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Microbial biofactories allow the upscaled production of high-value compounds in
biotechnological processes. This is particularly advantageous for compounds like
flavonoids that promote better health through their antioxidant, anti-bacterial,
anti-cancer and other beneficial effects but are produced in small quantities in
their natural plant-based hosts. Bacteria like E. coli have been genetically modified
with enzyme cascades to produce flavonoids like naringenin and pinocembrin
from coumaric or cinnamic acid. Despite advancements in yield optimization, the
production of these compounds still involves high costs associated with their
biosynthesis, purification, storage and transport. An alternative production
strategy could involve the direct delivery of the microbial biofactories to the
body. In such a strategy, ensuring biocontainment of the engineered microbes in
the body and controlling production rates are major challenges. In this study,
these two aspects are addressed by developing engineered living materials (ELMs)
consisting of probiotic microbial biofactories encapsulated in biocompatible
hydrogels. Engineered probiotic E. coli Nissle 1917 able to efficiently convert
cinnamic acid into pinocembrin were encapsulated in poly(vinyl alcohol)-based
hydrogels. The biofactories are contained in the hydrogels for amonth and remain
metabolically active during this time. Control over production levels is achieved by
the containment inside the material, which regulates bacteria growth, and by the
amount of cinnamic acid in the medium.
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1 Introduction

Flavonoids are a group of natural products mainly synthesized by plants found in many
foods. Their basic chemical structure is two benzene rings that are linked by a heterocyclic
pyran ring. They show a broad range of different biological effects such as antioxidant (Heim
et al., 2002), antibacterial (Ohemeng et al., 1993) or anticancer (Wang et al., 2019).
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Therefore, flavonoids are researched as potential drug candidates for
different diseases. In particular, the flavonoid Pinocembrin has been
shown to possess therapeutic potential for skin fibrosis and keloid
formation based on studies in mice (Li et al., 2021). Furthermore,
pinocembrin has been shown to have potential neuroprotective
effects for treating Alzheimer’s (Liu et al., 2014) and Parkinson’
disease (Wang et al., 2014), anti-Inflammatory activity (Zhou et al.,
2015), antioxidant activity (Shi et al., 2011), antimicrobial activity
(e.g., against Staphylococcus aureus) (Soromou et al., 2013),
vasodilation effects (Li et al., 2013) and hepatoprotection activity
(Ma et al., 2023). However, the production of flavonoids, such as
pinocembrin, can be challenging due to a number of factors. One
challenge is the limited availability of natural sources, as many
flavonoids are found in relatively small quantities in certain plants
(Zhou et al., 2014). The chemical synthesis of some flavonoids can
also be complex, requiring a number of steps and increasing the cost
and difficulty of production (Selepe and Van Heerden, 2013).
Additionally, some flavonoids are chemically unstable and can
decompose or degrade easily (Lu et al., 2019), making them
difficult to produce and store. A promising alternative for the
synthesis of flavonoids is through microbial biofactories that can
be easily upscaled (Pandey et al., 2016; Okoye et al., 2023).
Considerable progress has been made in establishing biosynthetic
pathways for several flavonoids in industrially relevant microbial
host like E. coli (Huang et al., 2022), C. glutamicum (Wu et al., 2022)
and yeast (Tartik et al., 2023). In this perspective, we recently
engineered enzyme cascades in E. coli BL21 (DE3) for the
synthesis of different flavonoids (Kufs et al., 2020). By expressing
a CoA-Ligase from Nicotiana tabacum and a chalcone synthase
from Arabidopsis thaliana different flavonoids, including
pinocembrin, could be produced by adding derivatives of
cinnamic acid as the substrate. However, a major challenge in
microbial production of flavonoids is that improvement of
production yields is required to make this approach economically
viable. For many flavonoids, the synthetic production methods
cannot economically compete with extraction from natural
sources (Sheng et al., 2020; Okoye et al., 2023; Tous Mohedano
et al., 2023). Thus, alternative strategies for improving the
availability of such flavonoids for medical use are highly desired.

A possible alternative approach to make the availability of
flavonoids affordable could be by engineering probiotic bacteria to
produce them directly in the body. However, this strategy would
involve the inclusion of genetically engineered bacteria in the body
and therefore their biocontainment at the specific application site
must be ensured. Furthermore, as bioactive compounds, the quantity
and duration of production of the flavonoids need to be controlled.

In this study, the first steps towards realizing such an approach
have been taken based on an engineered living material (ELM)
design. In ELMs, metabolically active microbes are contained and
retained inside a material that allows diffusion of nutrients, oxygen
and metabolic products. Due to these capabilities, ELMs are
envisioned as living drug delivery devices for the production and
delivery of drugs inside the body (Rodrigo-Navarro et al., 2021). By
introducing genetic switches (Rivera-Tarazona et al., 2021; Dhakane
et al., 2023) or controlling themechanical and diffusion properties of
the embedding matrix (Priks et al., 2020; Bhusari et al., 2022; Bhusari
et al., 2023), drug delivery can be controlled. Herein, we present an
ELM consisting of probiotic bacteria engineered to produce a

flavonoid encapsulated within a poly(vinylalcohol) (PVA)
hydrogel film. We first adapted the previously mentioned
pinocembrin-producing enzyme cascade (Kufs et al., 2020)
developed in E. coli BL21(DE3) for constitutive expression in the
probiotic E. coli Nissle 1917 strain. This bacterium has been
extensively engineered as living biotherapeutic for treating
different pathologies (Lynch et al., 2022) and has been previously
used in ELMs for therapeutic purposes (Praveschotinunt et al., 2019;
Chen et al., 2023). We demonstrate that the engineered strain is
capable of converting cinnamic acid to pinocembrin in the hours
timescale. When encapsulated in the biocompatible PVA hydrogel,
the resulting ELM can convert cinnamic acid to pinocembrin
without releasing the biofactories. Finally, the possibility to tune
output levels by varying cinnamic acid concentrations and sustain
production for at least a month using this ELM is shown.

2 Materials and methods

2.1 Construction of plasmids for constitutive
production of pinocembrin

To obtain plasmids expressing the selected genes, we modified
the previously reported pMGE-T7 plasmid (Kufs et al., 2020) by
replacing the T7-lacO promoter with 3 different constitutive
elements (Supplementary Figure S1). The sequences were chosen
from the iGem catalogue (https://parts.igem.org). The selected
constitutive promoters were BBa_K823004 (here called K2), BBa_
J45993 (OY) and BBa_J01006 (R10). We designed three different
synthetic DNA elements (sequences are given below), which were
amplified using the primers pVV.rec.F and pVV.rec.R and cloned
into the basal vector pVV-01 (Hoefgen et al., 2018). Then, the gene
encoding for the 4-coumaroyl-CoA ligase (4Cl) and type III
polyketide synthase (Chs) were amplified by pMGE-4CL and
pMGE-Chs, respectively, using primers pMGEt1 and pMGEt2.
This resulted in fragments that could be integrated into the
vectors by seamless cloning. Finally, each plasmid containing the
4Cl gene was recombined with the corresponding plasmid
harbouring the Chs gene, resulting in an expression vector
containing both genes under the control of the selected
constitutive promoter. The obtained plasmids and the used
oligonucleotides are reported in Tables 1, 2, respectively.

2.2 Culture of E. coli Nissle 1917 and
transformation of the plasmids

To prepare chemically competent E. coli Nissle 1917 cells, an
overnight culture was diluted 1:100 in fresh LB media and grown at
37°C and 200 rpm until an OD600 nm of 0.3–0.4 was reached. The
culture was chilled on ice for 30 min and subsequently centrifuged at
3,500 rpm, 4°C and 10 min. The supernatant was discarded and the cell
pellet was washed twice with ice-cold 0.1 M CaCl2. The cells were
resuspended in 0.1 M CaCl2 with 20% Glycerol and stored on ice or
at −80°C until transformation. For transformation, the chemically
competent E. coli Nissle 1917 cells were mixed with 100 ng of
pMGE-K2-nar plasmid DNA and incubated on ice for 30 min.
Transformation was performed with a heat-shock at 42°C for 30 s

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Riedel et al. 10.3389/fbioe.2023.1278062

https://parts.igem.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1278062


and subsequent cooling on ice for 2 min. For recovery, the cells were
resuspended in 950 µL LBmedium and incubated at 37°C and 180 rpm
for 1 h. After incubation the cells were centrifuged for 2 min at 6,000 rcf
and the 900 µL of the supernatant was discarded. The cell pellet was
resuspended in the remaining supernatant, which was then spread on
an LB agar plate containing 50 μg/mL kanamycin for selective growth of
plasmid containing bacteria and incubated overnight at 37°C.

2.3 Characterization of pinocembrin
production levels

For studying the pinocembrin production response to initial
concentration of cinnamic acid, a 50 mL over-night culture of
E. coli Nissle K2 in LB medium containing 50 μg/mL Kanamycin
(LB Kn50) was prepared from a cryo-stock and incubated at 23°C and
180 rpm to prevent overgrowth. The temperature was subsequently
set at 37°C in the morning and exponentially grown cells (OD600 nm
of 1) were harvested. These cells were used to inoculate 3 mL of LB

Kn50 containing 0.016–4 mM trans-cinnamic acid (serially diluted by
a factor of 2 starting from 4 mM) at an OD600 nm of 0.1 in 12 mL
cultivation tubes. 1 mL samples were taken after 24 h and spun down
with a table centrifuge at 6,500 rcf for 3 min 750 μL supernatant were
transferred to a fresh reaction tube and stored at −20°C for LC/MS
measurement. The cultures were incubated at 37°C and 250 rpm.

For observing Pinocembrin synthesis over time an overnight
culture was prepared as described above. Exponentially grown cells
from were used to inoculate 50 mL LB Kn50 + 4 mM trans-cinnamic
acid at an OD600 nm of 0.1 in a 500 mL baffled conical flask. The
culture was incubated at 37°C and 250 rpm. 1 mL samples were taken
every 2 h until 8 h of incubation after which 1 mL samples were taken
at 24 h and 48 h. Cells in these samples were spun down in a table
centrifuge at 6,000 rcf for 3 min 750 μL supernatant was transferred to
a fresh reaction tube and stored at −20°C for LC/MS measurement.

2.4 Encapsulation of the bacteria in PVA gels

Poly(vinyl alcohol) (Mowiol 18-88, 130,000 Da, 86.7%–88.7%
hydrolysis degree, Sigma Aldrich) was functionalized with
vinylsulfone (VS) reactive groups to obtain PVA-VS following a
reported protocol (Puertas-Bartolomé et al., 2023). A 10 %w/v PVA-
VS solution in water was mixed with the bacteria suspension in LB
Kn50 and Lithium phenyl-2,4,6-trimethylbenzoylphosphinate
photoinitiator (LAP, Sigma Aldrich) solution in 2x LB Kn50 to
obtain a final PVA-VS concentration of 5% w/v, a 0.5% w/v
concentration of LAP and a bacterial OD600 nm of 0.05 (~4 ×
106 cells/mL) in the mixture. Hydrogels were prepared by
photoinitiated radical crosslinking of the VS groups using a UV
light source (365–480 nm) at irradiance of 6 mW/cm2 for 2 min.

For microscopy studies, 10 µL of the mixture were
photocroslsinked inside an ibidi µ-Slide angiogenesis micro-well
plate. To characterize flavonoid production, ELMs in the form of
bacterial hydrogel films supported on glass coverslips (13 mm
diameter, 16 mm thickness) were prepared. The glass was
previously coated with 3-(trimethoxy silyl) propyl acrylate to
facilitate covalent attachment of the hydrogel to the glass surface.
The films contained two layers and were fabricated in two steps. First,
28 µL of the mixture were deposited in the center of a 6 mm diameter
polydimethylsiloxane (PDMS) mould and pressed against the coated
coverslip. Photocrosslinking (365–480 nm at irradiance of 6 mW/
cm2 for 2 min) and removal of the mould rendered a film of the
hydrogel attached to the glass slide. Next, a second PDMS ring
(10 mm inner diameter) was placed concentrically on top of the
thin PVA film. 80 μL of 10 %w/v PVA-VS aqueous solution
containing 0.5% w/v of LAP initiator were deposited in the ring to
fully cover the bacteria hydrogel with an enveloping layer that did not
contain bacteria. After photocrosslinking (365–480 nm at irradiance
of 6 mW/cm2 for 2 min) and removal of the mould, bilayer hydrogel
films with 10 mm final diameter and 1 mm thickness were obtained.

2.5 Microscopy of PVA encapsulated
bacteria

Bacteria hydrogel samples from days 0, 2, 4, 7, and 14 in the ibidi
µ-Slide angiogenesis micro-wells were imaged using a Zeiss LSM

TABLE 1 Plasmids used in this study.

Plasmid name Relevant features Reference

pVV.01 pUC-ORI, kanR Hoefgen et al.
(2018)

pMGE-T7 pVV.01, T7 promoter, terminators Kufs et al. (2020)

pMGE_CHS pMGE-T7, CHS Arabidopsis
thaliana

Kufs et al. (2020)

pMGE_4CL2 pMGE-T7, 4CL2Nicotiana tabacum Kufs et al. (2020)

pMGE-K2 pVV.01, K2 promoter, terminators This study

pMGE-K2-4CL pMGE-K2, 4CL2 This study

pMGE-K2-Chs pMGE-K2, CHS This study

pMGE-K2-nar pMGE-K2, 4CL2-CHS This study

pMGE-OY pVV.01, OY promoter, terminators This study

pMGE-OY-4CL pMGE-OY, 4CL2 This study

pMGE-OY-Chs pMGE-OY, CHS This study

pMGE-OY-nar pMGE-OY, 4CL2-CHS This study

pMGE-R10 pVV.01, R10 promoter, terminators This study

pMGE-R10-4CL pMGE-R10, 4CL2 This study

pMGE-R10-Chs pMGE-R10, CHS This study

pMGE-R10-nar pMGE-R10, 4CL2-CHS This study

TABLE 2 Oligonucleotides used in this study.

Primer name Sequence (5‘-3‘)

pVV.rec.F CTCACGTTAAGGGATTTTGGTTC

pVV.rec.R AATCGAACTTTTGCTGAGTTGGG

pMGEt1 AATTTGCGCAAGAAGGAGATAG

pMGEt2 CCCCGCGGGGTTGCTTCAC
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880 confocal laser scanning microscope (Zeiss, Oberkochen,
Germany). Images were captured using a Zeiss Plan-Apochromat
63x/1.4 Oil DIC M27 objective with detection wavelengths
482–544 nm and 584–718 nm, and laser wavelengths of 488 and
543 nm respectively for live and dead bacterial populations. Z-stacks
of 18.44 µmwere taken in a z-step size of 0.45 µm. Images of a size of
134.95 × 134.95 µm were acquired (1,024 × 1,024 pixels), two-fold
line averaging, and pixel dwell time of 0.42 µs.

Representative images were obtained using the maximum
intensity Z-projection (Zen 2.3 SP1, Zeiss, Oberkochen,
Germany). The Imaris surface tool (Imaris v9.8, Bitplane, Zurich,
Switzerland) was used to calculate the 3D volume of live and dead
bacteria. The surfaces were generated with the smooth function set
to 0.264 µm, the diameter of largest Sphere to 10 μm, and the
automatic threshold. The volume fraction of live/dead bacterial
colonies in the hydrogel samples was calculated as the sum of all
live/dead colony volumes divided by the total volume of the imaged
region (335,820 µm3). The Live % was calculated as the volume of
live colonies divided by the total volume of the live and dead
colonies.

2.6 Characterization of pinocembrin
production from the gels

For quantitation of pinocembrin production, the bilayer ELM
films were incubated with four different concentrations of cinnamic
acid. Incubation was performed in a 24-well plate first at 37°C with
400 µL of LB Kn50 media for 3 days to allow bacteria to grow. From
day 4 on, the bacteria hydrogels were covered with 400 µL of LB
Kn50 + 4, 2, 0.5 and 0.125 mM cinnamic acid media. Five technical
replicates were prepared for each condition, while 1 replicate was
incubated in LB Kn50 as control. The supernatant was taken every
24 h and replaced with corresponding fresh media. 100 μL samples
from the supernatants were centrifuged in a table centrifuge,
transferred to a fresh 1.5 mL Eppendorf reaction tube, and stored
at −20°C until LC-MS measurement. For quantitation of sustained
pinocembrin production, the ELM films were first incubated at 37°C
in a 24-well plate with 400 µL of LB Kn50 media for 3 days to allow
bacteria to grow. From day 4 on, the films were covered with 400 µL
of LB Kn50 + 4 mM cinnamic acid media and LB Kn50 as control
and kept at 37°C for 3 days during which themediumwas exchanged
each day. Six technical replicates were prepared for both conditions.
The supernatant was taken every 24 h and replaced with
corresponding fresh media. 100 μL samples from the
supernatants were centrifuged in a table centrifuge, transferred to
a fresh 1.5 mL Eppendorf reaction tube, and stored at −20°C until
LC-MS measurement.

2.7 LC/ESI QTOF-MS method development
for quantification of pinocembrin in
supernatants

LC/ESI QTOF-MS analysis is performed on a 1,260 Infinity LC
in combination with a 6545A high-resolution time-of-flight mass
analyzer, both from Agilent Technologies (Santa Barbara, CA,
United States). Separation of 1 µL of sample is performed using a

Poroshell HPH-C18 column (3.0 mm × 50 mm, 2.7 µm) equipped
with the same guard column (3.0 mm × 5 mm, 2.7 µm) by a linear
gradient from (A) ACN +0.1% formic acid to (B) water +0.1%
formic acid at a flow rate of 500 μL/min and a column temperature
of 45°C. Gradient conditions are as follows: 0–0.5 min, 50% B;
0.5–2 min, 50%–37% B; 2–4 min 37%–50% B, 4–5 min 50% B at
1,500 μL/min (column cleaning), 5–7 min 50% B down to 500 μL/
min. After separation, the LC flow enters the dual AJS ESI source set
to 4,000 V as capillary voltage, 50 psi nebulizer gas pressure and
12 L/min dry gas flow, and 350°C dry gas temperature. The TOF
parameters used are extended dynamic range (2 GHz), 160 V
fragmentor and 45 V skimmer voltage. The mass spectra are
acquired in the time interval of 0.75–2 min in full scan mode in
the range m/z 100-1,000 with a spectra rate of 1/s. To determine the
formed Pinocembrin, the negative charged mass [M-H]- at m/z
255.0667 Da were extracted and automatically integrated usingMass
Hunter software. Standards were prepared from Pinocembrin stock
solution of 31 μg/mL in EtOH, further dilutions were done in mobile
phase (50%A, 50%B) or media. Samples of cinnamic acid screening
were diluted 1:100 with mobile phase (50% H2O and 0.1% formic
acid +50% Acetonitrile and 0.1% formic acid) in a total volume of
1 mL. Samples for Pinocembrin synthesis over time were diluted 1:
10 for samples of 0–8 h in a total volume of 100 µL and 1:100 in a
total volume of 1 mL.

2.8 Details regarding statistical analysis

All data presented were obtained from experiments that
included replicates. The information regarding the type and
number of replicates are included in the captions of the figures
where the data has been shown. Similarly any statistical analysis
performed has also been described in the captions. The graphs were
made with Origin Pro 2023 software, which was also used for
statistical analysis.

3 Results

In a previous study, pinocembrin biosynthesis in an E. coli lab
strain was achieved by expressing genes encoding a CoA-ligase from
Nicotiana tabacum (NT4CL2) and a chalcone synthase from A.
thaliana (AtCHS) under control of an IPTG-inducible T7-lacO
promoter (Kufs et al., 2020). Towards applicability in the body, it
was desirable to encode these enzymes in a biocompatible strain and
remove the need for induction. Accordingly, in this study we used
E. coli Nissle 1917 (Figure 1A), which is a commercial probiotic
(Mutaflor) extensively explored as a chassis for drug delivery in the
body (Chen et al., 2023). To eliminate the need for induction, we
replaced the T7-lacO promoter with 3 different constitutive
promoters and tested their capacity to convert cinnamic acid to
pinocembrin. The promoters, PK2 (BBa_K823004) and PR10 (BBa_
J01006) are expected to be more active in the exponential growth
phases, while POY (BBa_J45993) is more active in the stationary
phase. When plasmids encoded with the enzymes driven by each
promoter were transformed in this strain, pinocembrin production
in cultures containing cinnamic acid was only observed with the
strain bearing the PK2 promoter (Supplementary Figure S2).
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Notably, the inserts could not be detected in sequencing results
when plasmids containing the POY and PR10 promoters were
transformed in E. coli Nissle 1917, suggesting possible
incompatibility of these constructs with the strain.

The effects of exposing E. coli Nissle 1917 encoded with the
pMGE-K2-nar plasmid to increasing concentrations of cinnamic
acid (0.016–4 mM) were tested. First, we checked if cinnamic acid
affected bacterial growth rate in liquid culture by following the
increase in cell density (OD600 nm) over 24 h. Cell densities reached
steady OD600 nm values of 2–3 for cinnamic acid concentrations up
to 4 mM although the OD600 nm values dropped with increasing
cinnamic acid concentrations (Figure 1B). This suggested that E. coli
Nissle 1917 growth was affected by increasing concentrations of
cinnamic acid. Next, pinocembrin levels in medium were quantified.
A cinnamic acid concentration dependent increase in pinocembrin
levels from 15 to 300 ng/mL was observed with a peak at 2 mM
cinnamic acid. On normalization of the pinocembrin concentrations
with final OD600 nm values, the highest mean production rate was
with 4 mM cinnamic acid (113 ± 15 ng/mL/OD pinocembrin),
although it was not significantly different from the rate at 2 mM
cinnamic acid (105 ± 25 ng/mL/OD pinocembrin) (Supplementary
Figure S3A). Thus, with 4 mM cinnamic acid, time-resolved
conversion behavior at this concentration was tested in liquid
cultures for 48 h (Figure 1C). The highest cell density was
reached after 8 h during which pinocembrin reached a peak
mean concentration of 280 ng/mL. Prolonged incubation for 24 h
and 48 h resulted in a decrease of both cell density and pinocembrin

concentration. A decrease in cell density is attributed to death of the
bacteria in the saturation growth phase. The decrease in
pinocembrin concentrations was due to its degradation over
time, which we observed in experiments where pure pinocembrin
was incubated in a control E. coli Nissle 1917 culture (unmodified)
and in LB medium for 48 h (Supplementary Figure S3).

Encouraged by these results, we proceeded to encapsulate the
bacteria for the preparation of ELMs using PVA as the polymer
matrix. PVA is a synthetic, water-soluble, and biocompatible
polymer widely used for the encapsulation of probiotics (Çanga
and Dudak, 2021; Corona-Escalera et al., 2022). In this work, the
PVA backbone was modified with vinyl sulfone groups to create a
stable hydrogel network by chemical crosslinking (Figure 2A). The
suitability of this material for the preparation of ELMs supporting
bacterial viability and functionality has been recently demonstrated
(Puertas-Bartolomé et al., 2023). Bacterial hydrogels containing
E. coli Nissle 1917 encapsulated in PVA-VS were prepared in
well plates and photo-crosslinked. We first characterized the
growth and viability of the bacteria within the PVA hydrogels for
14 days using confocal microscopy. Hydrogel films containing
control Nissle 1917 (wildtype) or Nissle 1917 bearing the pMGE-
K2-nar plasmid were prepared. Both strains grew from single cells
on day 0 to rounded colonies from day 7 that continued to increase
in size over 14 days (Figure 2B). The volume occupied by the
bacteria within the hydrogel reached 7% by day 14 (Figure 2C).
Analysis of cell viability using a Live/Dead staining, revealed a drop
in bacteria viability on day 2, but a recovery in following days to

FIGURE 1
(A) Scheme representing the pMGE-K2-nar plasmid encoded in E. coli Nissle 1917 with the PK2 promoter driving expression of the enzymes
converting cinnamic acid to pinocembrin. (B,C) Analysis of bacterial growth and pinocembrin production in cultures of E. coliNissle 1917 pMGE-K2-nar in
the presence of cinnamic acid at different concentrations (B) and at different time-points (C). Symbols are means and whiskers are standard deviation
from 2 (B) and 3 (C) independent experiments.
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reach 80% at 7 days and above 50% at 14 days (Figure 2D). Colony
volume and viability values were comparable for the control and
pMGE-K2-nar strains, revealing that they remained unaffected by
expression of the pinocembrin-synthesis enzyme and the presence
of 4 mM cinnamic acid in the medium. In conclusion, E. coli Nissle
strains presented high viability after encapsulation and were able to
proliferate within the hydrogels for at least 2 weeks by the formation
of spatially contained colonies.

In the single layer films, we observed outgrowth and leaking of
bacteria from the hydrogel as observed by microscopy of the

surrounding medium (data not shown). To prevent this, bilayer
films were fabricated wherein the bacterial hydrogel was enveloped
by a bacteria-free hydrogel layer (Dhakane et al., 2023). The films
were supported on a glass cover slip, to which the gel was covalently
bonded (Figures 3A, B). Bacterial leakage/outgrowth from the
bilayer films was tested during 31 days by analyzing the
supernatant on nutrient agar plates. Among 6 samples, one
sample leaked on day 9, another sample on day 14, two more on
day 24 and two samples did not leak after 31 days (Supplementary
Figure S4). We did not observe degradation of the hydrogels in the

FIGURE 2
(A)Graphical scheme of bacterial encapsulation in a PVA-VS hydrogel matrix that is chemically cross-linked. (B) Fluorescence confocal microscopy
images of live/dead stained bacteria in PVA-based chemically cross-linked hydrogels grown for up to 14 days. (C) Analysis of the volume fraction of the
bacteria populationswithin the imaged volumes over 14 days. (D) Analysis of cell viability over 14 days. Each symbol represents values from a single image.
Central lines are means and whiskers are standard deviations of values obtained from 3 images at different locations in 3 independent samples.
Significance was determined by one-way ANOVA with means comparison by the Tukey test (*p < 0.05, **p < 0.005)
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samples that leaked bacteria when checked by eye (Supplementary
Figure S5) or under the microscope (Supplementary Figure S6). This
result, taken together with the fact that leakage occurred at very
different timepoints among the different samples, led us to think
that leakage is due to imperfections in the manual fabrication of the
films. One possibility is contamination of the enveloping layer with a
few bacterial cells that were then able to grow out when they formed
large colonies (Supplementary Figure S6). Another potential point of
failure could be the interface between the hydrogel and the glass
layer, since we observed peeling off the hydrogel in some of the
samples (Supplementary Figure S6). Nevertheless, the long-term
bacterial leakage experiment evidenced that the bilayer films could
contain the bacteria for a long time if the variability in the manual
process can be avoided, possibly through automation.

Based on the microscopy results which showed colonies on day
6, this time scale was selected for the quantification of pinocembrin
production from cinnamic acid added to the medium. By
increasing the concentration of cinnamic acid from 0.125 to
4 mM, pinocembrin production on day 6 increased from 200 to
320 ng/mL (Figure 3C). This indicates the possibility to tune the
output with different input concentrations. We assessed for how
long conversion could be sustained with daily renewal of medium
at 4 mM cinnamic acid concentration. The average pinocembrin
release over this period varied from 100 to 250 ng/mL from day
7–31 (Figure 3D). These results indicate that long-term conversion
of pinocembrin from cinnamic acid could be realized with an ELM
approach. The fluctuation in the pinocembrin levels over this
period of time suggests possible variations in the viability or

functionality of the encapsulated bacterial populations, in line
with the 14-day viability results in Figure 2C. Interestingly,
conversion efficiency was similar to what was observed in liquid
cultures, suggesting that diffusion of cinnamic acid into and
pinocembrin out of the hydrogels was not a major limiting
factor and that the bacteria in the encapsulated form retain
their properties.

4 Discussion and conclusion

In this study, we report an ELM capable of catalytically
producing a high-value bioactive compound by conversion of
low-cost food grade cinnamic acid. With bilayer ELM films
containing probiotic bacteria encoded with 2 enzymes, we
demonstrated that conversion of cinnamic acid to pinocembrin
could be tuned at a single time-point based on the precursor
concentration. Production was sustained for over 3 weeks. The
bilayer ELM films rendered conversion levels comparable to
liquid cultures, indicating that diffusion of the substrate is not a
major limiting factor and does not impact the reaction rate. Our
previous studies have shown that other bioactive products could be
produced from the same 2 enzymes by varying the input precursor
(Kufs et al., 2020). For instance, coumaric acid was converted to
naringenin, caffeic acid to eriodictyol, ferulic acid to
homoeriodictyol and various cinnamic acid analogues to
corresponding pinocembrin analogues. Thus, our ELM design
could potentially be extended to be used to selectively produce a

FIGURE 3
(A) Bacterial PVA-VS bilayer ELM films fabrication protocol. (B) Photo of a bilayer ELM film with bacterial growth over 13 days. Size of grid sizes =
0.5 cm. More images in Supplementary Figure S5 (C) Analysis of pinocembrin production at different cinnamic acid concentrations from the bilayer ELM
films. Symbols are means and whiskers are standard deviations from 4 independent bilayer ELM films for each concentration. (D) Analysis of long-term
production of pinocembrin production from day 7–31 after fabrication of the bilayer ELM films. Symbols are means and whiskers are standard
deviations from 3 independent bilayer ELM films.
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number of bioactive compounds depending on the precursors
supplied to it.

A limitation of this study is the low conversion efficiency of
cinnamic acid into pinocembrin. With the current non-optimized
enzyme cascade, the amount of pinocembrin produced
(100—400 ng/mL) was 3 orders of magnitude lower than that of
the precursor (20—600 μg/mL). In terms of costs, cinnamic acid
(>95% purity) can be purchased at retail prices as low as 0.1 EUR/g,
while pinocembrin (>95% purity) is over 4 orders of magnitude
more expensive around 7000 EUR/g (sources—Sigma Aldrich).
Thus, the conversion efficiency in the current system could
provide a cost advantage if it can be maintained in the body. To
realize health-promoting effects of pinocembrin, higher
concentrations by 10- to 100-fold have been reported based on
in vitro cell culture and in vivo animal studies (Soromou et al., 2013;
Gong, 2021). Thus, an improvement in conversion efficiencies might
be still required. One possibility for an 18-fold boost of pinocembrin
production in E. coli up to 40 μg/mL was reported by regulating
cinnamic acid metabolism (Cao et al., 2016). In another report,
pinocembrin yields could be increased to nearly 200 μg/mL by
modifying the antibiotic resistance cassette to kanR from ampR
and using a CoA ligase from soybeans (Dustan et al., 2020). Such
optimization could improve the precursor conversion efficiency and
rate of production of the bioactive compound from the ELM.
Nevertheless, the low production yields currently achieved could
still provide the possibility to use these ELMs provide highly
localized micro-dosed effects in the body, like anti-inflammatory
and antioxidant effects. Further in-depth studies with suitable model
systems to test such effects will be explored in future studies.

For application inside the body, ELMS with formats compatible
with the tissue type are needed PVA hydrogels can be fabricated in
various formats, like microcapsules (Han and Hong, 2006),
electrospun meshes (Akbar et al., 2018) or 3D printed scaffolds
(Meng et al., 2020). These diverse possibilities highlight the potential
for catalytic ELMs to be developed as living medical devices capable
of promoting health at low-cost.
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