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Introduction: Magnetic Resonance Imaging (MRI) is essential in diagnosing
cervical spondylosis, providing detailed visualization of osseous and soft tissue
structures in the cervical spine. However, manual measurements hinder the
assessment of cervical spine sagittal balance, leading to time-consuming and
error-prone processes. This study presents the Pyramid DBSCAN Simple Linear
Iterative Cluster (PDB-SLIC), an automated segmentation algorithm for vertebral
bodies in T2-weighted MR images, aiming to streamline sagittal balance
assessment for spinal surgeons.

Method: PDB-SLIC combines the SLIC superpixel segmentation algorithm with
DBSCAN clustering and underwent rigorous testing using an extensive dataset of
T2-weighted mid-sagittal MR images from 4,258 patients across ten hospitals in
China. The efficacy of PDB-SLIC was compared against other algorithms and
networks in terms of superpixel segmentation quality and vertebral body
segmentation accuracy. Validation included a comparative analysis of manual
and automated measurements of cervical sagittal parameters and scrutiny of
PDB-SLIC’s measurement stability across diverse hospital settings and MR
scanning machines.
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Result: PDB-SLIC outperforms other algorithms in vertebral body segmentation
quality, with high accuracy, recall, and Jaccard index. Minimal error deviation was
observed compared to manual measurements, with correlation coefficients
exceeding 95%. PDB-SLIC demonstrated commendable performance in
processing cervical spine T2-weighted MR images from various hospital
settings, MRI machines, and patient demographics.

Discussion: The PDB-SLIC algorithm emerges as an accurate, objective, and
efficient tool for evaluating cervical spine sagittal balance, providing valuable
assistance to spinal surgeons in preoperative assessment, surgical strategy
formulation, and prognostic inference. Additionally, it facilitates comprehensive
measurement of sagittal balance parameters across diverse patient cohorts,
contributing to the establishment of normative standards for cervical spine
MR imaging.

KEYWORDS

superpixel segmentation, cervical spine, magnetic resonance imaging, sagittal balance
parameters, artificial intelligence

1 Introduction

As global demographics trend toward an aging population, there
has been a corresponding surge in the incidence of age-associated
maladies (GBD, 2017 Disease and Injury Incidence and Prevalence
Collaborators, 2018). Chief among these are cervical and lumbar
degenerative diseases, which are exacerbated by the aging process
(Kasamkattil et al., 2022). Cervical spondylosis, a syndrome
characterized by a spectrum of symptoms and signs, arises from
the degeneration of intervertebral discs in the cervical spine. This
degeneration can stimulate or impinge upon surrounding tissue
structures such as the spinal cord, nerves, and blood vessels
(Theodore, 2020). Globally, over a third of individuals experience
mechanical neck pain persisting for more than 3 months, with neck
pain ranking fourth among causes of mobility impairments. This
highlights the significant health implications of cervical spondylosis
on a global scale (Global Burden of Disease Study,
2013 Collaborators, 2015; Hurwitz et al., 2018).

Magnetic resonance imaging (MRI) stands as an indispensable
diagnostic and monitoring modality for cervical degenerative
diseases, offering unparalleled delineation of both osseous and
soft tissue structures of the cervical spine (Wright et al., 2018).
This enables comprehensive assessment of structural lesions and
their relationship to adjacent neurovascular elements. The precise
detection and quantification of these alterations provide valuable
insights into disease staging, prognostic potential, and prognosis (Li
et al., 2023). Cervical sagittal balance plays a crucial role in cervical
alignment, stability, and degenerative cervical spine diseases (Azimi
et al., 2021; Scheer et al., 2021). Cervical spine MRI provides detailed
information on cervical spine structure and facilitates the derivation
of sagittal balance parameters (Boudreau et al., 2021). Although
standing cervical spine X-rays are economically feasible and readily
available, they are limited to two-dimensional images with
suboptimal resolution (Azimi et al., 2021; Boudreau et al., 2021).
In contrast, MRI, being non-invasive and free from ionizing
radiation risks, provides a more comprehensive evaluation of
sagittal balance (Lan et al., 2023). However, supine MRI may not
accurately reflect the loading state of the cervical spine in an upright
posture, potentially leading to measurement inaccuracies (Boudreau

et al., 2021). Despite this, MRI remains indispensable for evaluating
cervical spine sagittal balance, aiding in therapeutic decision-making
and monitoring treatment outcomes. Manual measurement of
sagittal balance parameters requires specialized knowledge and
training, proving both time-consuming and subject to inherent
subjectivity. In light of these challenges, there is an urgent need
for a novel tool capable of accurately measuring sagittal balance
parameters in cervical spine MR images in accordance with clinical
requirements. Such a tool should provide automatic measurements
in large heterogenous dataset, generate precise “centroids” via global
segmentation, and ensure precision consistent with clinical realities.

In the domain of semantic segmentation, Convolutional Neural
Networks (CNN) demonstrate notable advantages in image
processing, leveraging their specialized structure featuring local
weight sharing. These networks find broad utility across diverse
downstream tasks, encompassing methodologies such as Fully
Convoltutional Networks (FCN) (Shelhamer et al., 2017), U-Net
(Ronneberger et al., 2015), and DeepLab-v3+ (Chen et al., 2018).
While supervised neural networks exhibit remarkable accuracy and
performance, their reliance on manually annotated gold standard
datasets presents a significant hurdle. Addressing cervical spine-
related challenges necessitates the involvement of proficient medical
practitioners, entailing substantial investment in time and effort for
manual segmentation endeavors. This complexity introduces a
formidable barrier to dataset creation. As the field of machine
learning progresses, increasingly intricate algorithms have
emerged to automate the analysis of cervical spine imaging
balance parameters. Techniques such as Support Vector
Machines (SVM), decision trees, and linear discriminant analysis
have been employed to effectively categorize the surface topology of
individuals with scoliosis into mild, moderate, and severe
deformities (Ramirez et al., 2006). Notably, Lenke and colleagues
have introduced an innovative scoliosis classification system
utilizing SVM to differentiate among three distinct types of
spinal curvature (Lenke et al., 2003). More recently, Zou and
collaborators have devised a supervised network, VLTENet,
which offers precise determinations of the Cobb angle. However,
this method relies on manual segmentation by medical
professionals, rendering it both time-consuming and labor-

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Zhong et al. 10.3389/fbioe.2024.1337808

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1337808


intensive (Zou et al., 2023). Additionally, Amin and colleagues have
created an EfficientNet model based on ConvNet architecture,
exhibiting significant capability in identifying and classifying
spinal curves (Amin et al., 2022). However, its effectiveness is
somewhat constrained by a small dataset, potentially limiting its
generalizability. In summary, despite notable advancements in the
automatic evaluation of cervical spine imaging balance parameters,
the field encounters inherent limitations. There is a pressing need for
further research focused on developing novel methodologies that
integrate unsupervised analysis, enhanced generalization, and
improved precision in the autonomous assessment of cervical
spine balance parameters.

Several methodologies exist for measuring cervical curvature
(Vrtovec et al., 2009). The Harrison method effectively captures
variations in segmental curvature while considering local changes in
curvature, particularly valuable in biological research concerning
vertebral rotation. However, its complexity renders it unsuitable for
automation (Harrison et al., 2000). Refshauge et al. adopted a vertebral
centroids approach, focusing on the centroids of the C2, C4, and
C7 vertebrae to assess cervical lordosis angle, demonstrating high
reproducibility (Refshauge et al., 1994). The Vertebral Centroid
Measurement Lumbar Lordosis (CCL) method was initially devised
for assessing lumbar curvature. This method entails drawing lines
between the centroids of the first two lumbar vertebrae and the last
two lumbar vertebrae, respectively, with the acute angle formed by these
two lines representing the CCL angle. Chen et al. conducted manual
evaluations of lumbar curvature using the CCL method, demonstrating
its superior reliability in clinical measurements compared to the Cobb
method (Chen, 1999). The advantage of the CCLmethod over the Cobb
method lies in its provision of an intuitive understanding of cervical
posture while considering in local curvature changes, thereby facilitating
early detection of abnormal cervical posture. However, a drawback is
encountered in its requirement forvertebrae segmentation and
centroids identification from images, a process taking approximately
5–15 min, thus limiting its clinical frequency of use.

In our study, we denoted Chen et al.’s method as the CCL-A
method and Refshauge et al.’s as the CCL-B method. Employing
both CCL methods, we compared the resulting error and
correlations, ultimately selecting the method exhibiting lesser
error and greater correlation for measuring cervical curvature.

2 Material and methods

2.1 Dataset

We conducted a retrospective collection of T2-weighted mid-
sagittal cervical spine MRI scans from patients of varying ages across
ten hospitals within Mainland China. Subsequently, we segregated
tese scans into testing datasets. The participating hospitals
comprised Longhua Hospital Affiliated to Shanghai University of
Traditional Chinese Medicine, Shanghai Municipal Hospital of
Traditional Chinese Medicine, Dongzhimen Hospital Affiliated to
Beijing University of Chinese Medicine, The Second Affiliated
Hospital of Guangzhou University of Chinese Medicine,
Shenzhen Pingle Orthopedic Hospital Affiliated to Guangzhou
University of Chinese Medicine, Ningxia Hui Autonomous
Region TCM Hospital and TCM Research Institute, Luoyang

Orthopedic-Traumatological Hospital Of Henan Province,
Affiliated Hospital of Shaanxi University of Chinese Medicine,
Shenzhen Traditional Chinese Medicine Hospital, and Suzhou
TCM Hospital Affiliated to Nanjing University of Chinese
Medicine. Scanning sequences, parameters, and scanners
(including strength and vendor) were not standardized across
sites to evaluate the generalization of PDB-SLIC in a
heterogenous, real-world clinical sample.

This study adhered strictly to the principles outlined in the
Declaration of Helsinki and received approval from the
Institutional Review Board (IRB) of Longhua Hospital Shanghai
University of Traditional Chinese Medicine (approval number
2023LCST006). The IRB thoroughly reviewed and approved the
research protocol, ensuring the protection of patient privacy and
the confidentiality of the clinical data utilized. Given the
retrospective nature of the study and the de-identified nature of
the data employed, patient consent was waived. All methodologies
were conducted in accordance with relevant guidelines and
regulations. Prior to analysis, data were anonymized and de-
identified uphold patient confidentiality. Furthermore, all
researchers involved in data analysis underwent training and
adhered to stringent data protection practices.

2.2 Preprocess for MR images

To address the issue of inconsistent brightness levels in different
images, (Figure 1A) we employed CLAHE equalization to enhance
the overall contrast of the images (Figure 1B). And bilateral filtering
was used for preprocessing, which effectively addresses issues such
as noise interference, unclear image edges, and image blurring, thus
further improving the stability of our algorithm (Figure 1C). The
calculation formula for bilateral filtering is shown below.

Gσs ‖ p − q ‖( ) � exp −‖ p − q ‖2
2σ2s

( ) (1)

Gσr | I p( ) − I q( ) |( ) � exp −| I p( ) − I q( )|2
2σr2

( ) (2)

�Ip � 1
Wp

∑
q∈S

Gσs ‖ p − q ‖( )Gσr(| I p( ) − I q( ) | Iq (3)

Where Wp � ∑
q∈S

Gσs(‖ p − q ‖)Gσr(| I(p) − I(q) |) is the

normalization factor, Gσs represents the spatial domain kernel,
Gσr represents the pixel domain kernel, �Ip represents the image
after bilateral filtering, Iq represents the input image, p、 q
represents the pixel position, I(p)、 I(q) represents the
corresponding pixel value.

2.3 Superpixel segmentation

Superpixels refer to irregular pixel blocks composed of adjacent
pixels with similar texture, color, brightness, and other features that
have certain visual significance. By grouping pixels based on the
similarity of features between them, a small number of superpixels
can be used to represent the characteristics of a large number of
pixels, achieving low-complexity and efficient segmentation.
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The superpixel segmentation method designed in this study
generates superpixels through multiple K-means clustering on the
image. In order to make the generated superpixels more regular, a
distributed hexagonal distribution-based initial clustering center
method is designed specifically for vertebral features in this
study (Figure 2).

After bilateral filtering, in order to improve the clustering speed
and obtain more global image information, a downsampling process
is adopted to remove even rows and even columns of the upper-level
pyramid image with K-means clustering.

The objective function D is calculated for each clustering center
and all pixels within its range. A pixel is assigned to the class whose
objective function Dwith that clustering center is the minimum. The
objective function D is defined as follows:

dc � Lj − Li( )2 (4)
ds � xj − xi( )2 + yj − yi( )2 (5)

D � dc + m

Sc
( )2

× ds (6)

Where m is the weighting factor between brightness and spatial
differences. In this experiment, m is set to 15. Sc represents the
column sampling distance of the clustering centers.

After the initial K-means clustering, the positions and brightness
information of the clustering centers are updated using the average
values of the position and brightness features of the superpixels,
respectively. A new clustering center in the original image
corresponds to one updated clustering center in the
downsampled image.

Next, iterative clustering with the objective function D is
performed within their respective ranges based on the new
clustering centers. Figure 3 shows the different superpixel
segmentation performance under different numbers of superpixels.

The integration of Pyramid-based K-means clustering methodology
with multi-resolution images serves to broaden the scope of exploration
for clustering centroids, thereby mitigating a constraint inherent in the
SLIC algorithm pertaining to its capacity to encapsulate the overarching
characteristics of images. Such augmentation markedly amplifies the
algorithm’s efficacy in delineating the boundaries of cervical vertebral
bodies with heightened precision.

In the stage of superpixel merging, we use the brightness
distance metric function Dc to measure the similarity between
the seed superpixel and its neighboring superpixels. The
definition of the brightness distance metric function Dc is as follows:

Dc � Ln − Lm( )2 (7)
where m represents the seed superpixel, and n represents the
neighboring superpixel.

Next, a label set, C, and a candidate set, S, are defined. All
superpixels are initially stored in the candidate set. The top-left
superpixel of the image is set as the first seed superpixel and assigned
a label. The newly formed superpixel resulting from the fusion of the
superpixel in the label set with the seed superpixel continues to
search for neighboring superpixels within the candidate set until no
neighboring superpixels are found in the candidate set. The seed
superpixel must be an unlabeled superpixel until all superpixels are
labeled, resulting in a complete region segmentation. At this point,
doctors can manually select the vertebral regions they consider
appropriate to generate the corresponding segmentation results.

2.4 Cervical spine curvature and C7 slope
measurement

After obtaining the segmented region of the vertebrae, the
vertebral centroid is calculated by the ratio of the horizontal and
vertical centroids of the vertebrae to the sum of the pixels in that
region (Figure 4). The centroid calculation formula is shown below.

xia �
∑max xi

x�min xi
∑max yi

y�min yi
x *Pxy∑max xi

x�min xi
∑max yi

y�min yi
Pxy

(8)

yia �
∑max xi

x�min xi
∑max yi

y�min yi
y *Pxy∑max xi

x�min xi
∑max yi

y�min yi
Pxy

(9)

Where i is the ith vertebra. For CCL-A, i ranges from1 to 4, while for
CCL-B, i ranges from 1 to 3. xi denotes the set of horizontal coordinates
of the ith vertebra, yi represents the set of vertical coordinates of the ith
vertebra, and Pxy represents the pixel value when the height coordinate is
x and the width coordinate is y, with Pxy value of 0 or 1.

FIGURE 1
The process of image preprocessing on the original image. To enhance the overall contrast of the original images (A), bilateral filtering (B) andCLAHE
equalization (C) are used in the preprocessing.
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CCL-A: After obtaining the centroid for each vertebra, the
acute angle (θa) formed by the line connecting the centroids of
C2 and C3 and the line connecting the centroids of C6 and C7 is
calculated.

CCL-B: After obtaining the centroid for each vertebra, the
acute angle (θb) formed by the line connecting the centroids of
C2 and C4 and the line connecting the centroids of C4 and C7 is
calculated.

We also propose a calculation method based on the minimum
bounding rectangle fitting to achieve efficient and accurate
automatic extraction of the tangent line on the upper edge of
the vertebra and measure the corresponding slope. By sequentially
locating the pixels in the segmented region of the vertebra to

determine four extreme points, the minimum perimeter fitting
rectangle is obtained using the rotating calipers method. The upper
edge of the rectangle is approximated as the tangent line on the
upper edge of the vertebra. The calculation formula for C7 slope is
shown below (Figure 5).

θislope � arccos
wa

Pi
xmin

Pi
xmax










→∣∣∣∣∣∣ ∣∣∣∣∣∣
⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠ ×

180
π (10)

Where i represents the ith vertebra, with i being 6. Pi
xmin

and Pi
xmax

represent the pixels corresponding to the minimum and maximum
horizontal coordinates in the segmented region of the vertebra. wa

represents the horizontal distance between these two points.

FIGURE 2
The proposed algorithm flow of cervical curvature measurement based on superpixel segmentation.
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FIGURE 3
Different superpixel segmentation performance under different number of superpixels.

FIGURE 4
Schematic diagram of cervical curvature measured by CCL methods. (A)Modified CCL method was used on the cervical spine (CCL-A and CCL-B).
(B) The acquisition of the centroid for vertebra and the calculation of curvature in the cervical MRI image.

Frontiers in Bioengineering and Biotechnology frontiersin.org06

Zhong et al. 10.3389/fbioe.2024.1337808

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1337808


2.5 Segmentation performance evaluation

One of the most important requirements for superpixels is to
preserve adherence to object boundaries (Yuan et al., 2021). In
order to quantitatively compare the performance of
SLIC(Achanta et al., 2012), VBseg (Barbieri et al., 2015), and
PDB-SLIC in vertebral segmentation quality across different
numbers of superpixels, precision, recall, and the Jaccard
index are utilized to assess the similarity between algorithmic
segmentation and true segmentation of the vertebral region.
Additionally, the segmentation performance is compared
with classical deep learning networks such as FCN (Shelhamer
et al., 2017), DeeplabV3 (Chen et al., 2017), and U-Net
(Ronneberger et al., 2015) to identify the best
segmentation method.

The comparison of performance parameters among disparate
algorithms across numerous superpixel counts, utilizing one-
way analysis of variance (ANOVA). The test results are
initially subjected to the Shapiro-Wilk test for normality
and the Levene’s test for homogeneity of variances, the
outcomes of which dictate the appropriate method for
variance analysis.

2.6 Accuracy validation in sagittal cervical
parameters automatic measurement

To compare the performance of the semi-automatic
measurement method with experienced spinal surgeons, a
subset was randomly extracted from the cervical spine MRI
dataset, consisting of 464 T2-weighted cervical MR images.
Two spinal surgeons with 5–15 years of clinical experience
were recruited to participate in this performance comparison
study. Cervical curvature and C7 slope were manually measured

using ImageJ2 software (National Institutes of Health, Bethesda,
Maryland, United States, https://imagej.net/software/imagej2/)
(Rueden et al., 2017). Each image was measured
twice independently by both physicians, with the average of
the measurements used as the final result. The manual
results were then compared with the machine measurements
for consistency assessment. The consistency between
manual measurements and semi-automatic measurements
was assessed using intraclass correlation coefficient
(ICC) analysis.

2.7 Multicenter generalization validation on
cervical spine MR images

To validate the performance of PDB-SLIC across different
hospital settings, MRI devices, and age demographics, we
categorized the cervical MRI dataset based on age group. PDB-
SLIC was utilized to measure cervical curvature, enabling the
analysis of parameter distribution trends across various age
cohorts. Our focus was primariy on cervical curvature, C7 slope,
and their ratio, with correlation analysis conducted across
the datasets.

The distribution of cervical curvature was summarized using
means ± standard deviations (SD). To assess the effects of
different hospitals, MRI machines, and gneders on cervical
curvature measurements, we examined data for normality
and equal variances. Multivariate ANOVA or Kruskal-
Wallis tests were applied accordingly. Additionally, for
comparisons among age groups, we employed one-way
ANOVA with Welch’s adjustment and Games-Howell post
hoc analysis. Pearson’s correlation analysis was utilized to
evaluate the correlations among cervical curvature, C7 slope,
and their ratio.

FIGURE 5
Schematic diagram of C7 slope measured by the minimum bounding rectangle fitting methods.
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2.8 Statistical methods

IBM SPSS Statistics for Windows, version 26.0 (IBM Corp.,
Armonk, NY, United States) was applied to complete the statistical
analysis. A p-value less than 0.05 was considered statistically
significant.

3 Experiments and results

3.1 MRI dataset baseline characteristics

A total of 4,258 cervical spine MR images from ten hospitals
were included in the study, with patient ages ranging from 20 to
90 years. The MRmanufacturers included GE, Philips, and Siemens,
and the MRI field strength was either 1.5T or 3.0T. The baseline
characteristics of the cervical spine MRI image dataset are shown
in Table 1.

3.2 Optimized segmentation on vertebrae

Figure 6 illustrated the performance evaluation of the SLIC
algorithm, showcasing its inferiority compared to the other
algorithms. Notably, significant deficiencies in vertebra
segmentation are observed, particularly evident whem the
number of superpixels is set to 100, resulting in substantial loss
of are in vertebra segmentation. While the Vbseg algorithm achieves

superior vertebral body boundary delineation, challenges arise in
segmenting local extreme value regions within the vertebrae. This
difficulty stems from the algorithm’s utilization of the Otsu method
for secondary segmentation of superpixels, leading to enhanced
superpixel quality but complicating the segmentation of local
extreme value region and subsequent superpixel merging.
Consequently, the Vbseg algorithm fails to extract the local
extreme value regions within the vertebral body. In contrast,
PDB-SLIC demonstrates consistent excellence in both the
vertebral body region and boundary segmentation, surpassing the
performance of the other algorithms overall.

In Figure 7, precision, recall and Jaccard index evaluation of
vertebral body segmentation in cervical MR images are depicted
across varying superpixel numbers. A one-way ANOVA, utilizing
Fisher’s method, was conducted to analyze the results. The findings
reveal that both PDB-SLIC and Vbseg algorithms show superior
performance compared to the SLIC algorithms in terms of
precision (F = 22.517; p < 0.001) and Jaccard index (F =
14.842; p < 0.001), while the disparity in UE values is
statistically insignificant (F = 0.990; p = 0.391). Notably, the
application of the Otsu method in the Vbseg algorithm
contributes to the inability to separate the local extreme value
regions within the vertebral body, consequently leading to
decreased accuracy and Jaccard index. Upon analysis of the
vertebral body segmentation results, both PDB-SLIC and SLIC
algorithms demonstrate optimal performance when the number of
superpixels is set of 200, whereas the Vbseg algorithm performs
best with 500 superpixels. Therefore, PDB-SLIC exhibits superior
vertebrae segmentation performance compared to the other two
algorithms.

3.3 Segmentation performance validation

Our algorithm presents a significant improvement in
accuracy when compared to traditional unsupervised methods,
as shown in Table 2. Our results highlight the efficacy of the PDB-
SLIC algorithm, showcasing a substantial enhancement of 4.9%
in the Jaccard index and 5.7% in precision relative to SLIC.
Furthermore, compared to VBSeg, the PDB-SLIC algorithm
demonstrates a 2.7% increase in the Jaccard index and a 3.5%
improvement in precision. Notably, it even outperforms
established supervised neural network algorithms such as FCN
and DeeplabV3 networks. The difference in Jaccard value
between the PDB-SLIC algorithm and the U-Net network is a
mere 0.2%, while the precision value differs by only 0.3%. The
variations in recall values are not statistically significant (F =
2.691; p = 0.127). These slight disparities compared to classical
deep learning networks highlight the exceptional accuracy
achieved by our algorithm, eliminating the need for manually
annotated datasets by medical professionals.

3.4 Error evaluation in cervical curvature
measurements

For the CCL-A method, PDB-SLIC’s yielded a mean absolute
error of 2.980°, with a standard deviation of 3.167°, and an

TABLE 1 Baseline characteristics of cervical spine MR cohort.

Test sets Test sets

Number 4258
(100.00%)

Number 4258
(100.00%)

Hospital Age

Longhua Hospital 100 (2.35%) 20–30 712 (16.72%)

Beijing
Dongzhimen

353 (8.29%) 31–40 666 (15.64%)

Guangdong
province TCM

400 (9.39%) 41–50 646 (15.17%)

Henan provincial
orthopedic

321 (7.54%) 51–60 692 (16.25%)

Ningxia TCM 295 (6.93%) 61–70 762 (17.90%)

Shaanxi First TCM 374 (8.78%) 71–80 551 (12.94%)

Shanghai TCM 374 (8.78%) 81–90 229 (5.38%)

Shenzhen Pingle
orthopedic

1458 (34.24%) MRI
equipment

Shenzhen TCM 326 (7.66%) GE 1.5T 295 (6.93%)

Suzhou TCM 257 (6.04%) GE 3.0T 726 (17.05%)

Sex Philips 3.0T 4219 (9.89%)

Female 2126 (49.93%) Siemens 1.5T 2089 (49.06%)

Male 2132 (50.07%) Siemens 3.0T 727 (17.07%)
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intraclass correlation coefficient (ICC) of 95.8%. These results
closely mirrored those obtained through manual measurements.
Conversely, for the CCL-B method, PDB-SLIC exhibited a mean
absolute error of 1.604°, with a standard deviation of 1.674°, and an
ICC of 97.9%, surpassing the accuracy of manual measurements.
These findings indicate the reliability of PDB-SLIC in producing
measurement results, thereby validating the algorithm’s efficacy
and acceptability.

3.5 Generalization evaluation of PDB-SLIC
by the cervical curvature

PDB-SLIC was employed to measure the cervical curvature across
the dataset, as summarized in Table 3. A one-way ANOVA, employing
Welch’s method, was conducted, followed by a Games-Howell post hoc
test for pairwise comparisons among groups. The results revealed a
significant increases in cervical curvature with age (F = 83.097; p <

FIGURE 6
Comparison between SLIC, Vbseg and PDB-SLIC algorithm for visual perception of vertebral body segmentation.
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FIGURE 7
Vertebrae segmentation performance of precision, recall, and Jaccard of SLIC, Vbseg and PDB-SLIC algorithm under different superpixel numbers.
(A) Jaccard; (B) Precision; (C) Recall.
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0.001) (as shown in Figure 8).While no statistical significant differences
were observed among the 20–30, 31–40, 41–50, 51–60, and 61–70 age
groups (p > 0.05), all remaining between-group comparisons yielded
statistically significant differences (p < 0.05).

3.6 Error evaluation in cervical curvature
measurements

Non-parametric analysis using the Kruskal-Wallis test was
employed to assess the impact of various factors, including different
hospitals, MRI machines and genders, on cervical curvature across
different age groups. The results showed that there were no statistically
significant differences in cervical curvature among different hospitals in
the 20–30 and 81–90 age groups (p > 0.05), while statistically significant
differences were observed in all other age groups (p < 0.05); Similarly, in
the 20–30, 31–40, and 41–50 age groups, no statistically significant
differences were found in the effect of different MRI machines on
cervical curvature (p > 0.05), whereas significant differences were
observed in all other age groups (p < 0.05). In the 81–90 age group,
sex did not have a statistically significant effect on cervical curvature
(p > 0.05), while significant differences were noted in all other age
groups (p < 0.05) (refer to Table 4 and Figure 9).

3.7 Correlation analysis between cervical
curvature and C7 slope

A strong positive correlation was observed between cervical
curvature and C7 slope (r = 0.45; 95% CI [0.38, 0.52]; p < 0.001).
Conversely, the correlation between cervical curvature and the
curvature/C7 slope ratio was positive but weaker (r = 0.29; 95%
CI [0.21, 0.37]; p < 0.001). Additionally, there was a weak negative
correlation between C7 slope and the curvature/C7 slope ratio
(r = −0.34; 95% CI [−0.42, −0.25]; p < 0.001) (as shown in Figure 10).

4 Discussion

The current study aims to enhance the measurement of cervical
spine curvature to provideclinicians with quantitative insight.While the
CCL method and Harrison method are widely acknowledged for their
consideration of local curvature changes and high reliability compared
to other measurement techniques, their complex operational steps and
challenges in achieving automated measurement have limited their

exploration in literature. To address this gap and enable semi-automatic
measurement of cervical spine curvature using the CCLand Harrison
method, this research proposes both a vertebral body segmentation
algorithm and a curvature measurement algorithm.

In the preprocessing MR images, bilateral filtering is employed to
smooth the images and eliminate noise or strong anisotropic
interference (McPhee et al., 2011; Chang and Chang, 2017).
Subsequently, a clustering-based superpixel segmentation algorithm
is utilized for initial image segmentation. To overcome the limitation
of SLIC algorithm in capturing global properties, a novel approach
involving superpixels generation through K-means clustering in a
multi-resolution image is introduced. This method extends the
search range of cluster centers without compromising clustering
speed, thereby enhancing image segmentation quality. A
comparative experiment on cervical spine MR image dataset is
conducted to evaluate superpixel segmentation quality. By
incorporating brightness and position information, this method
yields compact and orderly superpixels adept at capturing
neighborhood features, thus enabling facile transformation from
pixel-based to superpixel-based methods.

Addressing the traditional superpixel algorithms’ inability to
capture global image properties, our study proposes performing
K-means clustering on a multi-resolution image. Through the
construction of an image pyramid and downsampling of the
preprocessed image, a pyramid with varying resolutions is
generated, effectively broadenling the search range of clustering
centers and facilitating local clustering on a global scale.

Superpixels represent a valuable technique for segmenting cervical
spine MR images. However, they often fall short of achieving
comprehensive vertebral segmentation, serving merely as an
intermediate step in subsequent image processing (Comaniciu and
Meer, 2002; Hamarneh and Li, 2009). The primary reason is that
clustering centers seek locally similar pixel features, thereby leading to
the division of vertebrae into multiple small superpixels (Shen et al.,
2016). To address this challenge, we have devised amethod based on the
DBSCAN clustering concept, which replaces the traditional algorithm’s
search for density-reachable points with a search among neighboring
superpixels. Additionally, we employ brightness features as the criterion
for similarity between neighboring superpixels. Whenever the
brightness similarity falls below a predefined threshold, the
superpixels are merged. Unlike other superpixel merging techniques,
our method does not necessitate manual intervention, it only requires
setting an initial brightness similarity threshold.

Given that superpixel segmentation algorithms typically
produce smaller-sized superpixels and struggle to achieve genuine

TABLE 2 Segmentation performance validation for different algorithms.

Algorithms Jaccard (± STD) Precison (± STD) Recall (± STD)

STIC 72.9 ± 1.34 74.3 ± 1.64 98.8 ± 1.67

VBSeg 75.1 ± 1.45 76.5 ± 1.63 98.3 ± 1.64

FCN 77.2 ± 1.54 79.6 ± 1.57 98.0 ± 1.73

U-Net 77.6 ± 1.47 79.9 ± 1.56 97.9 ± 1.43

DeeplabV3 77.6 ± 1.55 80.3 ± 1.48 97.6 ± 1.37

PDB-SLIC 77.8 ± 1.44 80.0 ± 1.55 97.7 ± 1.46
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vertebral body segmentation, we employ an enhanced DBSCAN-
based superpixel merging approach. This technique merges
superpixels to generate new regions, thereby accomplishing
vertebral body segmentation. Manual annotation of medical
images demands the expertise of trained medical practitioners
and consumes substantial time and effort. This complexity poses

challenges in assembling datasets for supervised neural networks,
making the task cumbersome. Our proposed method introduces an
unsupervised algorithm that obviates the need for manual
annotation as a gold standard.

In contradistinction to classical neural networks, which rely on
manually annotated datasets as their benchmark for training, our
methodology showcases the ability to directly forecast segmentation
outcomes from raw image data. This pioneering approach alleviates
limitations imposed by influential features within the original
dataset, thereby mitigating their influence on the segmentation’s
generalization performance. Notably, our proposed technique
attains a superior level of accuracy when juxtaposed with
classical neural networks.

Based on the segmentation results of the vertebral bodies,
both the CCL method and Harrison method are employed to
measure the curvature of the cervical spine. In response to the
challenge posed by the automatic detection of the vertebral body’s
posterior edge in the Harrison method, this study introduces two
improved approaches for measuring cervical spine curvature: the
posterior edge tangent method utilizing minimum rectangle
fitting and the centroid tangent method employing
interpolation. These methodologies facilitate the automated
measurement of cervical spine curvature. Experimental
validation confirms the efficacy of the proposed algorithms for
cervical spine curvature measurement, exhibiting
commendable accuracy.

TABLE 3 Cervical curvature measurements at different ages group.

Dependent Age Number Mean SD SE 95% CI

Curvature 20–30 701 5.503 4.285 0.162 5.186–5.820

31–40 646 6.093 4.328 0.170 5.760–6.427

41–50 632 6.264 4.111 0.164 5.943–6.584

51–60 676 8.349 5.872 0.226 7.906–8.792

61–70 746 8.669 5.877 0.215 8.248–9.091

71–80 539 10.648 7.141 0.308 10.045–11.251

81–90 218 13.704 8.711 0.590 12.549–14.861

FIGURE 8
Cervical curvature measurements at different ages group.

TABLE 4 Kruskal-Wallis test for Curvature in different age groups.

Age groups Number Median (IQR) Hospital MRI Sex

H-value p-value H-value p-value H-value p-value

Total sample 4,158 6.41 (3.28, 10.79) 161.591 <0.001 54.287 <0.001 62.936 <0.001

20–30 701 4.61 (2.51, 7.41) 14.700 0.065 5.645 0.227 23.035 <0.001

31–40 646 5.22 (2.66, 8.35) 43.816 <0.001 7.766 0.101 16.077 <0.001

41–50 632 5.42 (2.97, 8.36) 23.333 0.003 8.325 0.080 6.313 0.012

51–60 676 7.32 (3.53, 11.80) 67.356 <0.001 46.852 <0.001 5.957 0.015

61–70 746 7.77 (3.98, 12.15) 85.919 <0.001 37.536 <0.001 48.513 <0.001

71–80 539 9.08 (4.87, 15.25) 68.662 <0.001 17.542 0.002 7.915 0.005

81–90 218 11.72 (6.82, 21.33) 13.079 0.109 10.328 0.035 0.096 0.757
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Recent years have witnessed a growing emphasis on
understanding the evolving dynamics of sagittal balance
parameters and compensatory mechanisms concerning cervical

spine health. Aging is often accompanied by notable alterations in
cervical spine curvature and C7 slope, reflecting the body’s
adaptation to physiological and structural changes over time

FIGURE 9
Diagram of trends in cervical curvature across different hospitals, MRI facilities, sex in different age groups. (A) Different hospitals; (B) Different MRI
facilities; (C) Different sex.
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(Park et al., 2014; Hu et al., 2020; Zárate-Tejero et al., 2023).
Notably, the cervical spine curvature and C7 slope play pivotal
roles in sagittal balance evaluation (Le Huec et al., 2015; Iyer
et al., 2016; Jalai et al., 2016). Age-related degenerative changes
influence these parameters, leading to increased kyphotic postures
and C7 slope. Variations in cervical lordosis and C7 slope signify
the body’s adaptive response to maintain horizontal gaze and
overall alignment as individuals age. With advancing age, the
compensatory mechanism of the cervical spine become
increasingly crucial. Although the cervical spine possesses a
natural ability to adapt and respond to biomechanical stress,
this capacity tends to diminish with age, potentially resulting in
impaired postural balance (Hu et al., 2020; Zárate-Tejero et al.,
2023). Consequently, changes in cervical spine curvature and
C7 slope emerge as pivotal indicators of the spine’s adaptive
capacity, underscoring the importance of comprehensive
evaluation and targeted treatment in older populations. Our
findings reveal a discernible correlation between cervical
curvature and C7 slope, which intensifies with age and
collectively contributes to cervical stability. This evidence
highlights the imperative for further exploration into the
evolving trends of sagittal balance parameters, paricularly
cervical curvature and C7 slope. Enhanced comprehension of
these changes and the associated compensatory mechanisms
can refined our clinical evaluation and intervention strategies,
thereby enhancing spinal health management in the elderly
individuals. Indeed, future research endeavors should delve
into the clinical relevance of various cervical sagittal
balance parameters concerning cervical disorders. In
addition, investigations into the normal value ranges of
these parameters in large-sample cohorts are warranted to
validate their impact on clinical outcomes. Such
endwavors hold promise for providing invaluable insights to
optimize the assessment of cervical disorders and enhance
patient care.

5 Conclusion

In this study, we integrate superpixel segmentation with
superpixel merging techniques to introduce a novel superpixel-
based algorithm for cervical spine vertebral segmentation, termed
PDB-SLIC. We illustrate the utility of PDB-SLIC in automatic
measurement of sagittal balance parameters of cervical vertebrae.
Our algorithm yields commendable results in vertebral
segmentation and exhibits robust generalizability. Comparative
analysis with manual measurements reveals enhanced accuracy
achieved by the automatic quantitative algorithm. Furthermore,
PDB-SLIC demonstrates consistent performance and stability
across diverse settings, encompassing variations in MR image
acquisition across different hospitals, MRI devices, and patient
demographics.
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