
Effects of 12-week gait retraining
on plantar flexion torque,
architecture, and behavior of the
medial gastrocnemius in vivo

Chuyi Zhang1†, Liqin Deng1†, Xini Zhang2, Kaicheng Wu1,
Jianglong Zhan1, Weijie Fu1,3* and Jing Jin3,4*
1School of Exercise and Health, Shanghai University of Sport, Shanghai, China, 2Faculty of Sports Science,
Ningbo University, Ningbo, China, 3Key Laboratory of Exercise and Health Sciences of Ministry of
Education, Shanghai University of Sport, Shanghai, China, 4School of Psychology, Shanghai University of
Sport, Shanghai, China

Objective: This study aims to explore the effects of 12-week gait retraining (GR)
on plantar flexion torque, architecture, and behavior of themedial gastrocnemius
(MG) during maximal voluntary isometric contraction (MVIC).

Methods: Thirty healthy male rearfoot strikers were randomly assigned to the GR
group (n = 15) and the control (CON) group (n = 15). The GR group was instructed
towearminimalist shoes and runwith a forefoot strike pattern for the 12-weekGR
(3 times per week), whereas the CON group wore their own running shoes and
ran with their original foot strike pattern. Participants were required to share
screenshots of running tracks each time to ensure training supervision. The
architecture and behavior of MG, as well as ankle torque data, were collected
before and after the intervention. The architecture of MG, including fascicle
length (FL), pennation angle, and muscle thickness, was obtained by measuring
muscle morphology at rest using an ultrasound device. Ankle torque data during
plantar flexion MVIC were obtained using a dynamometer, from which peak
torque and early rate of torque development (RTD50) were calculated. The
fascicle behavior of MG was simultaneously captured using an ultrasound
device to calculate fascicle shortening, fascicle rotation, and maximal fascicle
shortening velocity (Vmax).

Results: After 12-week GR, 1) the RTD50 increased significantly in the GR group
(p = 0.038), 2) normalized FL increased significantly in the GR group (p = 0.003),
and 3) Vmax increased significantly in the GR group (p = 0.018).

Conclusion: Compared to running training, GR significantly enhanced the rapid
strength development capacity and contraction velocity of the MG. This indicates
the potential of GR as a strategy to improve muscle function and mechanical
efficiency, particularly in enhancing the ability of MG to generate and transmit
force as well as the rapid contraction capability. Further research is necessary to
explore the effects of GR on MG behavior during running in vivo.
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1 Introduction

Running has become an important sport and promotes the
development of global fitness activities (Hulteen et al., 2017). The
medial gastrocnemius (MG) is a biarticular muscle spanning the
knee and ankle joint and essential for transmitting force and power
during the absorption and push-off phases of running (Lai et al.,
2018; Moran et al., 2023). The MG and the lower tendon complete
the storage and release of elastic strain energy, thereby improving
the mechanical efficiency of running (Yong et al., 2020). Muscle
architecture, including fascicle length (FL), pennation angle (PA),
and muscle thickness (MT), is a major determinant of muscle
functional characteristics (Murach et al., 2015). Specifically, FL
(the number of sarcomere arranged in series) and PA determine
muscle length and the length range of force generation, which in
turn influence the shortening velocity of muscles and capacity to
generate force (Kruse et al., 2021; May et al., 2021). PA and MT are
considerably related to maximum muscle strength (Secomb et al.,
2015; May et al., 2021). During running, the muscle bundles of the
MG actively shorten and rotate to attenuate impact force, provide
support, and cause propulsion (Hamner et al., 2010; Ahn et al., 2014;
Eng et al., 2018). The functions of the muscle, including cushioning,
muscle force generation, and power output, and metabolic costs are
influenced to some extent by fascicle shortening and fascicle rotation
(Ishikawa et al., 2007; Deng et al., 2023). Consequently, the
architecture and behavior of MG play a crucial role in running
by influencing muscle function.

With the development of cushioned running shoes, researchers
found that 95.1% of recreational shod runners run with a rearfoot
strike pattern (RFS) (de Almeida et al., 2015). Considerable
differences in the biomechanics of lower limb joints have been
found among different foot strike patterns over the last 10 years
(Almeida et al., 2015; Yong et al., 2020; Xu et al., 2021; Ye et al.,
2024). Compared with runners with a RFS, those with a forefoot
strike pattern (FFS) exhibit greater knee flexion and ankle plantar
flexion during initial contact (Almeida et al., 2015) and greater
plantar flexion torque during the early stance phase (Kulmala et al.,
2013; Gonzales et al., 2019). The activation of the MG greatly
increased during FFS compared with that in RFS (Lin et al.,
2021), indicating increased mechanical loading on the MG
during running with FFS. Moreover, the excessive eccentric
loading during ground contact in FFS may affect the stretch-
shortening cycle of the triceps surae muscle–tendon unit, which
in turn affects the ability to resist impact force during landing and
return elastic energy (Jewell et al., 2017). Significant differences in
MG morphology have been found among different habitual foot
strike patterns (Li et al., 2023). Specifically, FFS runners have longer
FL and smaller PA; these changes increase maximal shortening
velocity and efficiency of force transmission. These biomechanical
differences collectively reveal that the MG is influenced by the foot
strike pattern during running, including muscle activity, mechanical
properties, and elastic energy utilization, thereby affecting running
performance and mechanical efficiency.

Gait retraining (GR) has been applied to the transition from RFS
to FFS in running (Deng et al., 2020; Wang et al., 2020; Yang et al.,
2020). By conducting GR on RFS runners for 12 weeks, GR
effectively reduced the vertical loading rate and prevented vertical
peak impact forces, consequently reducing the risk of injury related

to impact force (Yang et al., 2020). A study on the immediate
transition of RFS runners to running with FFS revealed that
compared with RFS, FFS exhibited markedly decreased knee
extension torque and increased plantar flexion torque (Kuhman
et al., 2016). Similar results were obtained in studies focusing on GR
(Deng et al., 2020; Wang et al., 2020). In our previous study, we
revealed that after a 12-week GR intervention, the increased plantar
flexion torque resulted in the loading of the triceps surae
muscle–tendon unit, effectively enhancing its mechanical
properties (Zhang et al., 2021). In summary, we speculated that
the elevated mechanical loading from gradual GR can be conducive
to adaptive changes in the architecture of MG, so as to improve
mechanical efficiency and physical performance.

Therefore, this study aimed to investigate the effects of a 12-
week GR program on plantar flexion torque, architecture, and
behavior of MG during the maximal voluntary isometric
contraction (MVIC) in vivo by using ultrasound and an
isokinetic dynamometer. We hypothesized that after GR, the
majority of rearfoot strikers would transition to non-RFS while
running. Besides, the GR group would exhibit the following changes:
1) significant increase in the peak torque of plantar flexion and early
rate of torque development during MVIC; 2) significant increase in
FL and MT of MG at rest, along with a significant decrease in PA of
MG; 3) significant increase in fascicle shortening, fascicle rotation,
and maximal fascicle shortening velocity of MG during the MVIC.

2 Materials and methods

2.1 Participants

Thirty male, healthy rearfoot strike runners (age: 33.3 ±
8.8 years; height: 173.7 ± 5.8 cm; body mass: 70.0 ± 8.4 kg;
weekly running distance: 40.4 ± 18.9 km) were selected, and they
were randomly allocated into the GR group (n = 15) and control
(CON) group (n = 15). A post-power analysis (G*Power version 3.1,
Kiel University, Kiel, Germany) was conducted, and n = 24 (total
sample size) would provide a power of 0.99 for the effect size of
normalized FL in this study (effect size f = 0.445). The inclusion
criteria were as follows: 1) male runners who are used to running
with RFS in cushioned shoes and have never tried minimalist shoes,
2) do not have a history of lower extremity injuries within the
previous 6 months or neuromuscular diseases, and 3) have run at
least 20 km per week in the past 3 months and intend to maintain
training intensity in the next 12 weeks. Prior to the study, all
participants signed an informed consent form approved by the
Ethics Committee of Shanghai University of Sport (No.
102772021RT085).

2.2 Instrumentation

An ultrasonography system (22 Hz, uSmart 3,300, Terason,
United States) with a 12L5A linear array probe (12 MHz
maximum frequency) was used to capture MG ultrasound
images. A dynamometer (256 Hz, Con-Trex MJ, Physiomed,
Germany) was used to measure the plantar flexion torque during
MVIC. During the intervention process, participants in the GR
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group wore Vibram five-finger minimalist shoes (3 mm outsole,
0 mm heel-to-toe drop, no midsole, average mass of 139 g, Figure 1).

2.3 Experimental procedure

To warm up, each participant ran for 5 minutes on a treadmill at
a self-selected speed according to their habitual strike pattern (Deng
et al., 2023). Simultaneously, the researcher utilized a mobile phone
to record running videos of the participants during warm-up,
aiming to initially verify the strike pattern they had self-reported.
At the beginning of the test, the participants lay prone on a
treatment bed, with the ankle in a neutral position (forming a
90° angle between the lower leg and foot) and the knee and hip
fully extended. The experimenter applied ultrasound gel to the head
of the probe head and placed the probe at 30% of the distance
between the popliteal crease and the lateral malleolus to obtain
morphological images of the MG at rest (Geremia et al., 2018).
Three clear morphological images of the MG were recorded for data
analysis. Participants were then required to be seated on the
treatment bed, ensuring that the ankle was in a neutral position
and the knee and hip were flexed at 90°. The shank length was
defined as the distance from the medial tibial condyle to the medial
malleolus of the ankle and measured with a measuring tape (Deng
et al., 2021). During the MVIC test, the participants were prone on

the dynamometer with the hip and knee extended, and the ankle was
fixed in a neutral position. Subsequently, the participants contracted
as hard as possible from a relaxed state to the maximum isometric
contraction state of plantar flexion within 5 seconds to obtain the
torque of the ankle (Deng et al., 2020). This action was repeated
three times. Meanwhile, an ultrasound probe was secured to the MG
belly of the participants using an elastic bandage to record a video of
the in vivo behavior changes of the MG (Figure 2). After all the tests,
the participants were trained according to the results of different
groups, and the above tests were repeated after 12 weeks.

2.4 Intervention

Participants in the GR group were instructed to wear five-finger
minimalist shoes for the 12-week GR. During GR, participants were
asked to adopt an FFS at a self-selected and moderate speed. The
metatarsal heads of the forefoot were required tomake initial ground
contact, followed by the remaining parts of the foot, while the foot
landed below the hip (Wang et al., 2020). The participants were
required to maintain their weekly running volume to be consistent
with their original running volume. The running distance for GR
only replaced a certain portion of the total running distance, whereas
the remaining portion was trained according to the original running
habits. The running distance of FFS running with five-finger
minimalist shoes increased progressively (Table 1). Specifically,
the participants performed 10% of the weekly running volume
with five-finger minimalist shoes in weeks 1 and 2. The running
distance of GR increased by 10% every week fromweeks 3–10 until it
was completed at 100% during weeks 11 and 12 (Joseph et al., 2017).
The 12-week GR program involved participants attending three
sessions per week. All participants underwent the intervention
under the supervision of the experimenters, and their foot strike
pattern was corrected and coached by professional long-distance
running athletes who were accustomed to running with an FFS. For
12 weeks, the participants were required to perform foot core
exercises targeting foot function and muscle strength. These
exercises were designed to prevent the musculoskeletal system of
the foot and ankle complex from adapting to the mechanical loads
associated with long-term GR (Wang et al., 2020). The foot core
exercises in this study consisted of bilateral heel raises, unilateral
heel raise, towel curls, short foot exercise, and toe spread and
squeeze (20 min per time). Every 2 weeks, exercise intensity was
varied by increasing the difficulty and quantity of motions (Table 2).
The detailed intervention program and monitoring modality were
based on our previous study (Zhang et al., 2024).

In the CON group, the participants were instructed to continue
wearing their habitual cushioned running shoes and continue the
running training by using their original foot strike pattern while
maintaining the same exercise intensity as before the experiment.

2.5 Data analysis

The plantar flexion torque was obtained directly by using a
dynamometer. The peak torque of the plantar flexion (PT) was the
maximum value of torque generated by the participant during
MVIC, which was then normalized by body weight. The rate of

FIGURE 1
Vibram five-finger minimalist shoes.

FIGURE 2
The measurement location during MVIC.
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torque development in the early 50 ms (RTD50) was calculated as the
average slope of the time–torque curve 0–50 ms from the onset of
the contraction (Andersen et al., 2010). The onset of plantar flexion
was defined as the instant at which the torque exceeded the baseline
by 3% of the PT (Trajković et al., 2021).

The data of the MG architecture (FL, PA, and MT) at rest
were processed by Image J software (NIH, Bethesda, MD,
United States). The FL was defined as the length of the
fascicular pathway between the superficial and deep fascias,
and it was determined by calculating the average length of
three fascicles in an ultrasound image (Geremia et al., 2019).
The normalized FL was obtained by dividing the FL by the shank
length (Li et al., 2023). The PA was defined as the angle formed
between the muscle fascicle and deep fascia, the mean value of
which was calculated according to the three ultrasound images of
each participant (Geremia et al., 2019). The MT was defined as
the vertical distance from the deep aponeurosis to the superficial
aponeurosis, and it was computed by calculating the average
length of the five perpendicular parallel lines drawn between the
two aponeuroses (Geremia et al., 2019).

Ultratrack software (version 4.1) was used in determining the
intersection of fascicles on the superficial and deep fascias on the
ultrasound video of MG during MVIC with semi-automated
tracking and manual correction (Swinnen et al., 2022). The
fascicle shortening (ΔL) was computed as the change in the FL of
the MG from at rest to MVIC. The fascicle rotation (Δθ) was
calculated as the absolute change in PA of the MG from at rest
to MVIC. The maximal fascicle shortening velocity (Vmax) was
computed as the maximal slope of the FL–time curve during
MVIC (Hauraix et al., 2017).

The foot strike angle in this study was obtained by calculating
the relative angle between the foot and the ground at the time of
initial ground contact, which is the difference between the angle of
the foot at touchdown and the angle of the foot when standing.
Detailed information on biomechanical testing during running can
be found in our previous study (Zhang et al., 2024).

2.6 Statistics

Data were presented as mean ± standard deviation. The
normality of the data distribution was analyzed using the
Shapiro–Wilk test. For parameters that did not conform to the
normal distribution, a logarithmic transformation was applied to
achieve normality. A two-way repeated measures ANOVA (group ×
time) was used in examining the effects of the 12-week GR on the
plantar flexion torque, architecture, and behavior of MG (version
23.0, SPSS Inc., Chicago, IL, United States). For parameters with an
interaction effect between time and group, a simple effects analysis
was performed as a post hoc test. The significance level (α) was
set at 0.05.

3 Results

3.1 Dropout rate

Twenty-four participants completed the 12-week intervention,
and the results were included in the statistical analysis (Table 3). Six
participants (three in the GR group and three in the CON group)
were excluded, and the dropout rate was 20%. Specifically, during
the intervention, one participant in the CON group was excluded for
trying to run while wearing five-finger minimalist shoes. One
participant in the GR group was excluded because of personal
reasons and his inability to participate in the test after training.
Four participants (two in the GR group and two in the CON group)
were excluded because of the absence of intervention for more than
2 weeks. In the GR group (comprising 12 rearfoot strike runners),
10 participants transitioned to non-RFS, and thus the transition rate
was 83.3%. No significant differences in age, height, weight, or
weekly running volume were found between the two groups. Given
that the normalized PT, RTD50, and Vmax did not conform to the
normal distribution, the data were logarithmically transformed
before statistical analysis.

TABLE 1 12-week gait retraining (GR) program.

Week 1 2 3 4 5 6 7 8 9 10 11 12

Running distance (% weekly running volume) 10 10 20 30 40 50 60 70 80 90 100 100

Times per week 3 3 3 3 3 3 3 3 3 3 3 3

TABLE 2 12-week foot core exercise program.

Week 1–2 3–4 5–6 7–8 9–10 11–12

Bilateral heel raises (level surface) 3 × 20 3 × 20 3 × 20 3 × 20 3 × 20 3 × 20

Bilateral heel raises (on step) N/A 3 × 20 3 × 20 3 × 20 3 × 20 3 × 20

Unilateral heel raise (level surface) N/A N/A 3 × 10 3 × 15 3 × 20 3 × 20

Towel curls 3 × 20 3 × 20 3 × 30 (0.25 kg) 3 × 30 (0.25 kg) 3 × 30 (0.5 kg) 3 × 30 (0.5 kg)

Short foot exercise 3 × 20 3 × 20 3 × 20 3 × 30 3 × 30 3 × 30

Toe spread and squeeze 3 × 20 3 × 20 3 × 20 3 × 30 3 × 30 3 × 30
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3.2 Ankle torque during MVIC

A significant interaction effect between time and group was
observed in the RTD50 (p = 0.014, Figure 3). The post hoc test

showed that the RTD50 of the GR group after training significantly
increased compared with that before training (p = 0.038).
Meanwhile, no significant main effect or interaction effect was
observed for PT or normalized PT (p > 0.05, Table 4).

TABLE 3 Basic information of included participants (n = 24).

Group Age (years) Height (cm) Body Mass (kg) Weekly running volume (km)

GR (n = 12) 34.75 ± 8.71 174.00 ± 6.94 71.64 ± 6.44 40.42 ± 14.84

CON (n = 12) 32.58 ± 10.04 172.17 ± 5.49 68.48 ± 9.94 42.58 ± 25.64

p-value 0.578 0.481 0.365 0.887

Notes: GR, gait retraining; CON, control.

FIGURE 3
Effects of 12-weekGR on peak torque of plantar flexion and early rate of torque development duringMVIC. GR: gait retraining; CON: control; RTD50:
rate of torque development during the 0–50 ms period of MVIC. * indicates a significant difference in pre- and post-training, p < 0.05.

TABLE 4 Effects of 12-week gait retraining (GR) on the plantar flexion torque during MVIC and architecture and behavior of MG.

Parameter GR group CON group p-value (η2)

PRE POST PRE POST Main effect for
time

Main effect for
group

Interaction
effect

PT (N/m) 108.33 ±
24.30

114.45 ± 18.84 103.44 ±
25.44

106.08 ±
18.60

0.102 (0.117) 0.450 (0.026) 0.503 (0.021)

Normalized PT
(Nm/kg)

1.55 ± 0.27 1.63 ± 0.16 1.63 ± 0.43 1.68 ± 0.34 0.069 (0.143) 0.698 (0.007) 0.661 (0.009)

RTD50 (Nm/s) 195.11 ±
119.69

248.61 ±
129.99*

291.75 ±
154.91

226.24 ±
89.31

0.660 (0.009) 0.361 (0.038) 0.014 (0.247)

FL (cm) 6.39 ± 0.65 7.00 ± 0.78 6.45 ± 0.93 6.54 ± 0.88 0.012 (0.257) 0.524 (0.019) 0.058 (0.154)

Normalized FL 0.19 ± 0.03 0.21 ± 0.03* 0.20 ± 0.03 0.20 ± 0.03 0.015 (0.242) 0.948 (0.000) 0.049 (0.165)

PA (°) 18.76 ± 1.46 18.40 ± 1.70 18.48 ± 3.09 18.13 ± 2.60 0.368 (0.037) 0.752 (0.005) 0.982 (0.000)

MT (cm) 1.79 ± 0.27 1.81 ± 0.27 1.80 ± 0.28 1.74 ± 0.23 0.679 (0.008) 0.804 (0.003) 0.334 (0.042)

ΔL (cm) 2.08 ± 0.65 2.58 ± 0.57 1.94 ± 0.60 2.28 ± 0.50 0.001 (0.415) 0.307 (0.047) 0.456 (0.026)

Δθ (°) 12.64 ± 5.33 16.88 ± 5.72 13.12 ± 6.69 14.26 ± 5.56 0.003 (0.331) 0.638 (0.010) 0.071 (0.140)

Vmax (cm/s) 6.15 ± 3.05 9.27 ± 5.22* 9.41 ± 4.94 7.48 ± 3.89 0.457 (0.025) 0.595 (0.013) 0.009 (0.269)

Notes: PT, peak torque of plantar flexion; RTD50, rate of torque development during the 0–50 ms period of MVIC; FL, fascicle length at rest; PA, pennation angle at rest; cMT, muscle thickness

at rest; Vmax, maximal fascicle shortening velocity during MVIC; ΔL, fascicle shortening during MVIC; Δθ, fascicle rotation during MVIC.

*p < 0.05: significant difference in pre- and post-training. The bold values indicate that the parameter has a significant main effect of time or an interaction between group and time.
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3.3 Architecture and behavior of MG

For MG architecture, an interaction effect between time
and group (p = 0.049) and a significant main effect of time
(p = 0.015) were observed in the normalized FL. The post hoc
test showed that the normalized FL of the GR group increased
significantly after training compared with that before training
(p = 0.003). A significant main effect of time was observed in the
FL (p = 0.012). Specifically, FL increased by 9.8% (GR) and 2.2%
(CON) after training (Figure 4). No significant main effect or
interaction effect was observed in the PA or MT
(p > 0.05, Table 4).

For MG behavior, an interaction effect was found between time
and group for the Vmax of the MG during plantar flexion MVIC (p =
0.009). The post hoc test showed that the Vmax of the GR group
increased significantly after training compared with that before
training (p = 0.018). A significant main effect of time was
observed in ΔL (p = 0.001) and Δθ (p = 0.003). Specifically, ΔL

increased by 30.1% (GR) and 25.4% (CON), and Δθ increased by
44.9% (GR) and 23.0% (CON) (Figure 4).

4 Discussion

This study examined the effects of a 12-week gradual GR on
plantar flexion torque during isometric contraction, MG
architecture, and behavior during MVIC in vivo. After 12 weeks,
the GR group exhibited a significant increase in RTD50, normalized
FL, and Vmax. FL, ΔL, and Δθ increased in both groups. Inconsistent
with our hypothesis, no significant changes in PT, PA, and MT were
observed after GR.

The RTD50 of the plantar flexion during MVIC in the GR group
markedly increased after training. This result was consistent with our
previous findings. After 12 weeks of GR while wearing minimalist
shoes, there was an increasing trend in peak RTD of plantar flexion
(Deng et al., 2020). This result may be attributed to the short contact

FIGURE 4
Effects of 12-week GR on the architecture and behavior of MG in vivo. GR: gait retraining; CON: control; FL: fascicle length at rest; PA: pennation
angle at rest; MT: muscle thickness at rest; Vmax: maximal fascicle shortening velocity during MVIC; ΔL: fascicle shortening during MVIC; Δθ: fascicle
rotation during MVIC. # indicates a significant main effect of time. * indicates a significant difference in pre- and post-training, p < 0.05.
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time during FFS running (Sun et al., 2018), which requires the plantar
flexors to generate torque rapidly to resist the loading of the ankle
joint. As a basic element of strength quality, RTD is typically
manifested in the stretch-shortening cycle. RTD plays a crucial
role during fast movements, which is closely related to maximal
strength output and fascicle shortening velocity (Werkhausen et al.,
2022; Dalton et al., 2023). The increased RTD observed after GR
indicated an improved ability to achieve a high level of strength during
the early phase of contraction. The ability of runners to rapidly
develop strength affects contact time during long-distance running.
A large RTD indicates capacity to generate the required strength in a
short contact time, thereby influencing running performance (Lum
et al., 2020). Therefore, gradual GR can be an effective mechanical
stimulus that improves the rapid contraction ability of the MG
during the early push-off phase. Although no significant change in
PT was observed, we found a tendency for normalized PT to increase
in both groups after training (p < 0.1). Previous studies demonstrated
that PT is significantly greater in FFS than in RFS (Kulmala et al.,
2013; Melcher et al., 2017; Gonzales et al., 2019). A large PT
contributes to providing sufficient propulsion during running,
accelerating the forward movement of the body (Gonzales et al.,
2019). Given the 12-week duration of GR in our study, it might be
necessary to further consolidate the effects of GR through long-term
training, yet this requires further investigation.

The study found that the normalized FL increased significantly in
the GR group after training, and the FL of the MG increased
significantly in both groups after training. A prior study has also
provided evidence that long-term running with FFS could
significantly influence the architecture of MG, resulting in runners
having a longer FL (Li et al., 2023). Compared with running with RFS,
running with FFS requires more active involvement from the MG (Lin
et al., 2021). This condition may increase the range of muscle
stretching and contraction during running, resulting in adaptive
changes in the muscle and an increase in FL. FL is a major factor in
dictatingmuscle contraction velocity (Wickiewicz et al., 1984; Abe et al.,
2000), and a long FL can result in shortening velocity and mechanical
power greater than those in a short FL (Arampatzis et al., 2006).
Theoretically, a longer FL is considered to have more serially linked
sarcomeres (Cigoja et al., 2022), and the simultaneous contraction of
these sarcomeres can result in a large overall change in FL. The result
suggested that adaptive changes in the FL of MG after GR may play an
important role in increasing the velocity of contraction. Longer fascicles
also facilitate a slower shortening of sarcomeres within the muscle
fibers, allowing the muscle to operate higher on its force-velocity curve
and generatemore force during contraction (Lin andPandy, 2022). This
indicated that the increased normalized FL after GR may benefit RTD,
which was supported by the results of this study showing increased
RTD50 after GR. Moreover, short fascicles are associated with an
increased risk of microscopic muscle damage during repetitive
eccentric actions in running (Timmins et al., 2016). From the
perspective of muscle architecture, despite the increased demand on
the triceps surae with the FFS, the change in FL suggests that GR can
potentially reduce the risk of injury associated with high mechanical
stimulation by lengthening fascicles. The absence of a significant
difference in FL between the GR and CON groups might be
attributed to the influence of variability in leg length.

The result showed a significant increase in Vmax duringMVIC in
the GR group after 12 weeks. This increase can be attributed to

increased FL, broadening the operating range of active muscle
within the length–tension relationship and thereby resulting in
an increased Vmax of MG (Lieber and Friden, 2000). However, it
is essential to emphasize that in this study, Vmax measurement was
conducted during MVIC and did not assess MG behavior during
running. A previous study reported that forefoot strikers exhibited a
slower fascicle contraction velocity of MG during ground contact
compared to rearfoot strikers (Swinnen et al., 2019). Therefore,
future research should prioritize investigating the behavioral
changes of MG during actual running in vivo. The force–velocity
relationship is a crucial factor influencing the performance of muscle
contraction, and the maximum power output of muscles is
constrained by this relationship (Daley et al., 2009; Fletcher and
MacIntosh, 2017). For a given required muscle strength, the
maximum power output increased with Vmax. In this study, Vmax

significantly increased after GR, whereas PT had no significant
change. Despite the absence of a significant increase in PT, the
observed increase in Vmax may reflect optimization for power to
some extent, suggesting that GR has a positive effect that enhances
the mechanical efficiency of MG. We observed a significant increase
in ΔL and Δθ of the MG in both groups after GR. Specifically, ΔL
increased by 30.1% (GR) and 25.4% (CON), and Δθ increased by
44.9% (GR) and 23.0% (CON). During active muscle contraction,
fascicle shortening generates force. Meanwhile, the accompanying
fascicle rotation adjusts the direction of muscle force, contributing to
the efficient generation of force in various directions. The rotation
during fascicle shortening provides a certain degree of freedom,
which affects muscle strength and the ability to generate force
(Lieber and Friden, 2000). This result suggested that GR leads to
changes in ΔL and Δθ of MG, which may contribute to the rapid
generation of sufficient force to support body weight and generate
propulsion during the stance phase of running. Considering that
muscle behavior also affects the metabolic costs of running (Fletcher
et al., 2013), future research could consider combining a contactless
monitoring system for monitoring energy expenditure (Huang
et al., 2024).

Several limitations remain in this study. Owing to the unique and
crucial role of the MG in the plantar flexor muscle group, the study
was limited to the MG as the target muscle. Future research may
consider extending the focus to other plantar flexor muscles, such as
the soleus and lateral gastrocnemius. Only the in vivo ultrasound and
mechanical characteristics of MG during MVIC were examined, and
the muscle behavior and mechanical characteristics during running
should be explored in the future. The study recruited only male
runners, so the influence of gender on the training effect remains
unclear. Furthermore, the duration of GR in this study was 12 weeks,
and no follow-up was conducted to assess the maintenance of GR.
Therefore, future research could explore gender differences in
behavior and mechanical properties of lower limb muscles during
running, as well as the long-term effects of periodic training.

5 Conclusion

After 12-week gait retraining, significant increases were
observed in the rate of torque development within the early
50 ms, as well as in normalized fascicle length and maximal
fascicle shortening velocity of the medial gastrocnemius. These
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findings suggest that gait retraining positively influences the
architecture and contraction behavior of the medial
gastrocnemius, thereby improving the ability to rapidly develop
strength and muscle contraction velocity. Therefore, rearfoot
strikers could consider gait retraining as a strategy to potentially
improve muscle function and mechanical efficiency, with a
particular focus on enhancing the capacity of the medial
gastrocnemius to generate and transmit force as well as
improving rapid contraction ability. Furthermore, future
investigations should delve deeper into understanding the
behavior of the medial gastrocnemius during running in vivo.
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