( ) + 1
2α

~γd − γd( )T ATA( ) ~γd − γd( )
(29)

where α is a positive constant and τ̂h is the prediction of the
human-robot interaction torque. It should be noticed that the
trajectory deformation occurs at the current time ti when the
human first interacts with the robot and results in the interaction
torque τh(ti). Since the future interaction torque values are
required to compute the energy of the trajectory deformation
but remain unknown, an online prediction of the future
interaction torque is developed as βτh(ti), where β ∈ RN is the
prediction vector.

The proposed cost function (29) contains two terms: the first
term means the work done by the trajectory deformation to the
human; and the second term is the squared norm of Φ with respect
to the finite differencing matrix ATA (A is mentioned in (28)) to
ensure the smoothness and naturality of the deformed trajectory.

In order to ensure the compliance of the deformed trajectory, the
cost function (29) should be minimized under the constraint (27) to
optimize the value of the field vector function Φ. The optimization
problem can be formulated as

minimize J ~γd( )
subject toB ~γd − γd( ) � 0 (30)

A Lagrangian function is defined as follows to solve the above
optimization problem.

L ~γd, λ( ) � J ~γd( ) + λTB ~γd − γd( ) (31)
where λ ∈ R4 is a vector of Lagrange multipliers. By calculating the
partial derivative of (31), we have

∂~γdL ~γd, λ( ) � −βτh ti( ) + 1
αs
ATA ~γd − γd( ) + BTλ � 0

∂λL ~γd, λ( ) � B ~γd − γd( ) � 0 (32)
Through further computation after (32), the subsequent

equation (33) can be obtained to reveal the relationship between
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the field vector function and the interaction torque. In addition to
Lagrange multipliers, the reader can refer to (Wu et al., 2020) to find
another solver, i.e., linear variational inequality-based primal-dual
neural network.

V � ρGβτh ti( ) (33)
where

G � I − ATA( )−1BT B ATA( )−1BT( )−1B( ) ATA( )−1 (34)

where I ∈ RN×N is an identity matrix.
The determination of the parameter ρ in (33) has significant

impacts on the shape of Φ. In robotics-assisted rehabilitation, the
duration time of the human-robot interaction is relatively long
because the patient mostly tries to participate actively to guide
the robot, which is different from the statement in (Damsgaard
et al., 2006). Considering the above factors, the parameter ρ is
defined as

ρ � μδ
G

p + δ( ) G‖ ‖ (35)

where μ denotes the level of assistance, which regulates whether it is
the robot or human that the trajectory deformation arbitrates
toward.

Therefore, following the rule of continuity, smoothness, and
compliance, the ultimate expression of the vector field function is
clarified as

Φ t( ) � μδHβτh ti( ) (36)
where

H � G

p + δ( ) G‖ ‖

7.2 Stability Analysis of AAN Controller

Combining themodified robot dynamics (15), error dynamics (16),
and AAN controller (17), the following equation can be yielded.

M̂ _e + Ĉe +KDe + τd � 0 (37)
For stability analysis, consider a Lyapunov candidate function as

V � 1
2
eTMe (38)

Then, the time-derivative of the Lyapunov function is

_V � −eTKDe + eT ~M _e + ~Ce − τd( ) (39)

Let us introduce a constant θ ∈ (0, 1); the time-derivative of the
Lyapunov function can be further written as

_V≤ −K
D
e‖ ‖2 + e‖ ‖ · ~M _e + ~Ce − τd

���� ����≤ θ − 1( )K
D
e‖ ‖2 − θK

D
e‖ ‖2

+ e‖ ‖ · ~M _e + ~Ce − τd
���� ����

(40)
Hence, if the following inequality is satisfied,

e‖ ‖≥
~M _e + ~Ce − τd

���� ����
θK

D

(41)

The time-derivative of the Lyapunov function satisfies

_V≤ θ − 1( )K
D
e‖ ‖2 < 0 (42)

Through the stability analysis, the Lyapunov candidate V≥ 0
and its time-derivative _V< 0 are ensured, and it can be concluded
that the proposed control system yields a tracking error with
uniformly ultimately bounded stability.
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