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Osteosarcoma, the most common primary malignant bone tumor, is
characterized by malignant cells producing osteoid or immature bone tissue.
Most osteosarcoma patients require reconstructive surgery to restore the
functional and structural integrity of the injured bone. Metal orthopedic
implants are commonly used to restore the limb integrity in postoperative
patients. However, conventional metal implants with a bioinert surface cannot
inhibit the growth of any remaining cancer cells, resulting in a higher risk of cancer
recurrence. Herein, we fabricate a selenium-doped TiO2 nanotube array (Se-
doped TNA) film to modify the surface of medical pure titanium substrate, and
evaluate the anti-tumor effect and biocompatibility of Se-doped TNA film.
Moreover, we further explore the anti-tumor potential mechanism of Se-
doped TNA film by studying the behaviors of human osteosarcoma cells
in vitro. We provide a new pathway for achieving the anti-tumor function of
orthopedic implants while keeping the biocompatibility, aiming to suppress the
recurrence of osteosarcoma.
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1 Introduction

Osteosarcoma (also called osteogenic sarcoma) is an aggressive malignant neoplasm that
starts in the bones, in which the cancer cells produce malignant osteoid or immature bone
tissue (Long et al., 2021). Although osteosarcoma is sensitive to chemotherapy, it frequently
metastasizes to the lungs, leading to high rates of morbidity and mortality. Radical resection
is still the first choice for the treatment of osteosarcoma, which requires the reconstruction of
the bone defect after resection to restore the functional and structural integrity of the injured
bone (Liao et al., 2021). Implantation of the metal prosthesis is one of the methods to
reconstruct the bone defect site. However, even if the osteosarcoma focus is removed, the
residual tumor cells could cause a high risk of recurrence of osteosarcoma after metal
prosthesis implantation. Therefore, it is urgent to develop an orthopedic implant with anti-
tumor function.
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Recent reports reveal that anodized TiO2 nanotubes have a wide
range of applications in surface modification of implants for
improving bone integration, drug delivery, and high-throughput
screening, due to their size controllability, thermal stability,
corrosion resistance, and excellent biocompatibility (Brammer
et al., 2010; Peng et al., 2013; Zhang et al., 2015; Chaves et al.,
2016; Gulati et al., 2022; Kong et al., 2022; Sun et al., 2022). The
preparation of TiO2 nanotube arrays on the implant surface and the
loading of drugs or bioactive substances into the unique hollow
structure of TiO2 nanotubes can promote the adhesion and growth
of biological tissues in contact with the implant, and also realize the
controlled release of drugs or bioactive substances, endowing the
multiple functions of implants (Ayon et al., 2007; Brammer et al.,
2009; Kodama et al., 2009; von Wilmowsky et al., 2009; Gultepe
et al., 2010; Zhang et al., 2023). Furthermore, various surface
modifications are applied to TiO2 nanotube arrays (TNA) to
further improve the biological properties of TNA, such as
inducing the generation of an apatite layer on the surface of
TiO2 nanotubes (Oh and Jin, 2006; Kunze et al., 2008; Wang
et al., 2008; Xiao et al., 2008; Kodama et al., 2009; Chen et al.,
2019; Alvi et al., 2020; Wu et al., 2021), modulating the surface
physicochemical properties of TiO2 nanotubes (Balaur et al., 2005;
Lai et al., 2010; Vasilev et al., 2010), elemental doping (Yang et al.,
2019; Hu et al., 2022), and alkali treatment (Oh et al., 2005).
Although many studies show that appropriate surface
modification of TNA can improve the biocompatibility and
achieve multifunctionality, these studies mainly focus on the
bone integration, and anti-tumor effect is still in its infancy,
which urgently need more studies (Brammer et al., 2010; Kang
et al., 2010; Lai et al., 2010; Vasilev et al., 2010; Zhao et al., 2010).

Selenium (Se), an essential trace element of the human body, is
proven to be a potent anticarcinogen that aids in the prevention of
bone cancer31, breast cancer (Harris et al., 2012), ovary cancer (Park
et al., 2012), lung cancer (Tan et al., 2016), and gastrointestinal
cancer (Dawsey et al., 2014). More critically, compared with
conventional radiation/chemotherapy drugs with significant
systematic side effects (Paus et al., 2013; Abdullah et al., 2019),
selenium is demonstrated to inhibit tumor growth and protect
healthy tissues (Wang et al., 2015). The anti-tumor effects of
selenium are largely associated with redox metabolism, which
leads to elevated intracellular reactive oxygen species (ROS) levels
(Weekley et al., 2011; Misra et al., 2015). As an upstream signaling
molecule, ROS plays a role in the regulation of various cellular
processes, including apoptosis (Cooper, 2018; Huang et al., 2018).
Some literature suggest that apoptosis shares some essential
regulatory proteins in response to ROS (Cooper, 2018; Huang
et al., 2018). Wang, et al. report that selenium-doped mineral
nanoparticles trigger the ROS generation, causing the subsequent
tumor cell apoptosis (Wang et al., 2016). However, the therapeutic
window of zero-valent Se is relatively narrow, and it is difficult to
precisely control its concentration, which severely limits its wide
clinical application. It is reported that nano-Se is much less toxic
than inorganic Se and natural organic Se, compared with general
zero-valent Se (Zhang et al., 2005; Wang et al., 2007).

Based on the special structure and properties of TiO2 nanotube
arrays, and anti-tumor effect of selenium, the researchers fabricated
Se-doped TiO2 nanotube arrays to prepare an anti-tumor
orthopedic implant (Chen et al., 2013; Cheng et al., 2017). For

instance, Chen et al. fabricated Se-deposited and chitosan-coated
TiO2 nanotubes substrates with anti-tumor, the results showed that
the substrates could inhibit the proliferation of osteosarcoma cells
(Chen et al., 2013). Although these strategies showed promising
efficacy in inhibiting the proliferation of osteosarcoma cells, this
study did not explore the effects of doped TiO2 nanotubes with
different concentrations of Se and their surface morphology on
osteosarcoma cells, as well as did not explore the mechanism of Se-
doped TiO2 nanotubes inhibiting the proliferation of osteosarcoma
cells.

Herein, We propose a novel surface modification to inhibit the
growth of osteosarcoma, nano Se-doped TiO2 nanotube arrays were
fabricated on pure titanium by anodization and electrochemical
deposition. We also implement in vitro biological experiments to
systematically investigate the influence of nano Se-doped TNA on
the apoptosis of osteosarcoma cells. The results reveal that nano Se-
doped TNA induce the apoptosis of osteosarcoma cells by an
inherent caspase-dependent apoptotic pathway activated by the
generation of reactive oxygen species (ROS). The nano Se-doped
TNA in this study possesses an enhanced anti-tumor effect and
excellent biocompatibility, which paves a new way for the
development of orthopedic implants with anti-tumor effect.

2 Materials and methods

2.1 Material preparation and
characterization

2.1.1 Preparation of TNA
TiO2 nanotube arrays were fabricated on the surface of a pure

titanium sheet by anodization. Ti sheet (5 mm × 1 mm, 99.5%
purity) was used as the working electrode, while stainless steel
was taken as the cathode. Before anodic oxidation, the Ti sheet
was cleaned ultrasonically in acetone to remove greasy dirt.
Afterwards, the Ti sheet was chemically polished for 60 s in a
mixed acid solution (1:1 v/v nitric acid (HNO3) and hydrofluoric
acid (HF)) and rinsed in deionized water. Anodic oxidation was
carried out in an electrolytic cell at 20 V supplied by a regulated DC
power supply (WYJ-100V5A, Stabilized Kai Power Supply, China)
for 40 min. The aqueous solution containing 0.6 vol% HF was used
as the electrolyte. After anodization, the surface of the Ti sheet was
rinsed with deionized water and air-dried. The whole preparation
process was carried out at room temperature.

2.1.2 Preparation of nano Se-doped TNA
The doping of nano Se on TiO2 nanotube arrays was performed

by electrochemical deposition. The aqueous solution containing
0.25–3 × 10−3 mol/L Na2SeO3 (Alfa Aster, United States) was
used as the electrolyte. The pH was adjusted to about 3 by
dropwise adding HF solution. The deposition voltage was 0.5 V
and the deposition period was 2–10 min. After deposition, the TNA
sample was rinsed with deionized water and air-dried.

2.1.3 Characterization of the nano Se-doped TNA
The morphology and elemental composition of nano Se-doped

TNA were characterized by field emission scanning electron
microscope (FE-SEM, Hitachi SU-70, Japan), energy dispersive
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spectrometer (EDX, Inca Oxford, United Kingdom), X-ray
photoelectron spectroscopy (XPS, Thermo Kalpha, United States),
and X-ray diffraction (XRD, Philips X’Pert PRO, United States).
Three groups of nano Se-doped TNA samples with Se content of
0.5wt%, 5wt%, and 22wt% (determined by EDX detection results)
were UV sterilized for subsequent biological analysis.

2.2 Cell culture

Saos-2, L929, and MC3T3-E1 cell lineage were purchased
from the National Collection of Authenticated Cell Cultures
(CAS, China). Saos-2 and L929 cell lines were cultured in
Dulbecco’s Modified Eagle Medium (DMEM, Corning,
United States) supplemented with 10% fetal bovine serum
(FBS, Gibco, United States) and 1% (v/v) anti-anti. Similarly,
MC3T3-E1 was cultured in Minimum Essential Medium α
(MEMα, Viva cell bioscience, China) supplemented with 10%
fetal bovine serum (FBS, Gibco, United States) and 1% (v/v) anti-
anti. The cells were incubated at 37°C and 5% CO2 in a 95%
humidified cell incubator until 70%–80% confluency. Cells were
dissociated with 0.25% trypsin-EDTA and seeded in microwell
plates (MWP) for subsequent biological analysis.

2.3 Cell cytotoxicity assay

The extract of undoped TNA and 0.5 wt%, 5 wt%, and 22 wt%
nano Se-doped TNA were obtained according to the
international standard ISO 1099325. Briefly, samples were
immersed in DMEM supplemented with 10% FBS under 37°C
and 5% CO2 for 72 h. L929 cells (1 × 103 cell/well) were seeded in
96 MWP with 150 μL of above supplemented extract and
incubated for 48 h under 37°C and 5% CO2 atmosphere.
DMEM medium with 10% FBS served as control group. 20 μL
of 5 mg/mL of 3-(4,5-dimethylthiazol-2)-2,5-
diphenyltetrazolium bromide (MTT, Sigma, United States) was
added into each well, followed by incubation at 37°C for 3 h to
determine succinate dehydrogenase activity.

After the mixture of medium and MTT were removed, the
methanogenic product was solubilized in 100 µL of isopropanol
solution containing 0.04 mol/L HCl. Absorption at 570 nm was
measured using an automated plate reader (Perkin-Elmer) for
quantitative detection.

2.4 Hemolytic tests

Undoped TNA and nano Se-doped TNA (0.5 wt%, 5 wt%, 22 wt
%) served as test groups, and Triton X-100 (1%) and 0.9% normal
saline (NS) were employed as positive control group (PC) and
negative control group (NC), respectively. Each sample was put
into a centrifuge tube, and then red blood cell (RBC) saline
resuspension was added into each tube. All specimens were
incubated at 37°C for 3 h and then were centrifuged at 1,600 rpm
for 8 min to obtain the supernatant. The absorbance of the
supernatant was measured at 545 nm. The hemolysis rate was
calculated according to formula (1).

Hemolysis rate %( ) � As − Anc( )
Apc − Anc( )

× 100% (1)

Where As, Anc, and Apc were the absorbance values of the
experimental group, negative control group, and positive control
group, respectively.

2.5 Cell proliferation test

The effect of nano Se-doped TNA with different Se
concentrations (0.5wt%, 5wt%, 22wt%) on the proliferation of
Saos-2 cells was tested using the AlamarBlue reagent
(Thermofisher, United States) according to the manufacturer’s
instructions. Briefly, undoped TNA and 0.5 wt%, 5 wt%, and
22 wt% nano Se-doped TNA were placed in a 96 MWP. 20 μL of
AlamarBlue was added into 1 × 105 cells/mL Saos-2 cell suspension
to mix well, and then 180 μL cell suspension was added into each
well, followed by incubation for 24 h at 37°C and 5% CO2

atmosphere. The reduction of AlamarBlue was measured by
microspectrophotometer and the reduction rate of AlamarBlue
was calculated using the formula (2) provided by the
manufacturer’s protocol.

Reduced %( ) � εox( )λ2 · Aλ1 − εox( )λ1 · Aλ2

εRed( )λ1 · A’λ2 − εRed( )λ2 · A’λ1 × 100% (2)

Where λ1 = 570 nm, λ2 = 600 nm; εox was the molar extinction
coefficient of the oxidized form of AlamarBlue (blue), εox 570 =
80586, εox 600 = 117216; εred is the molar extinction coefficient of the
reduced form of AlamarBlue (pink), εRed 570nm = 155677, εRed
600nm = 14652. A indicates the absorbance value, and A′ denotes
the absorbance value of the negative control.

We also performed Cell Counting Kit-8 (CCK-8, Bimake,
China) assay to investigate the effect of nano Se-doped TNA
with different Se concentrations (undoped, 0.5 wt%, 5 wt%, 22 wt
%) on the proliferation of MC3T3-E1 cells. MC3T3-E1 cells (2 × 103

cell/well) were cultured on the surface of undoped, 0.5 wt%, 5 wt%,
22 wt% nano Se-doped TNA and blank well (control group) for 24 h.

2.6 Cell adhesion

MC3T3-E1 (3 × 103cells/well) and Saos-2 (3 × 103cells/well)
were cultured on undoped TNA and 0.5 wt%, 5 wt%, and 22 wt%
nano Se-doped TNA for 24 h. MC3T3-E1 and Saos-2 cells cultured
on the samples were fixed with 2.5% glutaraldehyde and
permeabilized with 1% Triton X-100. F-actin and nuclei were
stained with Fluorescein isothiocyanate (FITC)-phalloidin and
DAPI (Solarbio, Beijing, China), respectively, according to the
manufacturer’s protocol. Cellular morphology was observed by
confocal laser scanning microscopy (CLSM, LEICA TCS SP8,
Germany).

2.7 Cell apoptosis

The exact percentage of the apoptotic Saos-2 cells was analyzed
with Annexin V- FITC/PI staining. Saos-2 cells were cultured onto
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the surface of undoped TNA and 0.5 wt%, 5 wt%, and 22 wt% nano
Se-doped TNA (3 × 105/well) for 24 h, and then the Saos-2 cells were
collected and stained with Annexin V- FITC/PI (Solarbio, Beijing,
China). Flow cytometer (FCM, Beckman Coulter, United States) was
used to determine the fluorescence signal of Saos-2 cells.

Saos-2 cells (104cells/well) were seeded on the surface of
undoped TNA, 0.5 wt%, 5 wt%, and 22 wt% nano Se-doped TNA,
incubated for 24 h, and then stained with Hoechst 33258 (Solarbio,
China) and acridine orange/ethidium bromide (AO/EB) according
to manufacturer’s protocols, respectively. Apoptotic cells were
examined using a fluorescent microscope (Olympus, Tokyo,
Japan) within 30 min.

2.8 Detection of reactive oxygen
species (ROS)

ROS Assay Kit (Beyotime, Shanghai, China) was used to
detect the levels of ROS production following the
manufacturer’s protocol. Briefly, Saos-2 cells cultured on the
surface of TNA groups for 24 h were collected by trypsin
digestion and stained by 2,7-Dichlorodihydrofluorescein
diacetate (DCFH-DA) ROS sensitive probe. The intracellular
ROS content was evaluated using flow cytometer (FCM,
Beckman Coulter, United States) and confocal laser scanning
microscopy (CLSM, LEICA TCS SP8, Germany).

2.9 qPCR analysis

Saos-2 cells (4 × 105/well) were cultured onto the surface of
undoped TNA and 0.5 wt%, 5 wt%, and 22 wt% nano Se-doped
TNA for 24 h. The total RNA of saos-2 cells was extracted using
TRIzol Reagent (Thermofisher, United States), and the
complementary DNA (cDNA) was synthesized using the total
RNA with the TransScript® All-in-One First-Strand cDNA
Synthesis SuperMix for qPCR (TransGen, China) according to
manufacturer instructions. The expression levels of the apoptosis-

related genes (BAX,CYTC,CASP9,CASP8,CASP3) were detected by
reverse transcription-polymerase chain reaction (RT-PCR) assay,
and the primers’ sequences were shown in Table 1. GAPDH was
chosen as the reference gene in this study.

2.10 Statistical analysis

All statistical analyses were performed using SPSS 20.0 (SPSS,
Chicago, IL, United States). Data was expressed as mean ± standard
deviation (SD) (n = 3). Differences among groups were analyzed and
determined by Student’s t-test or one-way ANOVA followed by
Tukey’s post hoc test or Bonferroni post hoc test. The p-value less
than 0.05 was considered statistically significant.

3 Result and discussion

3.1 Fabrication and characterization of nano
Se-doped TNA

Figure 1A shows the preparation process of nano Se-doped TiO2

nanotube arrays: TiO2 nanotube arrays are fabricated on the surface
of pure titanium by anodization, and then, nano Se is deposited on
TiO2 nanotube arrays by electrochemical deposition. The surface
morphology and composition of nanostructured materials is crucial
to the actual function of the material. The surface morphology of
undoped TNA and nano Se-doped TNA are shown in Figure 1B.
The undoped TNA are highly ordered and uniform in size, and the
diameter of nanotubes is about 120 nm and the length of nanotubes
is about 400 nm. The surface of 0.5wt% nano Se-doped TNA with
2 min deposition is covered by some nano scaled fine deposits with
sizes around 100 nm, and the structure of TNA remained intact. It
can be observed that the surface of 5wt% nano Se-doped TNA with
4 min deposition is locally covered by nanoflakes of irregular shape
and size about 100 nm, which evenly and individually disperse on
the surface of the TNA, and the flakes are confirmed to be Se
elements by EDX test. There are still some uncovered parts of TiO2

nanotube array, and the morphological structure remained clear and
consistent. When the electrochemical deposition time was extended
to 7 min, a layer of reddish-brown deposit on the surface of the
sample could be observed by naked eye, and the surface of 22 wt%
nano Se-doped TNA was completely covered and the nanotubes
were not visible. The deposited Se agglomerated into 300–400 nm
lumpy particles and there were very obvious cracks among the
lumpy particles. When the deposition time was 10 min, the surface
morphology of the TiO2 nanotube array was similar to 22 wt% nano
Se-doped TNA.

Lowering the pH value of the electrolyte enables the hydrolysis
reaction to proceed more rapidly and adequately. Moreover,
we believe that the special porous structure of the TiO2

nanotube array also facilitates the deposition of selenium. The
porous structure of TiO2 nanotube array provides a fixation point
for the deposition and merger of Se. At the initial stage of
electrochemical deposition, nano Se particles are attached and
immobilised at certain points on the surface of the TiO2 nanotube
arrays, and these nanoscale particles gradually agglomerate to form
blocks and sheets.

TABLE 1 Primers’ sequences used in real-time PCR.

Target gene Sequences

Forward
primer (5′→3′)

Reverse
primer (5′→3′)

BAX CCCGAGAGGTCTTTT
TCCGAG

CCAGCCCATGATGGT
TCTGAT

CYTC CTTTGGGCGGAAGAC
AGGTC

TTATTGGCGGCTGTG
TAAGAG

CASP8 AGAGTGAGGCGATTT
GACCTG

GTCCGAAACAAGGTG
AGGGTT

CASP9 CTCAGACCAGAGATTCGC
AAAC

GCATTTCCCCTCAAA
CTCTCAA

CASP3 CATGGAAGCGAATCAATG
GACT

CTGTACCAGACCGAG
ATGTCA

GAPDH ACCCACTCCTCCACC
TTTGAC

TGTTGCTGTAGCCAA
ATTCGTT
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The EDX spectra of the surface of nano Se-doped TNA are shown
in Figures 1C, D. In addition to the peaks of Ti, O, and F elements, there
is Se peak in the spectrum, which proves that Se has been successfully
deposited on the TiO2 nanotube arrays. The content of various elements
of nano Se-doped TNA fabricated in this work is shown in Table 2.
Nano Se-doped TNA mainly contains Ti, O and Se elements. The
selenium content is 0.53 ± 0.03wt% (0.5 wt% nano Se-doped TNA),
5.17 ± 0.11 wt% (5wt% nano Se-doped TNA), and 22.19 ± 0.19wt%
(22 wt% nano Se-doped TNA), respectively. The XPS spectrum of 5 wt

% nano Se-doped TNA are presented in Figure 1E. XPS spectra in
Figure 1F show two peaks at 55.21 eV and 55.9 eV corresponding to Se
3d5/2 and Se 3d3/2, the binding energies are similar to the 3d5/2 and Se
3d3/2 peaks of monatomic Se at 55.2 eV and 55.9 eV, respectively, and
the results suggest that Se is deposited as amonomer in thewhole rowof
TiO2 nanotube arrays (Shalvoy et al., 1977; Shenasa et al., 1986).
Supplementary Figure S1 shows a typical X-ray diffraction pattern of
5 wt% nano Se doped TNA, which reveals that the polymorph of the
obtained nano Se is amorphous Se (Li et al., 2010). The concentration

FIGURE 1
Surface characteristics of nano Se-doped TNA. (A) Schematic diagram of preparation process of nano Se-doped TiO2 nanotube arrays; (B) Surface
morphology of undoped TNA and 0.5 wt%, 5 wt%, and 22 wt% nano Se-doped TNA, scale bar = 2 μm; (C,D) Element composition and content of
undoped TNA and 0.5 wt%, 5 wt%, and 22 wt% nano Se-doped TNA; (E) XPS spectrum of 5wt% nano Se-doped TNA; (F) Se 3d high-resolution spectra of
5wt% nano Se-doped TNA detected by XPS; (G) Relationship between the deposition time and selenium content; (H) Relationship between the
electrolyte concentration and selenium content.
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and morphology of the deposited Se element on the TiO2 nanotube
arrays can be adjusted by changing the electrochemical deposition time
and the concentration of the electrolyte. Figure 1G depicts the trend of
Se concentration deposited on the TiO2 nanotube arrays with increasing
deposition time when the electrolyte concentration is fixed (taking 1.5 ×
10−3 mol/L Na2SeO3, for example). It is clear that the Se concentrations
are positively associated with increasing deposition time: Se content is
around 0.5wt% when the deposition time is 2 min, and Se content is
around 5 wt%when the deposition time is 4 min, and around 22 wt% of
Se when the deposition time is 7 min, and around 24 wt% of Se when
the deposition time is 10 min. It can also be seen from Figure 1G that
the deposition rate of Se on the nanotubes at the beginning stage is
higher than that at the later stage. Taking the results (Figures 1C, G) into
consideration, we speculate that nano Se is scattered on the surface of
the nanotubes at the beginning, and then the dispersed nano Se grow up
gradually and interconnect when the deposition time exceeds a certain
value. Eventually, Se agglomerates to cover the whole surface of TNA,
and the surface of TNA shows obvious reddish-brown color. As the
deposition time continues to extend, the reddish-brown particles
floating in the electrolyte around the sample could be observed by
nude eye, indicating the deposition of Se on the surface of nanotubes has
reached saturation state. Figure 1H shows the trend of the deposition
concentration of Se on the TiO2 nanotube arrays with the electrolyte
concentration when the deposition time is fixed at 7 min. The
concentration of Se is around 1wt% when the electrolyte
concentration is 0.25 × 10−3 mol/L, and 5wt% of Se when the
electrolyte concentration is 0.9 × 10−3 mol/L, and 22wt% of Se when
the electrolyte concentration is 1.5 × 10−3 mol/L, and Se concentration is
as high as 47wt% when the electrolyte concentration is 3 × 10−3 mol/L,
which indicates that the concentration of Se deposited on the surface of
TNA increases as the electrolyte concentration increases. The
deposition rate of Se in the high-concentration electrolyte is much
higher than that in the low-concentration electrolyte. The floating
reddish-brown particles are visible in the electrolyte around the
sample, implying Se deposition on the surface of TNA reaches
saturation.

3.2 In vitro biocompatibility evaluation of
nano Se-doped TNA

A novel biomedical material must possess good biocompatibility
(Shirzaei Sani et al., 2019). As an potential orthopedic implant
material, the nano Se-doped TNA will inevitably contact with blood.
Therefore, we conduct hemolysis tests to assess the
hemocompatibility of nano Se-doped TNA. The standard
specifies the materials with hemolysis rate (HR) of 2%–5%
and >5% as slightly hemolytic and hemolytic, respectively,
whereas the materials with 0%–2% of hemolysis are categorized

as non-hemolytic (Leitão et al., 2013). As shown in Figure 2A, the
bright red represent the positive control group (PC), whereas all
TNA groups appear colorless, similar to the negative control group
(NC). The hemolysis rates of all TNA groups are less than 2%,
indicating that nano Se-doped TNA has excellent
hemocompatibility. Moreover, the cytocompatibility of the nano
Se-doped TNA is evaluated byMTT testing the enzymatic activity of
mouse-derived fibroblasts (L929) cultivated into the extracts of all
TNA samples for 48 h. There is no significant difference in the
enzymatic activity among all TNA groups and the control group,
indicating that the extracts of 0.5wt% Se, 5wt% Se, and 22wt% Se
nano Se-doped TNA have no cytotoxic effect (Figure 2B). Overall,
the increased content of deposited nano Se does not affect the
hemocompatibility and cytocompatibility of TNA.

3.3 Effect of nano Se-doped TNA on the cell
proliferation

The mouse preosteoblast cell line (MC3T3-E1) and the human
osteosarcoma cell line (Saos-2) are cultured on the surface of
undoped TNA and nano Se-doped TNA to investigate the effect
of nano Se-doped TNA on the proliferation of MC3T3-E1 and Saos-
2. Figure 3A shows the proliferation of MC3T3-E1 cultured on the
surface of nano Se-doped TNA (test groups) and DMEM cell culture
media (control group). There is no any significant difference in the
proliferation of MC3T3-E1 cells between all groups, which is
consistent with the results of Figure 2B. As seen in Figure 3B,
the proliferation of Saos-2 cell seeded on 0.5wt% and 5wt% nano Se-
doped TNA is significantly lower than that of the undoped TNA and
22wt% Se-doped TNA. Among them, Saos-2 cells on the 5 wt% nano

TABLE 2 The element composition and concentration of Se-doped TNA.

Samples Ti O Se

0.5 wt% nano Se-doped TNA 80.08 ± 1.08 wt% 16.70 ± 0.75 wt% 0.53 ± 0.03 wt%

5 wt% nano Se-doped TNA 78.12 ± 2.72 wt% 14.85 ± 1.19 wt% 5.17 ± 0.11 wt%

22 wt% nano Se-doped TNA 66.70 ± 1.84 wt% 9.30 ± 1.49 wt% 22.19 ± 0.19 wt%

FIGURE 2
Biocompatibility assessment. (A) Hemolysis rates and correlation
images of TiO2 nanotube arrays doped with different Se contents. (B)
Relative enzymatic activity of L-929 cells in cytotoxicity testing. 0, 0.5,
5, 22 represent undoped TNA, 0.5 wt% nano Se-doped TNA, 5wt
% nano Se-doped TNA, 22 wt% nano Se-doped TNA, respectively. n =
5 independent samples, *p < 0.05 by one-way ANOVA.
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Se-doped TNA show the lowest active proliferation. Furthermore,
fluorescence staining is carried out to observe the cell morphology
cultured for 24 h on the surface of undoped TNA and nano Se-
doped TNA (Figure 3C). MC3T3-E1 cells on all groups show very
high cell confluence and intact morphology. However, Saos-2 cells
on 0.5 wt% and 5 wt% nano Se-doped TiO2 TNA exhibit extremely
low cell confluence and cytoskeletal abnormalities, compared with
undoped TNA and 22 wt% Se-doped TNA, demonstrating that
0.5 wt% and 5 wt% nano Se-doped TiO2 TNA significantly
inhibit the proliferation of Saos-2 cell lineage.

The surface morphology also alters the celluar response. For
MC3T3-E1 cells, the unique structure of TiO2 nanotubes facilitates
proliferation, adhesion and differentiation of preosteoblasts
(Brammer et al., 2012). Therefore, MC3T3-E1 adhered easily on
the surface of the nanotube incompletely covered group (0.5 wt%
and 5 wt% nano Se-TNA), while 22 wt% nano Se-doped TNA was a
rough surface, and previous studies have shown that roughness is
favourable for cell proliferation and adhesion (Faia-Torres et al.,
2014; Han et al., 2020). Compared with the Control group, the
number of cells, cellular integrity, and adhesion in the Se-doped
TNA group did not differ significantly. In addition, nano-selenium
had no significant effect on MC3T3-E1 proliferation, and adhesion.
There was no significant difference in cell number, cell integrity and
adhesion in the Se-doped TNA group compared with the Control
group, nano Se had no significant inhibitory effect on MC3T3-E1
(Cheng et al., 2017). For Saos-2 cells, compared with the uniform
surface of TiO2 nanotube array, the 0.5wt and 5wt% nano Se-doped

TNA surfaces were covered with un-interconnected tiny flakes of
nano selenium, and osteosarcoma cells planted on the 0.5wt and
5wt% nano Se-doped TNA surfaces would be up taken by the cell in
the cytosolic form of nano selenium and eventually induced a
significant inhibitory effect on Saos-2 cells (Dai et al., 2021).
Around the organelles to play a role, and eventually induced
apoptosis in Saos-2 cells. On the other hand, the surface of
22 wt% nano Se-doped TNA was covered with interconnected
block particles of nano selenium, which prevented the tumor
cells from uptaking the block particles of nano selenium, so the
inhibition of tumor cells by nano Se at this concentration was
relatively small (Zhang et al., 2009).

3.4 Apoptosis in osteosarcoma cells induced
by nano Se-doped TNA

Previous studies have shown that the mechanism of Se
inhibiting tumor cell viability is mainly inducing the apoptosis
of tumor cells (Wang et al., 2016; Li et al., 2020), particularly those
mediated by ROS (Chen et al., 2012). Here, we hypothesize that
nano Se-doped TNA may effectively inhibit tumor cells
proliferation by promoting cancer cell apoptosis. Therefore, we
used Hoechst 33258 staining, AO/EB double staining, and
Annexin V-FITC/PI double staining flow cytometry to verify
our hypothesis. The AO/EB double-stained fluorescence
microscopy images (Figure 4A) show the effect of the nano Se-
doped TiO2 nanotube arrays on the viability and apoptosis of Saos-
2 cells. The living cells cover the whole surface of undoped TNA
group in Figure 4A, indicating that Saos-2 cells have high viability
on the surface of the undoped TNA. The apoptotic and dead
cells almost occupy the whole surface of 0.5wt% and 5wt% Se-
doped TNA groups and the living cells are almost undetectable,
indicating that the Saos-2 cells on these two groups are hard to
getting survive, and these two groups significantly reduce the
survival rate of Saos-2 cells (Figure 4A). The live, apoptotic and
dead Saos-2 cells coexist on the surface of 22 wt% Se-doped TNA
group, but the living cells are still in the majority, indicating that
the survival rate of Saos-2 cells on the 22 wt% Se-doped
TNA group is higher than that on the 0.5 wt% and 5 wt% Se-
doped TNA groups, but still lower than that on the undoped TNA
group. It can be concluded that the nano Se deposited on the
surface of TNA possesses a strong inhibitory effect on the viability
of Saos-2 cells, and however, higher Se doping contents do not
exert a stronger inhibitory effect on the viability of Saos-2 cells.
Only an appropriate concentration of doped nano selenium has a
significant inhibitory effect. The results of Figure 4A are consistent
with those shown in Figures 3B, C.

We further investigate the nuclear morphology of Saos-2 cells
stained with Hoechst 33258 by fluorescence microscopy (Figure 4B).
The nuclei of Saos-2 cells on all nano Se-doped TNA groups exhibit
brighter blue staining and more concentrated morphology
compared to that on the undoped TNA, indicating the deposited
nano Se enhances the cell apoptosis. The cell nuclei on the surface of
0.5 wt% and 5 wt% nano Se-doped TNA groups show brighter blue
staining and more concentrated morphology than that on 22 wt%
Se-doped TNA, implying that an appropriate concentration of
doped nano Se significantly promotes cell apoptosis.

FIGURE 3
Proliferation and morphology of MC3T3-E1 and Saos-2 cell on
the surface of nano Se-doped TNA. (A) CCK-8 assay for the
proliferation of MC3T3-E1 cultured on the surface of TNA samples for
24 h; (B) Reduced alamar values of osteosarcoma Saos-2 cells
cultured on the surface of TNA samples for 24 h; (C) Confocal laser
scanning microscopy (CLSM) images of MC3T3-E1 and Saos-2 cells
stained with FITC-phalloidin (green) and DAPI (blue) after culturing on
the surface of TNA samples for 24 h. Scale bar = 25 μm. (0, 0.5, 5,
22 represent undoped TNA, 0.5 wt% nano Se-doped TNA, 5wt% nano
Se-doped TNA, 22 wt% nano Se-doped TNA, respectively). n =
5 independent samples, *p < 0.05 by one-way ANOVA.
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Next, we implement Annexin V-FITC/PI double-staining assay
in order to quantify the apoptosis rate of Saos-2 cells cultured on the
TNA samples. The apoptosis rate of Saos-2 cells on undoped TNA,
0.5 wt%, 5 wt%, and 22 wt% nano Se-doped TNA are 9.81%, 26.9%,
52.3%, and 16.19%, respectively (Figure 4C). Obviously, the
apoptosis rate of 0.5 wt% and 5 wt% nano Se-doped TNA is
significantly higher than that of undoped TNA and 22 wt% nano
Se-doped TNA. It is concluded that the inhibitory effect of nano Se-
doped TNA on osteosarcoma does not follow a dose-dependent
behavior.

From the above results of the biological experiments, we suggest
that the mechanism of nano Se inhibiting tumor cell proliferation is
mainly the induction of cell apoptosis. It can be seen that the
proliferation of Saos-2 cells on the surface of the nano Se-doped
TiO2 nanotube arrays is significantly inhibited compared to that of
the undoped TiO2 nanotube arrays. In this study, 0.5 wt% and 5 wt%
nano Se-doped TiO2 nanotube arrays exhibit strong inhibition
towards Saos-2 cell activity, especially for nano Se content of
5 wt%. The inhibitory effect of 22 wt% nano Se-doped TNA on

osteosarcoma cells is less than that of lower concentration nano Se
doped TNA. We believe that this inhibitory effect depends heavily
on the content of the deposited nano Se and should be strongly
related to the surface morphology and diameter of nano Se. We
assume the selenium ions in the electrolyte are reduced to red
elemental nano selenium, and the unique morphology of TNA
guides the deposition of red elemental nano selenium. When the
nano Se-doped concentration is 0.5 wt% and 5 wt%, the deposited
nano Se is distributed on the surface of the nanotubes as nanoflakes
with a diameter of about 100 nm, and these nanoflakes are not
connected with each other, and EDS verifies that these nanoflakes
are Se. Subsequently, Saos-2 cells ingested the nanoflakes into the
cells to exert anti-tumor effects through endocytosis (Dai et al.,
2021); when the doped nano Se concentration is 22 wt%, nano Se
agglomerates into particles with a diameter of about 400 nm,
covering the whole surface of the nanotube array (Figure 1B),
due to the large size of the nanoparticles, tumor cells can only
absorb trace amounts of nano-selenium on the surface of the
nanotubes, resulting in relatively fewer apoptotic Saos-2 cells

FIGURE 4
Induction of apoptosis in osteosarcoma cells. (A) Fluorescence microscopy image of Saos-2 cells doubly stained with AO/EB after culturing on the
surface of TNA samples for 24 h (green: living cell, yellow: apoptosis cell, red: dead cell). Scale bar = 25 μm. (B) Fluorescencemicroscopy images of Saos-
2 cells stainedwith Hoechst 33258 after culturing on the surface of TNA samples for 24 h (The cell nucleus in apoptotic are labeled bywhite arrows). Scale
bar = 25 μm. (C) Annexin V-FITC/PI double staining of Saos-2 cells incubated on the surface of TNA samples for 24 h. (0, 0.5, 5, 22 represent
undoped TNA, 0.5 wt% nano Se-doped TNA, 5 wt% nano Se-doped TNA, 22 wt% nano Se-doped TNA, respectively). n = 3 independent samples, *p <
0.05, **p < 0.01, compared with undoped TNA group by one-way ANOVA.
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than the other two groups (Zhang et al., 2009). Therefore, we believe
that nanoflake morphology of nano Se exhibit better anti-tumor
effects than agglomerated Se particles. In addition, the effects of
selenium on tumor cells varies within different types and numbers of
tumor cells (Dennert and Horneber, 2006).

3.5 Identification of the apoptosis signaling
pathway activated by nano Se-doped TNA

Previous studies have demonstrated that the antitumor effects of
selenium compounds are mainly due to ROS produced by
intracellular metabolism (Menon et al., 2018). Hence, we
hypothesize that the reason why nano Se-doped TiO2 nanotube
arrays induce apoptosis of osteosarcoma Saos-2 cells may be the
production of ROS and the subsequent activation of endogenous
and exogenous caspase-dependent pathways.

To verify this hypothesis, we first measured the fluorescence
intensity of 2′,7′-dichlorofluorescein (DCF) to reflect the
intracellular ROS level after Saos-2 cells culturing on the surface
of all TNA groups for 24 h. As shown in Figure 5A and Figure 5B,
the ROS levels of the 0.5 wt% nano Se-doped TNA and 5wt% nano
Se-doped TNA groups are higher than those of the undoped TNA
and 22 wt% nano Se-doped TNA groups, and the ROS levels of the
5 wt% nano Se-doped TNA group are significantly higher than those
of the other three groups.

It is well known that caspase-3, as a cell apoptotic executor, can
be activated by both caspase-8 and caspase-9. Caspase-8 is the
apoptosis promoter of the exogenous pathway (death receptor
pathway), whereas caspase-9 is the apoptosis promoter of the
endogenous pathway (mitochondrial pathway) (Mata et al.,
2016). To demonstrate the potential caspase-dependent apoptosis
mechanism, RT-PCR is used to detect the expression levels of pro-
apoptotic genes of endogenous and exogenous caspase-dependent
pathways after Saos-2 cells culturing on all TNA groups for 24 h. As
shown in Figure 5C, the expression of promoting apoptosis genes
(BAX, CYTC, CASP9, CASP8, CASP3) of 0.5 wt% nano Se-doped
TNA group and 5%wt nano Se-doped TNA group is remarkably
upregulated, compared with undoped TNA and 22 wt% nano Se-
doped TNA group. In this study, we reveal a potential intrinsic
mechanism, namely caspases-dependent apoptosis, regarding the
inhibitory effect of nano selenium-doped TNA on tumor.

In summary, we can provide a clearer picture of the mechanism
of nano Se-doped TNA inducing apoptosis of Saos-2 cells (Figure 6).
The nano Se-doped TNA enters osteosarcoma cells via the endocytic
pathway (Zhang et al., 2009; Wang et al., 2016; Dai et al., 2021).
Subsequently, nano Se-doped TNA inhibits osteosarcoma cell
proliferation by inducing the production of ROS, which
subsequently activates two caspase-dependent apoptotic
pathways, endogenous and exogenous, leading to apoptosis of
osteosarcoma cells. On the one hand, ROS production activates
caspase-8 and triggers the death receptor-mediated exogenous

FIGURE 5
The production of ROS induced by deposited nano Se on TNA activates endogenous and exogenous caspase-dependent pathways to cause the
apoptosis of osteosarcoma Saos-2 cells. (A) Flow cytometry data of ROS detection with the fluorescent probe DCFH-DA after Saos-2 cells culturing on
the surface of TNA samples for 24 h. (B)Confocal laser scanning fluorescencemicroscopy images of ROS detectionwith the fluorescent probeDCFH-DA
after Saos-2 cells culturing on the surface of TNA samples for 24 h. Scale bar = 25 μm. (C) mRNA expression of pro-apoptosis genes (BAX, CYTC,
CASP9, CASP8, CASP3) of Saos-2 cells cultured on various samples. 0, 0.5, 5, 22 represent undoped TNA, 0.5 wt% nano Se-doped TNA, 5 wt% nano Se-
doped TNA, 22 wt% nano Se-doped TNA, respectively. n = 3 independent samples, *p < 0.05, ** p < 0.01, *** p < 0.001, by one-way ANOVA.
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apoptotic pathway, while on the other hand, activation of the Bcl-2
family pro-apoptotic member (BAX) causes mitochondrial outer
membrane permeabilization, resulting in the release of cytochrome
C and effective activation of the endogenous apoptotic pathway, and
ultimately resulting in the apoptosis of osteosarcoma cells.

4 Conclusion

In this study, nano Selenium is successfully deposited on the
surface of anodized TiO2 nanotube arrays by electrochemical
deposition. The low concentration of Se are deposited on the
surface of TiO2 nanotube arrays as nanoflake morphology, and
with the increase of Se concentration on the surface of TNA, Se
elements gradually agglomerated into a film layer covering the
surface of TNA. In addition, the concentration of doped Se on
the surface of TNA can be adjusted by tuning parameters, such
as electrolyte concentration and deposition time, and the
concentration of doped Se increases with the increase of
electrolyte composition concentration and deposition time. Cell
evaluation in vitro show that nano Se-doped TNA exhibit
significant anti-tumor effect and remarkably induce apoptosis in
human osteosarcoma cells. This anti-osteosarcoma ability of Se-
doped TNA is strongly related to the doping concentration of Se.
0.5 wt% and 5 wt% nano Se-doped TNA groups exhibit stronger
anti-tumor effect compared with that of undoped TNA group and
22 wt% nano Se-doped TNA group, while the 5wt% nano Se-doped
TNA group shows the strongest inhibition among all TNA groups.
Finally, we reveal systematically the mechanism of tumor cell
apoptosis induced by nano Se-doped TNA. Specifically, nano Se
induces ROS production in osteosarcoma cells and subsequently
activates endogenous and exogenous caspase-dependent apoptotic
pathways.
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