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Aspergillus niger is an important filamentous fungus used for the industrial
production of citric acid. One of the most important factors that affect citric
acid production is the concentration of manganese(II) ions present in the culture
broth. Under manganese(II)-limiting conditions, the fungus develops a pellet-like
morphology that is crucial for high citric acid accumulation. The impact of
manganese(II) ions on the transcription of the major citrate exporter encoding
gene cexA was studied under manganese(II)-deficient and -sufficient conditions.
Furthermore, citric acid production was analyzed in overexpressionmutant strains
of cexA in the presence and absence of manganese(II) ions, and the influence of
CexA on fungal morphology was investigated by microscopy. Transcriptional
upregulation of cexA in the absence of manganese(II) ions was observed and,
by decoupling cexA expression from the native promoter system, it was possible to
secrete more citric acid even in the presence of manganese. This effect was
shown for both an inducible and a constitutive overexpression of cexA.
Furthermore, it was found that the presence of CexA influences fungal
morphology and promotes a more branched phenotype. According to this
study, manganese(II) ions suppress transcription of the citrate exporter cexA in
Aspergillus niger, causing citric acid secretion to decrease.
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1 Introduction

Citric acid (2-hydroxy-propane-1,2,3-tricarboxylic acid) is a weak organic acid occurring
as an intermediate of the tricarboxylic acid cycle in aerobic organisms and can be secreted by
fungi like A. niger. Due to its properties, this organic acid has a variety of industrial
applications ranging from foods and beverages to detergents and pharmaceuticals (Behera,
2020; Reena et al., 2022). The vast majority of citric acid is manufactured by large-scale
industrial fermentations employing the filamentous fungus Aspergillus niger (Karaffa et al.,
2001; Show et al., 2015; Behera, 2020). In comparison to other hosts, the production of citric
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acid with A. niger delivers exceptionally high yields (Show et al.,
2015): up to 95 kg of citric acid per 100 kg of sugar can be obtained
(Karaffa and Kubicek, 2003; Karaffa and Kubicek, 2019). In order to
trigger a citric acid overflow metabolism and reach such high yields,
specific requirements must be met within the cultivation medium
and process (Karaffa and Kubicek, 2003): high citric acid production
occurs in the concomitant presence of high sugar concentrations,
phosphate limitation, and high dissolved oxygen supply.
Additionally, metal ions, mainly manganese(II) (Kisser et al.,
1980; Meixner et al., 1985; Netik et al., 1997; Karaffa et al.,
2015), furthermore referred to as “manganese”, and iron(II)
(Odoni et al., 2017), must be in limiting concentrations to
achieve high citric acid yields (Karaffa et al., 2021). In the
absence of the above-described culture conditions, the fungus
displays filamentous morphology and is not able to produce high
amounts of citric acid. On the contrary, under these conditions, the
hyphae of the fungus become swollen and shortened, and a pellet-
like morphology is developed. The pellet morphology is crucial for
high citric acid secretion (Clark et al., 1966; Kisser et al., 1980;
Karaffa and Kubicek, 2003). This phenotype, contrary to the hairy
and filamentous morphology, allows for an increased oxygen
transfer into the liquid and subsequently to the cells, ensuring a
high oxygen supply (Kisser et al., 1980; Karaffa and Kubicek, 2003;
Tong et al., 2019). It was previously observed that drastic
morphological changes occur by simply changing the
concentration of manganese in the medium. In the presence of
sufficient manganese concentration (>5 μg/L), the fungus grows
filamentous and the final volumetric yield can be reduced by up
to 20%. Manganese-deficiency (<5 μg/L) transforms the filamentous
hyphal morphology to one dominated by shortened, swollen
branches on the micro-morphology level and small compact
(<0.5 mm diameter) pellets on the macro-morphology level
(Detroy and Ciegler, 1971; Gyamerah, 1995). This transformation
is accompanied by increased cell/hyphae diameter and reduced
pellet size (Paul et al., 1994; Karaffa et al., 1997; El-Sabbagh
et al., 2008). High (>75%) specific molar yields (Yp/s) occur only
when cultures are characterized by such morphology (henceforth
referred to as “overflow-associated morphology”) (Sándor et al.,
2021).

Manganese is an essential metal ion needed for several
physiological processes. It acts as a cofactor for a set of enzymes
interacting with nucleotides, such as RNA polymerases, some
kinases, and dehydrogenases (Crowley et al., 2000; Culotta et al.,
2005). It is also relevant for several sugar transferases of the Golgi
apparatus (Karaffa et al., 2021). Manganese in yeast and filamentous
fungi acts as a key cofactor for the manganese-dependent
mitochondrial superoxide dismutase (MnSOD) (Reddi et al.,
2009; Lambou et al., 2010). Superoxide dismutases (SODs) are
metalloenzymes responsible for protecting fungi against reactive
oxygen species (ROS) (Del Valle and Scheckhuber, 2022). By
detoxifying superoxide anions, they play a crucial role in
protecting against oxidative stress. Under manganese-deficiency,
MnSOD is severely inhibited leading to higher oxidative stress,
which results in increased protein turnover (Ma et al., 1985), and
altered composition of the plasma membrane (Meixner et al., 1985)
and the cell wall (Kisser et al., 1980). This might be connected with
the development of a highly branched mycelium with thickened cell
walls and thick, swollen hyphae leading to the pellet-like

morphology (Karaffa et al., 2021). Furthermore, it was shown
that secreted citrate can only be taken up when bound to
manganese. Therefore, under manganese-limiting conditions,
secreted citrate cannot be imported again in high amounts,
underlining the importance of manganese-deficiency in citric acid
overflow (Netik et al., 1997). The uptake of manganese in A. niger is
controlled by the manganese transporter DmtA (Fejes et al., 2020).
Upon deletion of the manganese transporter encoding gene dmtA,
manganese uptake is strongly limited, and high citric acid titers
(100 g/L) can be achieved even at manganese concentrations of
100 μg/L (Fejes et al., 2020). This transporter thus represents an
engineering target for simulating manganese-deficient conditions in
a manganese-sufficient environment (Fejes et al., 2020). Secretion of
citrate into the culture broth occurs via the main citrate exporter
CexA (Steiger et al., 2019). This transmembrane protein belongs to
the major facilitator superfamily. One known regulator of cexA is the
methyltransferase LaeA (Niu et al., 2016; Kadooka et al., 2020). The
control mechanism of LaeA is based on altering the methylation
levels of the histones H3K4 and H3K9 at the cexA promoter, thus
regulating the accessibility of the RNA polymerases to the gene
(Kadooka et al., 2020). Due to the crucial role played by manganese
on the secretion of citrate, the effect of manganese on the transporter
cexA is investigated in this study.

2 Materials and methods

2.1 Strains

All strains used in this study are listed and described in Table 1.

2.2 Media and cultivation conditions

All chemicals used in this study were analytical grade and were
purchased from Carl Roth GmbH + Co. KG, Austria, or Sigma
Aldrich, Austria, and Sigma Aldrich, Hungary.

All fungal strains were maintained at 30 °C for 5 days on
minimal medium (MM) (Barratt et al., 1965) before harvesting
the conidia for cultivation. Conidia were harvested using 0.1%
Tween20 and washed twice (centrifugation: 5,000 rpm, 10 min)
with the same solution before resuspending in 0.1% Tween20.
Conidial concentration was determined using a Thoma chamber.

2.2.1 Shake flask cultivations
Glassware and plasticware used for shake flask cultivations were

treated overnight with 1.5 M HCl. Solutions and media were
prepared with manganese-free water, as described in 2.2.3. The
solid and chemically defined liquid media were prepared as
previously described (Fekete et al., 2022), with the exception of
the D-glucose concentration in the liquid medium, which was 140 g/
L. Baffled 1 L flasks with 100 mL medium were used for cultivation.
Manganese-deficient and manganese-sufficient culture conditions
were tested. Manganese was added in the form of MnCl2*4H2O. All
cultivations were performed in biological triplicates. Samples for
RNA extraction andHPLC analysis were taken after 24, 48, and 72 h.
Mycelial samples for RNA extraction were first washed with Milli-Q
water, paper-dried, and stored in 500 µL RNAzol RT reagent
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(Sigma-Aldrich, Austria) at −80°C for 4 days before RNA extraction.
The supernatant of the samples was analyzed by HPLC.

2.2.2 Microtiter plate (MTP) cultivations
MTP cultivations were performed in 96-well plates in a

volume of 100 µL. An adapted version of Vogel’s minimal
medium (VM) for high citric acid production was used for
MTP cultivations. The medium was supplemented with 20%
D-glucose and 0.5% citric acid, the remaining composition was
as described in Steiger et al. (2019). The initial pH of the medium
was set to 5.6. Different amounts of MnCl2*4H2O (final
manganese(II)-concentrations: 0 μg/L, 5 μg/L, and 100 μg/L)
were added, depending on the culture condition to be tested.
All cultivations were performed without and with doxycycline
(4 μg/mL) in order to induce cexA overexpression in the iE-cexA
strain. For each condition, 10 mL VM were inoculated with 108

conidia/L of the strain of interest. Cultivations were performed at
30 C, 85% humidity, and 240 rpm for 72 h in a Minitron
incubation shaker (Infors HT Minitron, Bartelt, Austria, 5 cm
amplitude). After cultivation, the supernatant was collected by
filtration and analyzed by HPLC.

2.2.3 Bioreactor cultivations
Glassware and plasticware used for bioreactor cultivation were

treated overnight with 1.5 M HCl to remove all traces of
manganese. Solutions and media were prepared with
manganese-free water obtained by treating Milli-Q water
(Arium Mini, Sartorius, Germany) by column ion exchange
chromatography (AmberChrom 50Wx8 100–200 (H), Thermo
Scientific, Germany).

Solid cultures on minimal medium plates and cultivations in
chemically defined liquid medium (pre-culture and bioreactor
culture) were performed as previously described using the same
media (Fekete et al., 2022). For pre-cultures, 100 mL of medium
were inoculated with 109 conidia/L in six 500 mL Erlenmeyer flasks
and grown for 24–26 h. Pre-cultures were pooled together and
added into the bioreactor (Sartorius Biostat B, Göttingen,
Germany) containing the sterile culture medium, reaching a final
volume of 5 L. Two bioreactors were operated simultaneously.
Cultivation A was performed under manganese-deficient
conditions (no supplemented manganese), and cultivation B was
performed in sufficient manganese conditions (100 μg/L
supplemented manganese in the form of MnCl2*4 H2O). The
bioreactor cultivations were performed without pH control,
900 rpm stirring speed (except for manganese-free cultivation,
where stirring speed was reduced to 700 rpm after 200 h), 3 L/min

aeration (air), and a constant temperature of 30 C. Samples were taken
every 24 h and filtered before HPLC analysis. For dry cell weight
(DCW) analysis during bioreactor cultivations, 5 mL of sample were
filtered onto a pre-weighted filter paper, dried for 1 h at 70 C, and
weighed.

2.3 RNA extraction

400 µL RNAzol RT reagent (Sigma-Aldrich, Austria) as well as
0.25 g 0.1 mm ∅ and 1 mm ∅ glass beads were added to the
mycelium samples prior to sample processing. Cell disruption
was achieved using a bead ruptor (MP Fastprep-24, Fisher
Scientific, Germany) for three cycles of 20 s at 6 m/s. The
samples were placed on ice for 1 min between each cycle. After
cell disruption, the samples were centrifuged at 12,000 g for 5 min at
room temperature. The supernatant was used for further RNA
extraction using the innuPREP RNA Mini Kit 2.0 (Analytic Jena
GmbH, Germany), according to the manufacturer’s instructions.
The concentration and the quality of the extracted RNA were
evaluated using a UV-Vis spectrophotometer (NanoDrop onec

Thermo Scientific, Germany) and agarose gel analysis (1.5% gel,
130 V, 20 min) prior to cDNA synthesis.

2.4 DNase digest and cDNA synthesis

DNase digest was performed on the extracted and purified RNA
samples using the DNase I Reaction Kit (NEB, United Kingdom), by
incubating 1 µg of RNA for 1 h at 37 C and subsequent heat
inactivation of the enzyme.

cDNA synthesis was performed with 1 µg of DNase I-treated
RNA sample using the Luna Script RT SuperMix Kit (NEB,
United Kingdom).

2.5 qPCR analysis

Quantitative PCR (qPCR) was performed on a Rotor-Gene Q
series, (Qiagen, Germany) with cDNA samples diluted 1:10 in
nuclease-free ultrapure water using the Luna Universal qPCR
Master Mix (NEB, United Kingdom). The primers for the
analysis are listed in Table 2. The suggested cycler program was
used for all runs. The log2fold changes of gene expression between
the control conditions (manganese-sufficient) and the samples
(manganese-sufficiency) were calculated according to the

TABLE 1 Strains and their relevant genotype and function.

Name Relevant genotype Function Source

ATCC 1015 ATCC 1015 Parental strain/Wild-type American Type Culture Collection (Andersen et al.,
2011)

cE-cexA pyrG::PmbfA:cexA:TtrpC, pyrG
+, ATCC 1015 background Constitutive cexA

overexpression
Steiger et al. (2019)

iE-cexA pyrG::Ptet-on:cexA:TtrpC, pyrG
+, ATCC 1015 background Inducible cexA overexpression Steiger et al. (2019)

D-cexA Disruption of cexA coding sequence by a SNP, ATCC
1015 background

loss-of-function mutation of
cexA

Steiger et al. (2019)

Frontiers in Bioengineering and Biotechnology frontiersin.org03

Reinfurt et al. 10.3389/fbioe.2023.1292337

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1292337


previously published method by Pfaffl, 2001. The housekeeping
genes actA and sarA were used as reference genes.

2.6 HPLC analysis

Supernatants of the MTP and shake flask cultivations were
analyzed by HPLC (HPLC, Shimadzu, LC-20AD series, Japan)
equipped with a Bio-Rad Aminex HPX-87H+ column (Bio-Rad
Inc., United States) and operated with 5 mMH2SO4 as mobile phase.

Bioreactor samples were analyzed by HPLC (HPLC, Agilent
Technologies 1.260 Infinity, United States) equipped with a Bio-Rad
Aminex HPX-87H+ (Bio-Rad Aminex HPX-87H+, Bio-Rad Inc.,
United States) and using 10 mM H2SO4 as mobile phase. In all
samples, citric acid and D-glucose were determined based on a
calibration curve using pure standards.

2.7 Morphological analysis

Fungal morphology was characterized as described earlier
(Sándor et al., 2021). Three distinct fungal forms were defined:
(a) the swollen hyphal fragments, (b) the filamentous hyphae and (c)
the mycelial pellets (Bartoshevich et al., 1990; Paul and Thomas,
1998). The morphology of the cells over the cultivation course was
investigated microscopically with an Axio-Vision AC quantitative
image analyzer system. To increase contrast and visibility,
lactophenol cotton blue (Fluka Chemie, Buch, Switzerland) was
added to the medium samples in a final concentration of 10% (v/v).
Stained samples were analyzed with a Zeiss AxioImager phase-
contrast microscope equipped with AxioCam MRc5 camera.
Microscopic pictures (at least two at each time point) were taken
regularly every 24 h from the cultures and the number of
filamentous and round cells was recorded. Round cells were
defined as those cells with a length/width ratio <1.5. Among
those, giant round cells were defined as round cells with a cell
diameter >2x the hyphal diameter (Supplementary Figure S5).

2.8 Digital holotomographic microscopy

Aspergillus niger ATCC 1015, iE-cexA, and D-cexA were
analyzed. After conidia harvesting and counting, the strains were
inoculated in 20 mL chemically defined liquid medium described in
(Fekete et al., 2022), at a concentration of 5 × 103 conidia/mL and
with 4 μg/mL doxycycline, if required. Microscope coverslips were
mounted on the bottom of Petri dishes. After 12 h at 30 °C,
coverslips were mounted on microscope slides for immediate 3D
digital holotomographic microscopy (DHTM). 4D live-cell DHTM

of A. niger ATCC 1015 was performed by inoculating 3.5 × 105

conidia/mL in 500 µL manganese-deficient chemically defined
medium or 500 µL manganese-sufficient chemically defined
medium. After seeding in a 35 mm IbiTreat polymer bottom
µ-Dish (Ibidi GmbH, Munich, Germany), conidia were settled for
1 hour, then the medium was discarded, and the dish was washed
three times with fresh medium and subsequently filled with 1.5 mL
of the respective medium. Digital holotomographic microscopy
(DHTM) for pre-incubated strains and for live-cell imaging was
performed using the 3D Cell Explorer-fluo microscope (Nanolive
SA, Ecublens, Switzerland). For long-term live cell imaging, the
35 mm dish was placed in a stage-top incubator system and a
constant temperature of 30 °C was maintained by a temperature
controller (Okolab, Italy). Water reservoirs were placed into the
incubation chamber to protect the culture from evaporation. 4D RI
tomograms were obtained at a temporal resolution of one frame
every 2 min.

2.9 Image processing and analysis

3D and 4D stacks of DHTM were cropped in the z-axis to
include only slices that contained specimens. TIFF files were
imported into FIJI software version 2.9.0/1.53. t (Schindelin et al.,
2012). Stack-projection was done by applying maximum projection
of 3D and 4D time-lapse acquisitions. Determination of
morphological analysis included counting of hyphae per

TABLE 2 Primers used for qPCR analysis.

Gene to be detected Forward primer 5′-3′ Reverse primer 5′-3′

actA GGTCTGGAGAGCGGTGGTAT GGTCTGGAGAGCGGTGGTAT

sarA GAGACAGGGATACGGTGAAG GAGACAGGGATACGGTGAAG

cexA CTAGGCAATGGCTTTGGATGTATGTC GGAAGTCGGGGTGTGATTTCAG

FIGURE 1
Graphical summary of quantified morphological parameters.
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germling, and the number of lateral and apical branches (Figure 1).
Mean values were compared using Student’s t-test whenever
indicated, and the significance level for determining statistical
significance was set at p < 0.05.

3 Results and discussion

3.1 The transcription of cexA is upregulated
in the absence of manganese

The presence of manganese in the cultivation was shown to have
a negative effect on citric acid secretion (Kisser et al., 1980; Karaffa
and Kubicek, 2003; Karaffa et al., 2021). Furthermore, it was found
that cexA is essential for citric acid secretion (Odoni et al., 2019;
Steiger et al., 2019), thus we hypothesized that manganese could
have an influence on the transcription of cexA. To test this,
transcript levels of cexA were measured by RT-qPCR in the citric
acid-producing parental strain ATCC 1015 cultivated under
manganese-sufficient and -deficient conditions.

At all tested time points, the transcript levels of the citrate
exporter cexA were significantly upregulated under manganese-
deficient conditions compared to manganese-sufficient conditions
(Figure 2).

At 24 h, the transcript of cexA was 34-fold upregulated under
manganese-deficiency compared to manganese-sufficiency, which
increased further to a fold change of 187 after 48 h (4.6 g/L citric acid
in manganese-deficiency; 0 g/L citric acid in manganese-sufficiency)
and 102 after 72 h (12.9 g/L citric acid in manganese-deficiency;

0.15 g/L citric acid in manganese-sufficiency). For both cultivation
conditions, cexA transcription was observed to increase with time,
which is in agreement with the onset of citric acid formation
between 24 and 72 h. The transcript levels under manganese-
sufficient conditions are still below the transcript levels measured
under all manganese-deficient conditions investigated, increasing by
about 6 fold after 72 h. This data shows that cexA is strongly induced
in the absence of manganese(II) ions.

3.2 Deregulation of the transcription of cexA
can counteract the negative effect of
manganese on citric acid secretion

Since the repressive effect of manganese(II) ions leads to lower
transcription of cexA, overexpression of the transporter under a
manganese-insensitive promoter should restore citric acid
production under manganese-sufficient conditions. To test this
hypothesis, an overexpression strain of cexA with a doxycycline-
inducible tet-on system (iE-cexA) was cultured at different
manganese concentrations in the absence and presence of the
inducer and tested for citric acid secretion after 72 h (Figure 3).

Under manganese-deficiency, the wild-type strain ATCC
1015 produced around 11–12 g/L of citric acid after 72 h of
cultivation, both with and without doxycycline, showing that the
addition of doxycycline did not influence citric acid production. A
similar production of citric acid could be measured for the strain iE-
cexA without induction. By supplementing the medium with
manganese, the citric acid production of ATCC 1015 (with and

FIGURE 2
Relative transcript levels of cexA under manganese-sufficient (white boxes) and manganese-deficient (light blue boxes) conditions of strain ATCC
1015 at 24, 48, and 72 h cultivated in shake flasks. Within the boxes, the line represents the median and the cross the arithmetic mean of three
independent biological replicates. Samples were referenced to the 24 h time point under manganese-sufficient conditions. Significant differences (p <
0.01) determined by t-test (n = 3) are highlighted by an asterisk.
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without induction) and of iE-cexA without induction was reduced to
around 8 g/L, confirming the expected negative effect of
manganese(II) ions on the secretion. Under inducing conditions
and manganese-deficient conditions, the strain iE-cexA produced
increased amounts of citric acid (17 g/L) compared to the wild-type
strain, as previously reported (Steiger et al., 2019). Additionally, this
strain was able to produce significantly higher amounts of citric acid
even in the presence of manganese concentrations up to 100 μg/L.
With a secretion of about 14 g/L citric acid, the induced strain shows
higher citrate titers compared to the wild-type strain even under
manganese-deficient conditions. A manganese concentration of
100 μg/L is also exceeding a previously reported threshold
of <5 μg/L, described as critical for efficient citric acid production
(Fejes et al., 2020). Nevertheless, a decrease in citric acid titers from
17 to 14 g/L was observed between manganese-deficient states in the
induced iE-cexA strain and manganese-sufficient states of either 5 or
100 μg/L. This observation can be explained by the presence of the
native cexA locus in the genome of the overexpression strain, which
is still under the control of the native cexA promoter. In conclusion,
the results show that the transcription of cexA is suppressed in the
presence of manganese(II) ions. This effect can be reversed upon
expression of cexA by a manganese-insensitive promoter.

In an industrial setting, the addition of an inducer such as
doxycycline is not preferred. Thus, to test an alternative expression
system for CexA, a constitutive cexA overexpression strain, cE-cexA,

was tested in a 5 L-bioreactor cultivation under manganese-deficient
and -sufficient conditions and compared to strain ATCC 1015. In
this strain, a second copy of cexA is under the control of the pmbfA
promoter (Blumhoff et al., 2013). Figure 4 shows the citric acid
production (A), glucose consumption (B), and biomass formation
(C) of both strains under the tested conditions, and the yield, molar
yield, productivity, and specific productivity of the bioreactor
cultivations are reported in Table 3.

As expected, the wild-type strain produced only 1.5 g/L of citric
acid under manganese-sufficient conditions and 107.2 g/L under
manganese-deficient conditions (Figure 4A). In comparison, the
overexpression strain cE-cexA reached titers of 36.8 g/L under
manganese-sufficient conditions and 117.7 g/L citric acid under
manganese-deficient conditions (Figure 4A). For both strains,
biomass titers were higher under ` conditions compared to
deficient conditions reaching 23.5 g/L for ATCC 1015 and 25.2 g/
L for cE-cexA. This is in agreement with the literature describing that
manganese is an essential component for sufficient growth and
biomass formation (Kisser et al., 1980). While the wild-type strain
could only produce 1.5 g/L citric acid under manganese-sufficient
conditions, the cexA overexpression strain was able to achieve an
approximately 25-fold higher titer with 36.8 g/L. However, the titer
was still lower compared to the manganese-deficient conditions
showing that the expression by pmbfA is not strong enough to fully
replenish transcription to the level of the native promoter of cexA

FIGURE 3
Citric acid concentrations (g/L) measured after 72 h of cultivation in MTPs. The blue/blue striped bars indicate the wild-type strain ATCC
1015 without/with 4 μg/mL doxycycline, the green/green striped bars indicate the inducible cexA overexpression strain iE-cexA without/with 4 μg/mL
doxycycline. Both strains were cultivated under differentmanganese concentrations (x-axis). Significant differences (p < 0.05) determined by t-test (n = 8)
are highlighted by an asterisk.
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under manganese-deficient conditions. Despite being described as a
strong promoter (Blumhoff et al., 2013),mbfA expression was found
to be only moderate under citric acid producing conditions (Lu et al.,
2022). A single-point transcript measurement of cexA after 72 h in
the bioreactor revealed a moderate 2.4-fold upregulation under
manganese-deficient and 5.5-fold upregulation under manganese-

sufficient conditions, comparing cE-cexA to ATCC 1015. Therefore,
it can be hypothesized that further overexpression and deregulation
from the native cexA promoter would lead to even higher citric acid
titers under manganese-sufficient conditions.

It should be noted that under manganese-sufficient conditions,
glucose was almost completely consumed and only 38.5 g/L

FIGURE 4
Citric acid production (A), glucose consumption (B), and biomass formation (C) of 5 L bioreactor cultivations of ATCC 1015 (blue lines) and cE-cexA
(purple lines) under sufficient- (continuous lines) and deficient- (dotted lines) manganese concentration.

TABLE 3 Summary of calculated cultivation parameters.

Condition Strain Yield [mgcitric acid/
gglucose]

Molar yield of citric acid/
glucose [%]

Productivity [mgcitric
acid/L*h]

Specific productivity [mgcitric
acid/gDCW*h]

Manganese
sufficiency

ATCC
1015

14 1.3 4.8 0.1

cE-cexA 275 25.8 118 3

Manganese
deficiency

ATCC
1015

749 70.3 337 14

cE-cexA 808 75.8 370 15
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remained in the ATCC 1015 and 10.4 g/L in the cE-cexA cultures.
This shows that despite a higher biomass concentration most of the
glucose is respired to CO2 under manganese(II)-sufficient
conditions, which is also reflected in the significantly lower
dissolved oxygen (DO) levels in the bioreactor.

The results obtained in the bioreactor cultivations (Figure 4) are
in agreement with the results obtained in the MTP cultivation
(Figure 3): by expressing CexA from a non-native promoter,
such as pTet-On (in strain iE-cexA) or mbfA (in strain cE-cexA),
the suppressive effect of manganese ions can be counteracted.
Overall, a regulatory effect of manganese(II) ions on cexA at the
transcriptional level was confirmed. There needs to be further
investigation into how manganese affects cexA transcription
directly, for example, by altering the activity of transcription
factors, or indirectly, for example, by inhibiting manganese-
dependent superoxide dismutase (Del Valle and Scheckhuber,
2022) causing oxidative stress. Transcriptional factors that are
redox-sensitive may regulate cexA in this way (Cimino et al.,
1997; Mendoza-Martínez et al., 2020; Pérez-Pérez et al., 2022).
Reported transcriptional regulators of cexA are LaeA, InuR, and
AmyR. The control mechanism attributed to LaeA, a methyl-
transferase, is centered on its ability to modify the methylation
levels of histones H3K4 and H3K9, thus regulating the transcription
of cexA (Kadooka et al., 2020). InuR is a Zn(II)2Cys6 transcriptional

activator. When deleting the inuR gene, cexA is downregulated 9.6-
fold in comparison to the expression in A. nigerN402 and a putative
InuR binding side was predicted in the promoter of cexA (Yuan
et al., 2008). Furthermore, AmyR, the transcriptional regulator of
starch degradation, has an impact on cexA transcription. In a
ΔamyR strain cexA is 54-fold downregulated on maltose
compared to the A. niger N402 parental strain (GSE98572;
Gruben et al., 2017). This is in line with a proposed AmyR
influence on citric acid production (Hu et al., 2017).
Additionally, we could identify a binding site for AmyR (CGG-
N8-CGG site (Petersen et al., 1999), −388 bp from translational start
site) within the native promoter of cexA, supporting a possible
regulatory function. To obtain further insights into the relationship
between CexA and the presence of manganese(II) ions, we focused
on morphology, which is known to be significantly changed under
manganese-deficient conditions.

3.3 In the presence of CexA, a more
branched phenotype can be observed

First, the morphology of ATCC 1015 and cE-cexA was
monitored during bioreactor cultivation (Figure 5). Round cells
and giant round cells derived from the shearing of swollen hyphae

FIGURE 5
Ratio of the amount of round cells (including the giant round cells) (A,B) and of the giant round cells only (C,D) over the total amount of cells is shown
in percentage for ATCC 1015 and cE-cexA under manganese-deficiency (A, C) and–sufficiency (B, D).
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were analyzed and taken as ameasure for good citric acid production
morphology. The ratio of the amount of round cells (including the
giant round cells) and of the giant round cells only over the total
amount of cells is shown in percentage in Figure 5.

Under manganese-deficiency, the cE-cexA strain shows an
overall higher ratio of round and giant round cells (0.59 and
0.36) compared to ATCC 1015 (0.42 and 0.23). Under
manganese-sufficient conditions this difference is less
pronounced (0.09 and 0.06 for cE-cexA; 0.07 and 0.03 for ATCC
1015). However, the expression strength of the pmbfA promoter
might not be strong enough, thus leading to a less pronounced
difference in manganese-sufficiency in comparison to the
manganese-deficient condition.

To test whether CexA actively contributes to the citric acid
production morphology, further microscopy analyses were
performed on a micro-morphology level for strains having
different levels of CexA. The parental ATCC 1015 strain, the
CexA inducible iE-cexA strain, and the loss of function mutant
of CexA - D-cexA. The number of hyphae/germlings, lateral
branches, and apical branches was counted for each strain
(Table 4). While no significant difference in the number of
hyphae outgrown from the ATCC 1015 conidia could be
observed between manganese-deficiency and -sufficiency, the
number of lateral branches was significantly increased in
manganese-deficiency compared to manganese-sufficiency (from
0.16 to 2.18). Apical branching was only observed when the
strain was cultivated in manganese-deficient conditions. These
changes are likely to be beneficial for pellet formation and citric
acid production as an increased branching leads to an increased
surface area, which in turn enables more CexA to be embedded in
the membrane and thus leads to increased citric acid production.
First, the effect of CexA on morphology was investigated by
cultivating a cexA knock-out mutant (D-cexA). In the absence of
CexA, the number of lateral and apical branches in manganese-
deficient conditions is significantly lower than in the wild-type
strain. On average, the D-cexA strain formed 1.2 lateral and
1.04 apical branches, whereas 2.18 and 1.8 were counted for the
wild-type, respectively. On the contrary, the cexA inducible strain
iE-cexA showed both a significant increase of hyphae per germling
and of lateral branches in manganese-sufficient conditions
compared to the wild-type, independent from the presence of
induction by doxycycline, which might be an effect caused by the
presence of the transactivator of the tet-on promoter (Meyer et al.,
2011). However, some apical branches were observed for an iE-cexA
strain upon induction on manganese-sufficient conditions. Citric

acid production conditions significantly affect fungal morphology,
as previously shown. Here, we show that CexA contributes to this
morphology-modulating effect by increasing the number of
branches.

4 Conclusion

CexA is the main citrate exporter of A. niger. Here we show
that the transcription of its encoding gene, cexA, is strongly
repressed in the presence of manganese(II) ions, which explains
why no citric acid can be produced under high manganese
concentrations. It is possible to counteract this phenomenon by
placing the cexA coding sequence under promoters that are not
affected by manganese(II) ions. This leads to citric acid
accumulation even in the presence of high manganese(II) ion
concentrations. The transcriptional regulators LaeA, AmyR and
InuR have been reported to regulate the transcription of cexA, and
future research approaches may investigate how manganese
interacts with these transcription factors or whether there are
other unknown transcriptional regulators of cexA that mediate
manganese signaling.

Furthermore, it is shown that CexA partially contributes to
the morphological changes caused by a manganese-deficiency,
especially a higher rate of branching. Further research is required
for a better understanding of the regulation of fungal morphology
and which morphology regulators are impacted by manganese and
CexA. According to the presented work, manganese inhibits the
ability of A. niger to secrete citric acid through transcriptional
regulation of cexA.
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