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Objectives: This study aimed to investigate whether the atmospheric pressure
plasma jet (APPJ) could modify the surface of lithium disilicate glass ceramics
(LDC) instead of hydrofluoric acid (HF) in LDC resin cementation.

Methods: Two hundred and thirty-two LDC blocks were randomly divided into
seven groups: Group 1 (16 specimens) was the blank control group (without HF or
APPJ treatment); Group 2 (36 specimens) was etched by HF; Groups 3–7
(36 specimens each) were treated with APPJ, and the relative air humidity
(RAH) of the discharge was 22.8%, 43.6%, 59.4%, 75.2%, and 94.0%,
respectively. Three LDC blocks in each group were characterized via X-ray
photoemission spectroscopy (XPS) analyses, 3 blocks via contact angle
measurements, and other 10 blocks via surface roughness measurements. The
residual LDC blocks in groups 2–7were cemented to composite cylinders. Testing
the cemented specimens’ shear bond strength (SBS) before and after
thermocycling (6,500 cycles of 5°C and 55°C) revealed fracture patterns. Data
were analyzed by ANOVA (post hoc: Bonferroni) (α = 0.05).

Results: After APPJ treatment, the water contact angle values of APPJ treated
blocks dropped from 31.37° to 5.66°, while that of HF etched ones dropped to
18.33°. The O/C ratio increased after HF etching or APPJ treatment according to
the calculated results, except for the APPJ-treated samples at a RAH of 22.8%. The
surface roughness of LDC blocks showed no statistic difference before and after
APPJ treatment, but experienced significant difference after HF etching. The O/Si
andO/C ratios varied after HF etching or APPJ treatment. No significant difference
in SBS values could be found among groups 2–7 before or after artificial aging (p >
0.05). All specimens showed mixed failure patterns.
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Conclusion: The APPJ treatmentmethod reported in this study is a promising novel
strategy for surface modification of the LDC. With acceptable bonding strength, it
might be an alternative to HF in LDC-resin cementation.

KEYWORDS

lithium disilicate, non-thermal plasmas, resin cements, shear bond strength, wettability,
X-ray photoelectron spectroscopy (XPS)

1 Background

Hydrofluoric acid (HF) is recommended for resin-adhesive
cementation of silica-based dental ceramic restorations (Shifra
et al., 2021). Lithium disilicate glass-ceramics (LDC) is one of the
most extensively used silica-based dental ceramics due to its
excellent aesthetics and high biaxial strength (Willard and
Gabriel Chu, 2018). The resin-adhesive cementation provides
better marginal sealing, reliable retention, and improved fracture
resistance and is regarded as the optimal choice for dental ceramic
restoration (Braga et al., 1999; Blatz et al., 2003; Ammar et al., 2023).
Increasing ceramic surface roughness by HF etching promotes
micromechanical interlocking. However, HF is a severe hazard to
the human body and the environment (Janda et al., 2003). Common
harms of HF include skin and respiration tract burns, systematic
fluorosis, and electrolyte imbalance (Wang and Dai, 2019; Mao et al.,
2022). Masks, glasses, and acid-proof gloves are used to protect
patients and dentists, while sodium bicarbonate is used to neutralize
liquids containing HF. HF can also decrease the mechanical strength
of the ceramic due to the modification of the resident flaw
population (Addison et al., 2007; Luo et al., 2014; Venturini
et al., 2015; Venturini et al., 2018), while over-etching
(i.e., higher exposure time and acid concentration) can negatively
affect the long-term success of ceramic restorations.

Plasmas are partially ionized gases containing electronically
excited atoms, molecules, ions, and free radicals. These highly
reactive particles can quickly introduce various chemical
functional groups on the surface of substrates (Liu et al., 2016).
Many types of plasma devices have been developed for industrial
applications (Zou et al., 2004; Dong et al., 2005; Khorram et al.,
2015). However, their application in medical fields was limited
before the invention of the atmospheric pressure plasma jet
(APPJ), as conventional plasmas could not be discharged in an
open environment and usually showed a very high temperature.
Since APPJ can generate plasmas at room condition (Tendero et al.,
2006), plasma treatment now has several applications in dentistry,
such as teeth whitening (Claiborne et al., 2014; Seoul-Hee et al.,
2021), inactivation of bacteria (Hong et al., 2019; Özdemir et al.,
2023), treatment of dental caries (Sladek et al., 2004; Sladek et al.,
2007), surface modifications of implants (Silva et al., 2011; Canullo
et al., 2016; Rutger et al., 2023), and improving dental bonding
system (Chen et al., 2012; Chen et al., 2013; Chen et al., 2014).

Scientists have tried to improve ceramic-resin bonding by the
APPJ since APPJ surface engineering improves ceramic surface
wettability and permeability. Derand et al. (2005) reported that
deposition with plasmas on the zirconia ceramic significantly
increased the bond strength of ceramic-resin cementation. Cho
et al. (2011), Han et al. (2012) treated a feldspathic ceramic with
an APPJ after triethyleneglycoldimethacrylate coating, increasing

the hydrophilicity of the treated ceramic surfaces and contributing
to adhesion. The bonding of LDC to resin might also be improved by
APPJ treatment, as observed with glass (Abenojar et al., 2013). In
this study, an Argon APPJ was employed, which operated under
room temperature, and the discharge’s relative air humidity (RAH)
could be altered. The null hypothesis is that APPJ, compared with
HF, could not improve the bonding strength between LDC and resin
in cementation.

2 Methods

2.1 Specimen Preparation

Two hundred and thirty-two LDC blocks (8 mm × 8 mm ×
4 mm, IPS e.max® Press, Ivoclar Vivadent, Schaan, Liechtenstein)
and 120 composite resin cylinders (3.5 mm in diameter and 3 mm in
thickness, Filtek Z350, 3M ESPE, United States) were fabricated
according to the manufacturer’s recommendations. The LDC blocks
were polished with a polishing machine (Exakt 400 CS, Exakt
Apparatbau, Norderstedt, Germany) using SiC sandpaper (991A,
Matador, Germany) in the sequence of 200, 400, 600, and 800 grit.
Subsequently, the LDC blocks were ultrasonically cleaned (KQ-
500DE, Kunshan Ultrasonic Instruments Co., LTD., Jiangsu, China)
for 5 min with absolute ethanol (Analytical Purity), air-dried, and
then stored in dry plastic containers. The composite cylinders were
polished with sandpaper of 200 and 400 grit accordingly, cleaned,
and stored in the same way as the LDC blocks.

2.2 LDC blocks treatment

This study employed an APPJ developed by Liu (Liu et al., 2019).
The jet is an atmospheric pressure dielectric barrier discharge argon
plasma instrument, driven by an AC high voltage power supply at a
discharge voltage of Vpp = 26 kV, a frequency of f = 9.6 kHz, an
argon flow rate of three standard liters per minute, as shown in
Figure 1. An air-tight chamber and the humidity control device
altered the RAH of the discharge, which was used to simulate the
RAH in a wide range in different application scenario. They would
be abandoned in real clinical use. A mobile base allows the operator
to keep a distance of 10 mm between the nozzle and LDC surfaces.

Two hundred and thirty-two LDC blocks were randomly
divided into seven groups. Group 1 (16 specimens) was the blank
control group (without HF-etched or APPJ-treated). Group 2
(36 specimens) was etched with HF. Groups 3–7 (36 specimens
each) were treated with APPJ. The blocks in group 2 were etched
with 9.5%HF gel (Bisco Inc., Schaumburg, IL, United States) for 20s,
rinsed thoroughly with tap water for 1 min, ultrasonically cleaned in
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absolute ethanol for 5 min, and air dried at room
temperature—following manufacturer’s instructions. The blocks
in groups 3–7 were subjected to the APPJ processes for 30s per
specimen with different RAH, which were 22.8%, 43.6%, 59.4%,
75.2%, and 94.0%, respectively. Three LDC blocks in each group
were characterized via X-ray photoemission spectroscopy (XPS)
analyses, 3 blocks via contact angle measurements, and other
10 blocks via surface roughness measurements.

2.3 Bonding procedure

After HF etching or APPJ treatment, the LDC blocks were
bonded to composite cylinders immediately using a resin
bonding system (BISCO Inc., United States). First of all, a
very thin adhesive tape with a perforation (ϕ = 3.7 mm) in the
center was applied on the treated LDC surface, so that the
bonding area would be confirmed. Parts A and B of Bis-Silane
were added to the mixing well, stirred, brushed onto each
bondable LDC surface, waited for 30s, and dried with warm
air. Next, a thin layer of Porcelain Bonding resin was applied to
these LDC surfaces. This was followed by applying a dual-cured
resin luting cement to each bondable LDC surface. Next, the LDC
was bonded to the corresponding composite cylinder. The
specimens were pressurized under a 10 N load for 30s, excess
resin cement was carefully removed, and the specimens were
polymerized (1,200 mW/cm−2, Ivoclar-Vivadent AG, Schaan,
Liechtenstein) for 40s, according to the manufacturer’s
instructions.

2.4 Shear bond strength (SBS) test and
fracture analysis

All 120 cemented specimens were stored in distilled water at
37°C in an incubator (Forma 3111, Thermo Fisher Scientific,
United States). Forty eight hours later, 10 specimens in each
group were subjected to an SBS test. The remaining
10 specimens were subjected to an SBS test after
6,500 thermocycles at 5°C and 55°C with a 30-s dwell time and a
2-s transferring time for each distilled water bath [TC 501F(III),
Weier Inc., Suzhou, China]. A universal testing machine (C43.104,
MTS, United States) was used for the SBS test at a 0.5 mm/min
crosshead speed. The maximum load of each specimen was
recorded. The SBS was calculated as follows:

SBS (MPa) = fracture load/bonding area.
The fracture patterns were analyzed optically using a

stereoscopic microscope (SteREO Discovery V20, Zeiss,
Germany). The following were assigned as debonded surfaces:
a) cohesive failure (the fracture occurred within the resin
cement), 2) adhesive failure (the resin cement was completely
removed), 3) mixed failure (both fracture patterns could be
observed).

2.5 Surface contact angle measurement

The wettability of the LDC surfaces to water was determined
with static contact angle measurements. After different treatments,
three specimens in each group were tested with a contact angle

FIGURE 1
Schematic diagram of the atmospheric pressure plasma jet system.

Frontiers in Bioengineering and Biotechnology frontiersin.org03

Wu et al. 10.3389/fbioe.2023.1259707

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1259707


goniometer (SCI3000F, Huanqiu Hengda Technology Co., Ltd.,
China). A syringe tip was placed above the specimen stage, and a
drop of 1 μL ultra-pure water was dispensed on each tested surface.
A photo was taken 5 s later as the droplet arc became stable. The
angles of contact were traced and recorded to be analyzed.

2.6 XPS measurement

After different treatments, three specimens from each group
were examined with XPS (ESCALAB 250Xi, Thermo Fisher
Scientific, United States), using monochromatized A1Kαradiation
(1486.6 eV photon energy, energy step size 0.05 eV). Each specimen
was analyzed two replicates, and the value was averaged to obtain the
reported atomic percent (at%). The data were analyzed with Thermo
Scientific Avantage 5.976 software (Thermo Fisher Scientific,
United States).

2.7 Surface roughness measurement

After different treatments, 10 specimens from each group were
examined with an ultra precision measurement system (Form
Talysurf, PGI 1200, Taylor Hobson Precision, United Kingdom).
Calibration and leveling were carried out before the measurement. A
jig was applied to make the blocks in position. Each specimen was
examined separately in perpendicular directions, and the average
value was recorded.

2.8 Statistical analysis

Shapiro-Wilk test was used to test the normality of data
distribution. The SBS values, the contact angles and surface
roughness values were analyzed using the One-way or Two-way
analysis of variance (ANOVA) followed by Bonferroni post hoc tests
(SPSS Version 25.0, Chicago, IL, United States). All tests were
performed with a significance level of ɑ = 0.05.

3 Results

3.1 SBS test and failure pattern

The results of the SBS measurements were presented as bar
charts with standard deviations in Figure 2. After
6,500 thermocycles, the SBS of the HF-etched group decreased
slightly from 41.31 to 39.53 MPa. The SBS of APPJ-treated
groups varied with RAH: 40.37–40.55 MPa at a RAH of 22.8%;
from 40.47 to 40.55 MPa at a RAH of 43.6%; from 41.00 to
40.68 MPa at a RAH of 59.4%; from 42.26 to 42.95 MPa at a
RAH of 75.2% (these were the highest values of both before and
after thermocycling process); and from 41.19 to 40.73 MPa at a RAH
of 94.0%. Two-way ANOVA (post hoc: Beniferroni) revealed no
statistical difference in the SBS of all groups, regardless of the
thermocycling process or the treatment (p > 0.05). All specimens
presented mixed failures before and after 6,500 thermocycles
(Figure 3).

FIGURE 2
Shear bond strength (in MPa) of resin composite to LDC surfaces in 48 h evaluations and after 6,500 thermocycles. Bars represent mean while
whiskers represent standard deviation.
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3.2 Surface contact angle measurement

The water contact angle on LDC surfaces in different groups is
shown in Table 1. The contact angle of water was 31.37° ± 1.57° on
the surfaces of blank control group, and it was 18.33° ± 1.57° on the
surfaces of HF-etched group. After APPJ treatment, the water
contact angle values dropped dramatically. At 22.8% RAH, the
contact angles decreased to 23.69° ± 2.01°. The values reached the
minimum of 5.66° ± 1.93° and then increased slightly to 7.36° ± 1.54°

at 75.2% and 94.0% RAH, respectively. No statistical difference was
observed among the APPJ-treated groups at RAH of 59.4%, 75.2%,
and 94.0% (p > 0.05).

3.3 XPS measurements

XPS measurements were performed to analyze the atomic
compositional changes of the LDC surfaces. Quantitative atomic
percent concentrations for all seven groups are shown in Table 2.
The representative XPS spectra of the blank control group revealed
that most dominant peaks were associated with the O 1s and C 1s
located at binding energies of ~533 eV peak and ~285 eV,
respectively. The atomic percent of carbon (at %C) of the

untreated LDC surfaces was about 40.90%. The strongest carbon
reduction on the surface was achieved by HF etching, decreasing the
at %C to 12.57% from 40.9%. The atomic percent of oxygen (at %O)
of untreated LDC surfaces was about 41.11%, which increased to
61.33% after HF etching. The detailed at %C and at %O of APPJ-
treated samples are shown in Table 2. Other elements, such as Si, Ca,
and Zn, were also detected. The O/C ratio increased after HF etching
or APPJ treatment according to the calculated results, except for the
APPJ-treated samples at a RAH of 22.8%. There is no obvious signal
for Li, as Li1s peak has very low sensitivity. Large number (50) of
scans should be used when acquiring Li1s spectrum, however, there
was only a few scans in this measurement. The high-resolution
spectra of Si is shown in Figure 4.

3.4 Surface roughness measurement

Surface roughness measurement was carried out to reveal the
effect of different treatments on the LDC surfaces. The surface
roughness of each group is shown in Table 3. The value of blank
control group was 0.1943 (0.0614) μm, and group 3–7 (APPJ treated
ones) showed no significant difference. But when it comes to group 2
(HF etching), the value increased to 0.2854 (0.0253) μm.

4 Discussion

This study investigated the effects of APPJ on the SBS (before
and after artificial aging), surface wettability, and surface elemental
composition of LDC. No significant difference in SBS values could
be found among APPJ-treated and HF-etched groups, neither before
nor after artificial aging by thermocycling. The failure modes of
debonded specimens in all groups showed mixed (adhesive and
cohesive) failure patterns, indicating that APPJ treatment improved
the SBS stably, just like the classic HF etching. The average SBS
values varied slightly with the change in RAH, reaching the highest
point at a RAH of 75.2%. No significant difference was observed
among the APPJ-treated groups before or after artificial aging,
indicating that the RAH of the environment had no significant

FIGURE 3
Representative images of fractured surfaces.

TABLE 1 Values of water contact angle of LDC surfaces.

Treatment Water contact angle (°)

Blank control (no treatment) 31.37 (1.71)a

HF-etching 18.33 (1.57)b

APPJ treatment-RAH 22.8% 23.69 (2.01)c

APPJ treatment-RAH 43.6% 19.26 (0.82)b

APPJ treatment-RAH 59.4% 6.37 (0.90)d

APPJ treatment-RAH 75.2% 5.66 (1.93)d

APPJ treatment-RAH 94.0% 7.36 (1.54)d

Values are given as mean (SD).

Mean values with the same uppercase superscript letters indicate no significant difference.
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effect on the SBS. These results rejected the null hypothesis. As it is
generally assumed that a shear bond strength at 18–20 MPa is
acceptable for the clinical requirements of adhesive dentistry

(Hannig et al., 2006), the SBS results of APPJ treatment groups is
acceptable.

The bonding strength of LDC to resin can be improved in two
ways: 1) Increasing the bonding area through HF etching. However,
there are many problems in HF applications (Janda et al., 2003;
Addison et al., 2007; Luo et al., 2014; Venturini et al., 2015;
Venturini et al., 2018). 2) Changing the surface chemical
property by applying silane coupling agents, as shown in
Figure 5. Silane coupling agents are organosilicon compounds
that can produce active groups under specific conditions. The
activated silane strengthens the interface by two synergistic
bonding mechanisms: increasing the wettability of the LDC
surface and chemical adhesion (Lung and Matinlinna, 2012).

A water contact angle test was performed to evaluate the
wettability of the LDC surfaces. When the samples were
subjected to APPJ treatment, the water contact angle on the LDC
surfaces was significantly reduced than the HF-etched samples,
suggesting that the surface of LDC became more hydrophilic in a
short time. This result was consistent with that reported for dental

TABLE 2 Surface chemical composition (in at% of each element) of LDC surfaces.

Elements O1s C1s Si2p Na1s Ca2p Zn2p O/C O/Si

Blank control (no treatment) 41.11 (5.37) 40.90 (5.79) 16.61 (0.40) ND 0.30 (0) 1.08 (0.22) 1.01 2.48

HF etched 61.33 (0.14) 12.57 (0.36) 25.00 (0.32) 1.00 (0.46) ND ND 4.88 2.45

APPJ—RAH 22.8% 41.01 (3.36) 41.13 (5.28) 16.30 (1.89) ND 0.89 (0.08) 0.67 (0.07) 1.00 2.52

APPJ—RAH 43.6% 54.57 (0.49) 24.34 (0.57) 20.55 (0.08) ND ND 0.54 (0) 2.24 2.66

APPJ—RAH 59.4% 52.62 (2.16) 25.81 (3.67) 19.18 (1.39) 0.58 (0.03) 1.24 (0.14) 0.57 (0.11) 2.04 2.74

APPJ—RAH 75.2% 55.49 (6.08) 21.42 (8.27) 20.51 (2.19) 0.75 (0.16) 1.26 (0.19) 0.57 (0.05) 2.59 2.71

APPJ—RAH 94.0% 52.93 (0.94) 24.16 (1.51) 20.52 (0.58) 0.77 (0.16) 0.69 (0.32) 0.93 (0) 2.19 2.58

ND: not detected.

Values are given as mean (SD).

FIGURE 4
The high-resolution spectra of Si2p3/2. (A) Untreated sample (group 1, blank control); (B) APPJ-treated sample (group 6, RAH = 75.2%).

TABLE 3 Surface roughness of LDC sufaces

Treatment Surface roughness (μm)

Blank control (no treatment) 0.1953 (0.0614)a

HF-etching 0.2854 (0.0253)b

APPJ—RAH 22.8% 0.2018 (0.0422)a

APPJ—RAH 43.6% 0.2015 (0.0442)a

APPJ—RAH 59.4% 0.2120 (0.0657)a

APPJ—RAH 75.2% 0.1961 (0.0308)a

APPJ—RAH 94.0% 0.1851 (0.0342)a

Values are given as mean (SD).

Mean values with the same uppercase superscript letters indicate no significant difference.
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substrates and glass (Abenojar et al., 2013; Liu et al., 2016). The
contact angle of group 6 decreased to the minimum value of 5.66 ±
1.93 at a RAH of 75.2%, while that of the untreated and the HF-
etched group were 31.37 ± 1.71 and 18.33 + 1.57°, respectively.
Further, an increase in group 7 (RAH 94.0%) led to a slightly
weakened effect, as reflected in a slight increase in contact angle
(7.36° ± 1.54°). This change was consistent with the shift in the SBS
values, which changed positively with the variation of the surface
wettability in the APPJ-treated groups. However, there was no
significant difference in SBS values among all treated groups
(p > 0.05).

XPS was employed to determine the chemical composition of
the LDC surfaces. No Ar signal could be found in all APPJ-treated
groups, indicating that argon was not integrated into the LDC
surfaces. The results revealed an increase in the O/C ratio after
HF etching or APPJ treatment, consistent with previous studies
(Abenojar et al., 2013; Chen et al., 2013; Valverde et al., 2013; Lee
et al., 2017). For instance, the O/C ratio increased from 1.01 to
2.59 in group 6 (at RAH of 75.2%). It is well known that APPJ is rich
in reactive oxygen species such as •OH and O. It promotes the
incorporation of functional oxygen-containing groups (C-O, C-OH)
into the upper layer of the treated yttrium-stabilized zirconia surface
(Silva et al., 2011). Since the substrate is more active, more hydroxyl
groups might integrate into the APPJ-treated LDC surface. When a
silane coupling agent was applied, these groups might react with it,
leading to more chemical bonding between the LDC and resin
cement.

LDC contains silicate tetrahedron chains with some oxygen
atoms acting as bridges between silicon atoms (Si-O-Si) while

others do not (Si-O-). The O/Si ratio in Si-O- and Si-O-Si bonds
was 1:1 and 2:1, respectively (Abenojar et al., 2010). Figure 4
shows the Si2p high-resolution spectra of untreated (group 1,
blank control) and APPJ-treated (group 6, RAH = 75.2%)
samples. The Si2p peak centered at 102.6 eV was deconvoluted
using Gaussian-Lorenztian into four peaks: two each from Si2p3/2
and Si2p1/2 with an energy difference of 1 eV. The Si2p3/2
component (at 101.8 eV) was assigned to Si-O- bond (silicon
bonded with non-bridging oxygen), and the Si22p3/2 component
at (102.8 eV) to the Si-O-Si bond (silicon bonded with bridging
oxygen), respectively (Abenojar et al., 2010; Abenojar et al.,
2013). The deconvoluted spectra after APPJ treatment show
an increase in the percentage of Si-O- bonds due to the
increase in Si-O-H, providing more hydroxyl groups for the
chemical bonding between LDC and silane.

Surface roughness is also a very important factor on the
bonding strength. A rough surface would provide more bonding
area microscopically, thus expands the micro-interlock between
ceramics and resin, which eventually manifested as the increase
in bonding strength (Romanini-Junior Jose et al., 2018). The
surface roughness measurement showed that the APPJ
treatment, no matter at any relative air humidity, would not
alter the surface topography details. This result is similar to our
previous research on dental zirconia (Liu et al., 2019). As dental
prosthesis becomes more and more accurate, the dentists would
prefer to keep the accuracy in their clinical practice. However,
HF etching would change the LDC surface a lot, while HF
etching procedure is so technically sensitive that insufficient
or excessive etching would be harmful to the bonding (Addison

FIGURE 5
Schematic diagram of the reaction between LDC and silane coupling agent.
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et al., 2007; Venturini et al., 2015). The HF etched surface
showed a much higher roughness value than other groups in
this experiment (Table 3).Therefore, the surface roughness
measurement suggested that the increase in SBS after APPJ
treatment is not mainly contributed by the micro-interlock
between adhesive and ceramic, while micro-interlock
contributes a lot in the HF etched ones. The story is similar
in the influence of different treatment to water contact angle
values (Table 1).

Among the conditions affecting plasma generation,
temperature and pressure directly influence plasma
generation’s feasibility in a dental clinic (Ito et al., 2016). In
this study, the plasmas are generated from the gas at atmospheric
pressure and not very high temperature. The relative air humidity
would not influence the shear bond strength of LDC cementation.
Further, dentists or patients do not directly come in contact with
the plasmas, as it is operated in vitro. This plasma generator is
small and light in weight and can be hand-held and operated by
dental practitioners in clinics.

5 Conclusion

Within the limitations of this study, it was concluded that the
APPJ treatment was effective for surface modification of the LDC to
obtain acceptable bonding strength and might be an alternative to
the HF etching.
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