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Ovarian cancer presents a substantial challenge due to its high mortality and
recurrence rates among gynecological tumors. Existing clinical chemotherapy
treatments are notably limited by drug resistance and systemic toxic side effects
caused by off target drugs. Sonodynamic therapy (SDT) has emerged as a
promising approach in cancer treatment, motivating researchers to explore
synergistic combinations with other therapies for enhanced efficacy. In this
study, we developed magnetic sonodynamic nanorobot (Fe3O4@SiO2-Ce6,
FSC) by applying a SiO2 coating onto Fe3O4 nanoparticle, followed by
coupling with the sonosensitizer Ce6. The magnetic FSC nanorobot
collectives could gather at fixed point and actively move to target site
regulated by magnetic field. In vitro experiments revealed that the magnetic
FSC nanorobot collectives enabled directional navigation to the tumor cell area
under guidance. Furthermore, under low-intensity ultrasonic stimulation, FSC
nanorobot collectivesmediated sonodynamic therapy exhibited remarkable anti-
tumor performance. These findings suggest that magnetically actuated
sonodynamic nanorobot collectives hold promising potential for application in
target cancer therapy.
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1 Introduction

Ovarian cancer is one of the most prevalent malignant neoplasms affecting the female
reproductive system, and its global incidence is exceeded only by those of cervical and
endometrial cancers (Torre et al., 2018; Sung et al., 2021). Most individuals with ovarian
cancer are diagnosed at an advanced stage, leading to a 5-year survival rate of less than 30%
(Srivastava et al., 2017; Sung et al., 2021). The therapeutic repertoire for ovarian cancer
encompasses surgical intervention, chemotherapy, and radiotherapy (Kengsakul et al.,
2022). Nevertheless, these modalities inevitably have some inherent limitations. To
maximize lesion eradication, extensive radical surgery is frequently performed.
Additionally, surgery may lead to peritoneal or abdominal lymph node metastasis,
increasing postoperative complications and mortality (Gerestein et al., 2009; Di Donato
et al., 2017). Chemotherapy is a cornerstone of treatment but is burdened by potent toxic
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side effects, drug resistance and consequently decreased treatment
efficacy (Coleman et al., 2013). Radiotherapy, which is applicable
only to a subset of ovarian cancer patients, poses challenges in
achieving a curative effect, with repeated sessions potentially
diminishing progression-free survival (Durno and Powell, 2022).
Despite ongoing refinements in traditional treatment
methodologies, including surgery, chemotherapy, and
radiotherapy, the efficacy of these approaches remains
suboptimal (Giovanni et al., 2018). Therefore, it is imperative to
explore novel therapeutic strategies for the effective management of
ovarian cancer.

In recent years, sonodynamic therapy (SDT), an emerging
noninvasive modality for tumour treatment, has exhibited
substantial promise in cancer therapy owing to its heightened
efficacy, deep tissue penetration, elevated selectivity, and
minimal impact on surrounding normal tissues (McHale et al.,
2016; Qian et al., 2016; Pan et al., 2018; Yan et al., 2020; Yang
et al., 2021; Wang D. et al., 2022; Wang J. et al., 2023). SDT is
based on the combination of ultrasound and sonosensitizers:
low-intensity ultrasound is used to stimulate sonosensitizers that
have been enriched in deep tumor tissues (Wang et al., 2020;
Wang et al., 2021a; Ning et al., 2022; Guo et al., 2023). This
activation elicits the generation of reactive oxygen species (ROS),
thereby inducing apoptosis in tumor cells (Guo et al., 2022).
Widely employed sonosensitizers include porphyrins and their
derivatives (such as hematoporphyrin and protoporphyrin),
porphyrin compounds (such as dihydroxyacetone-porphyrin
e6), inorganic nanomaterials (including titanium dioxide, zinc
oxide, and ferric oxide tetroxide), hybrids thereof (Wang et al.,
2021b), and metal-based systems (Zhang et al., 2018; Zhang et al.,
2019; Son et al., 2020). Notably, dihydroxyacetone-porphyrin e6
(Ce6), as an exemplary sonosensitizer, manifests robust acoustic
activity, a high quantum yield of singlet oxygen production, and
exceptional penetration capabilities, and it is therefore widely
utilized (Sun et al., 2017; Wang S. et al., 2022; Zhu et al., 2022;
Chen et al., 2023). However, the dose of the sonosensitizer
arriving at the tumor area is very limited due to the lack of
active targeting capability. In addition, owing to hemodynamics
and the interstitial fluid pressure of tumors, the passive targeting
efficiency of systemically administered sonosensitizer drugs to
tumor tissues is further diminished. Consequently, the pursuit of
a strategy that can precisely target tumor sites and increase the
efficiency of sonosensitizer accumulation within tumors has
become an imperative research objective.

To address the limited targeting efficiency inherent in
conventional therapeutic approaches, researchers have devised
a multitude of nanocarriers that leverage the altered cellular
properties of cancer cells. These nanocarriers are intricately
coupled with targeting ligands, such as peptides, proteins,
antibodies, or aptamers, which are designed to recognize
specific surface markers on cancer cells. The primary objective
of this strategy is to extend the drug half-life and increase the
precision of tumor-targeting capabilities (Shi et al., 2017).
Despite encouraging prospects, an expanding body of evidence
indicates that, on average, only approximately 0.7% of
nanocarriers successfully reach solid tumors, which
significantly limits the clinical efficacy of current nanocarrier
technologies (Wilhelm et al., 2016).

Magnetically actuated micro/nanorobots provide a promising
and innovative paradigm for drug delivery (Li et al., 2017; Wang
et al., 2021c). These systems amalgamate the advantages of previous
nanomedicines, which are characterized by high selectivity and
biocompatibility, with active and controllable locomotion
capabilities. This integration facilitates the controlled delivery of
nanomedicine directly to the tumor region. Compared with
traditional targeted delivery methods, magnetically actuated
micro/nanorobots demonstrate elevated precision in targeting
and increasing the utilization of administered drugs (Hu et al.,
2020; Schmidt et al., 2020; Zhou et al., 2021; Nguyen et al., 2023).
Our research group has previously developed various magnetic
actuation systems and validated drug delivery methods for the
treatment of various diseases, such as thrombus therapy,
osteoarthritis treatment and anti-infection therapy (Wang et al.,
2021d; Ma et al., 2022; Tang et al., 2022; Zhao et al., 2022; Wang L.
et al., 2023). Therefore, it is reasonable to believe that the
sonosensitizer can be actively delivered to the tumor site to
achieve enrichment by magnetic nanorobots.

Herein, a magnetically actuated sonodynamic nanorobot
drug delivery system employing an Fe3O4@SiO2-Ce6 (FSC)
nanorobot and magnetic actuation system was devised for
targeted tumor treatment (Scheme 1). The FSC nanorobot
consists of magnetic Fe3O4@SiO2-NH2 nanomaterials coupled
with the sonosensitizer Ce6 (Fe3O4@SiO2-Ce6). Under the
guidance of a magnetic field, FSC nanorobots can be
aggregated to collectives and actuated to move to the target
site, resulting in the active delivery of the sonosensitizer to the
tumor site. This process amplifies the effect of SDT facilitated by
Ce6, generating ROS to increase the cytotoxic impact on tumor
cells. The validation of these outcomes involved characterization
of the nanorobots, assessment of the sonodynamic ROS
production, locomotion of the magnetic nanorobot collectives,
and in vitro ovarian cancer cell therapy. The aim of this study was
to explore the efficacy of magnetically actuated sonodynamic
nanorobot collectives for ovarian cancer therapy and to further
expand their application prospects in other tumor treatments.

2 Materials and methods

2.1 Synthesis of FSC nanorobots

First, Fe3O4 (0.1 g) was dispersed in ethanol (60 mL),
deionized water (10 mL) and ammonium hydroxide solution
(1.0 mL) and sonicated for 40 min. Tetraethyl orthosilicate
(2.0 mL) was added, and the mixture was stirred for 24 h to
obtain Fe3O4@SiO2. Fe3O4@SiO2 (20 mg) was dispersed in
ethanol solution and functionalized with 3-
aminopropyltriethoxysilane (APTES, 1.5 mL) for 24 h. The
precipitate was collected with a magnet and washed several
times to obtain Fe3O4@SiO2-NH2. For Ce6 coupling, Ce6
(4.0 mg), EDC (23.0 mg) and NHS (13.8 mg) we. re dissolved
in dimethyl sulfoxide (4 mL), and Fe3O4@SiO2-NH2 (16 mL,
50 mg mL-1) was added to the mixed solution and stirred for
24 h. The reaction products were separated with a magnet and
washed several times to obtain Fe3O4@SiO2-Ce6 (FSC) for
further use.

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Zhou et al. 10.3389/fbioe.2024.1374423

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1374423


2.2 Characterization of FSC nanorobots

The microstructure of the FSC nanorobots was observed by
transmission electron microscopy (TEM) on a JEM-2100F
instrument. The valence states and elemental composition of the
FSC nanorobots were characterized by X-ray photoelectron
spectroscopy (XPS, ESCAlab250 instrument) and Fourier
transform infrared spectroscopy (FTIR), respectively. The
potential and hydrodynamic particle size were measured by
dynamic laser scattering on a Zeta Sizer system (Nano ZS90,
Malvern Instruments Ltd.). The magnetic properties were
evaluated by a vibrating sample magnetometer. The UV‒vis–NIR

absorption spectra of the Fe3O4@SiO2-NH2, Ce6 and Fe3O4@SiO2-
Ce6 nanoparticles were measured with a Shimadzu UV-3600
ultraviolet‒visible spectrophotometer.

2.3 In vitro ROS assay

DPBF experiment: A DMF solution (8 mM, 40 μL) containing
DPBF with an FSC nanorobot dispersion (150 μg mL-1, 2.96 mL)
was prepared and irradiated with low-intensity ultrasound
(1.0 MHz, 1.0 W cm-2, 50% duty cycle), and the change in the
absorption value at 419 nm was measured every 2 min with an

SCHEME 1
Schematic illustration of magnetically actuated sonodynamic nanorobot collectives to potentiate ovarian cancer therapy. (A) Synthetic procedure
for the magnetic Fe3O4@SiO2-Ce6 nanorobot (FSC nanorobot). (B) Magnetically actuated sonodynamic nanorobot collectives to potentiate ovarian
cancer therapy. FSC nanorobot collectives actively move to the tumor site via actuation by amagnetic field, which enables sonosensitizer delivery. Under
low-intensity ultrasound irradiation, sonosensitizers loaded with nanorobot collectives can generate reactive oxygen species (ROS) to increase the
cytotoxic effect on tumor cells.
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ultraviolet spectrophotometer for 10 min in total. ESR
experiment: TEMP (200 mM, 20 μL) was added to the FSC
nanorobot dispersion (150 μg mL-1, 20 μL) and Ce6 solution
(10 μg mL-1, 20 μL). After ultrasound irradiation (1.0 MHz,
1.0 W cm-2, 50% duty cycle, 2 min), the 1O₂ signal was
immediately detected by ESR. For control purposes, the
Ce6+TEMP, Ce6+TEMP + US, FSC + TEMP, and FSC +
TEMP + US groups were tested simultaneously.

2.4 Magnetic locomotion of FSC nanorobot
collectives

The magnetic nanorobot dispersion (2 mg mL-1, 1 mL) was
placed in a confocal dish on the platform of the magnetic
actuation system. Then, a rotating magnetic field (2 Hz) was
applied to make the nanorobots aggregate at one point. For the
locomotion of the nanorobot collectives, different biological
fluids were deployed in the custom-designed ‘R’, ‘O’, and ‘S’
channels of acrylic plates. The magnetic nanorobot dispersion
(2 mg mL-1, 20 μL) was added to the channels separately. By
adjusting the moving platform, the magnetic nanorobot could
be directed along a trajectory. The images were recorded by an
operating microscope (DOM-1001, RWD Life Science,
Shenzhen, China).

2.5 Cell culture and in vitro cytotoxicity assay

Mouse ovarian epithelial cancer cells (ID8) (Shanghai Institute
of Cells, Chinese Academy of Sciences) were precultured in 96-well
plates (1 × 104 cells/well) for 12 h and allowed to adhere. The
medium was then removed from each well, and the cells were
washed twice with phosphate buffer (PBS). Subsequently, Fe3O4@
SiO2-Ce6 nanoparticles at different concentrations (0, 100, 200,
400 and 800 μg mL-1) were dispersed in high-glucose DMEM
containing 10% foetal bovine serum (FBS), added to each well,
and incubated with the cells for 24 h and 48 h, respectively. The cells
were then washed with PBS, and a standard CCK-8 assay (100 μL,
VCCK8: VDMEM = 1: 9) was performed to detect cell viability, which
was measured on a microplate reader at a wavelength of 450 nm
after incubation for 1–2 h.

2.6 Intracellular ROS assay

ID8 cells (1 × 10³ cells/well) were seeded into confocal-specific
plates overnight. After the cells had completely adhered to the wall,
the cell medium was replaced, and the cells were treated with
Fe3O4@SiO2 and FSC for 12 h. Subsequently, the cells were
further exposed to US irradiation (1.0 MHz, 1.0 W cm-2, 50%
duty cycle, 5 min) and incubated with DCFH-DA (1:
1,000 dilution) for another 30 min. Then, the treated cells were
washed 3 times with PBS and imaged by fluorescence microscopy.
Correspondingly, the cells were collected and analysed
quantitatively for intracellular green fluorescence intensity by
flow cytometry (FACSCalibur; BD Biosciences).

2.7 Intracellular GSH and GSSG assay

ID8 cells were seeded in several 6-well plates for overnight. After
that, the cells were incubated with Fe3O4@SiO2 and FSC (400 μg mL-
1) for 12 h. Next, the cells were stimulated with or without US
(1.0 Wcm-2, 1.0 MHz, 50% duty cycle) for 5 min. After that, the cells
were washed with PBS, and were frozen and thawed 3 times. The
liquid supernatants were collected for GSH/GSSG detection using
the assay kit.

2.8 Intracellular BCA and MDA assay

ID8 cells were seeded in culture dishes for overnight and
randomly divided into four groups (control, Fe3O4@SiO2, FSC,
FSC + US). The cells were cultured for 12 h and then subjected to
US irradiation for 5 min. Subsequently, the cells were rinsed with
PBS. Cell samples treated for quantitative protein analysis with a
BCA protein assay kit. Then, the MDA assay kit reagents were
added according to the manufacturer’s instructions, and the
mixtures were heated in a boiling water bath at 100 °C for
15 min. After centrifugation at 12,000 rpm for 10 min, the
absorbance of the supernatant was measured with a
microplate reader at a wavelength of 532 nm. The MDA
content in each sample was calculated in terms of the unit
weight of protein content, and the results are presented
as μmol MDA/mg protein.

2.9 Efficacy of SDT with magnetic actuation
of FSC nanorobot collectives

ID8 cells were seeded in 6-well plates (1 × 105/well) and cultured
for 24 h. The cells were divided into the following experimental
groups: ① simple diffusion + US group; ② magnetic regulation +
US group. For the simple diffusion + US group, the FSC nanorobot
dispersion was applied to the nontumor cell area in the middle of the
round dish and allowed to freely disperse to the tumour cell area. In
the magnetic regulation + US group, the FSC nanorobot dispersion
was also applied to the nontumor cell area in the middle of the dish,
and the dispersion was then aggregated by a magnetic actuation
system and directed to the tumour cell area. US irradiation
(1.0 MHz, 1.0 W cm-2, 50% duty cycle, 5 min) was applied to the
tumour cell area, and the cells were incubated for 12 h. All treated
cells were digested with trypsin and stained with the Calcein-AM/PI
Kit for fluorescence microscopy.

2.10 Statistical analysis

For all the experiments conducted, we ensured that there were at
least three replicates included. The data obtained from these
experiments were presented as the mean value along with the
standard error of the mean (SEM). To assess the differences
between two groups, we employed the independent sample t-test.
Additionally, for comparisons among multiple groups, we used one-
way analysis of variance (ANOVA) followed by the Tukey post-test.
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In our analysis, statistical significance was denoted as p < 0.05, and
this was further specified as *p < 0.05, **p < 0.01, ***p < 0.001.

3 Results and discussion

3.1 Synthesis and characterization of
FSC nanorobot

A structural diagram of an FSC nanorobot is shown in
Figure 1A. TEM images illustrate that the FSC nanorobots had
robust spherical morphology, uniform size, and good dispersibility
(Figure 1B). The average hydrodynamic size was approximately
460 nm (Figure 1C), with no significant change observed after half a
month in a physiological environment, indicating excellent
dispersion stability (Figure 1D). Fourier transform infrared
spectroscopy revealed a characteristic peak at 1,697.533 cm-1 for

the -C=O of Ce6 in FSC (Figure 1E). X-ray photoelectron
spectroscopy (XPS) analysis was conducted to examine the
chemical composition and state of FSC. As shown in Figure 1F,
obvious diffraction peaks were observed at 711.3, 532.5, 399.3,
284.6 and 103.3 eV, which can be attributed to Fe2p, O1s, N1s,
C1s and Si2p, providing further confirmation that the FSC consist of
Fe, O, N, C, and Si. The UV absorption spectrum of FSC exhibited
characteristic absorption peaks of Ce6 at 401 nm and 656 nm,
confirming successful coupling (Figure 1G). The potential of
Fe3O4@SiO2 was 24.30 ± 2.2 mV. Upon coupling with Ce6, the
potential of FSC changed to 1.40 ± 0.39 mV (Figure 1H), indicating
that Ce6 was coupled with Fe3O4@SiO2. The vibrating
magnetization curve results demonstrated that FSC exhibited a
saturation magnetization of 38.45 emu g-1 in the high-field
region of 2000 Oe, facilitating effective magnetic separation under
the influence of an applied magnetic field and confirming its
desirable superparamagnetic properties (Figure 1I).

FIGURE 1
Structural characterization of Fe3O4@SiO2-Ce6 (FSC nanorobots). (A) Structure diagram of Fe3O4@SiO2-Ce6. (B) TEM images of Fe3O4@SiO2-
Ce6 nanoparticles. (C) Hydrodynamic size of Fe3O4@SiO2 and Fe3O4@SiO2-Ce6. (D) Hydrodynamic size change of Fe3O4@SiO2-Ce6 dispersed in saline
for 15 days. (E) FTIR spectra of Ce6, Fe3O4@SiO2, and Fe3O4@SiO2-Ce6. (F) XPS spectra of Fe3O4@SiO2-Ce6. (G)UV‒Vis-NIR spectra of Ce6, Fe3O4@SiO2,

and Fe3O4@SiO2-Ce6. (H) Zeta potentials of Fe3O4, Ce6, Fe3O4@SiO2, and Fe3O4@SiO2-Ce6. (I) Vibrating magnetization curves of Fe3O4@SiO2 and
Fe3O4@SiO2-Ce6. The insets show photographs of the Fe3O4@SiO2 and Fe3O4@SiO2-Ce6 solutions.
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3.2 In Vitro SDT effect of FSC nanorobot

We further examined the in vitro ROS production of Fe3O4@
SiO2-Ce6 (FSC nanorobot). The quantity of ROS in the four groups
was analyzed. The ESR spectra (Figure 2A) showed significant 1O2

generation under US irradiation in the Ce6 + US group and the FSC
nanorobot + US group compared to the groups not subjected to US
irradiation. Moreover, within a specific concentration range, the
production efficiency of 1O2 was found to be correlated with the
power intensity of US (Figure 2B). Simultaneously, DPBF acts as a
ROS probe: the generated ROS can react with DPBF, resulting in a
decrease in the characteristic absorption at 410 nm in the UV‒Vis
spectrum. The absorption peak of DPBF decreased with time under
US irradiation (1.0 MHz, 1.0 W cm-2, 50% duty cycle), indicating
favorable ROS generation performance (Figure 2C).

3.3 Targeted locomotion of magnetic FSC
nanorobot collectives

Next, to verify that magnetic FSC nanorobots can achieve
precise target locomotion, we conducted experiments with a
specifically designed permanent magnetic actuation system. The
magnetic actuation system consists of four permanent magnets and
a rotating motor, which can generate a rotating magnetic field and
gradient magnetic field simultaneously (Figure 3A). As shown in
Figure 3B, the nanorobots were first arranged into small strips under
the action of a static magnetic field after being placed in the magnetic
actuation system.When the permanent magnets were rotated, under
the combined action of the rotating magnetic field and gradient
magnetic field, the magnetic poles of the nanorobot chains attracted
each other to aggregate into collectives. In addition, we designed a
three-axis movable platform for positioning the samples. By
changing the relative position between the platform and the
magnetic actuation system, targeted locomotion of the magnetic
nanoparticle collectives was achieved.

We further conducted locomotion experiments on magnetic
FSC nanorobots in different biological solutions. As shown in
Figure 3C, the nanorobot solution was deployed in the ‘R’, ‘O’,

and ‘S’ channels containing normal saline, PBS and DMEM,
respectively. Under the control of a magnetic field, magnetic FSC
nanorobot collectives can achieve trajectory locomotion. All these
results indicated that the magnetic FSC nanorobots could achieve
target locomotion in biological fluids, providing a foundation for
subsequent targeted therapy of tumor cells.

3.4 The cellular oxidative stress induced by
FSC nanorobot

We further examined the production of intracellular ROS after
different treatments by fluorescence microscopy and flow
cytometry. The fluorescence signal derived from 2′,7′-
dichlorofluorescin diacetate (DCFH-DA) was used as a probe of
cellular oxidative stress levels. Figure 4A shows minimal
fluorescence in the control group, a modest increase in green
fluorescence in the Fe3O4@SiO2 and FSC nanorobot groups,
which may be due to the role of Fe3O4 in the Fenton reaction in
tumor microenvironment. And green fluorescence was significantly
increased in the FSC nanorobot group irradiated with US. This
observation was substantiated by the flow cytometry analyses shown
in Figure 4B. The fluorescence intensity trend was consistent with
that observed by fluorescence microscopy, suggesting the essential
role of Ce6 in sonodynamic therapy. Our findings indicate that FSC
nanorobots can modulate the tumour microenvironment, elevate
ROS levels, and thereby increase therapeutic efficacy.

Glutathione (GSH) and oxidized glutathione (GSSG) are major
components of the redox homeostasis system in cells (Lei et al., 2022;
Zhu et al., 2021). As displayed in Figure 4C, the GSH levels of the
cells in the Fe3O4@SiO2 and FSC groups exhibited a slight decrease,
which may be due to the low ROS production deplete the GSH.
Moreover, FSC + US significantly reduced the GSH compared with
other groups, revealing the efficient GSH depletion ability. The ratio
of GSH/GSSG is considered a powerful index of oxidative stress
(Wang D. et al., 2023; Liu et al., 2023). The results showed that in the
Fe3O4@SiO2 and FSC treatment groups, the GSH/GSSG ratio was
slightly varied, while it was greatly decreased in FSC + US group
(Figure 4D), altogether confirming the superiority of FSC

FIGURE 2
Sonodynamic properties of Fe3O4@SiO2-Ce6 (FSC nanorobots). (A) ESR signals of TEMP at different solutions. (B) ESR of Fe3O4@SiO2-Ce6 solution
irradiated by US (different powers). (C)UV−vis spectra of Fe3O4@SiO2-Ce6 solution containingDPBF and further exposed toUS irradiation (power density,
1.0 Wcm−2; duty cycle: 50%) for different durations (0, 2, 4, 6, 8 and 10 min).
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sonodynamic therapy. Malondialdehyde (MDA) can also be used as
a stable marker to evaluate lipid peroxidation (Zhu et al., 2021). The
MDA level in each group was opposite to GSH, FSC + US increased
significantly (Figure 4E), which illustrates that FSC nanorobots
induce sonodynamic therapy associated with lipid peroxidation.

3.5 In vitro augmented SDT efficacy of
FSC nanorobot

Inspired by the excellent ability of the FSC nanorobot to
generate ROS under low-intensity ultrasound excitation, we next
evaluated the biosafety and the in vitro SDT efficacy of the FSC
nanorobots in ID8 cells. Initially, the cytotoxicity of the FSC

nanorobots was evaluated using the CCK-8 assay. At a
concentration of 800 μg mL-1, cell viability remained
approximately at 95%, highlighting the favorable biocompatibility
of FSC nanorobot within the range of 0–800 μg mL-1 in ID8 cells
(Figures 5A,B). Subsequently, we investigated the efficacy of SDT
in vitro. The experimental findings demonstrated a decrease in cell
viability in the presence of the FSC nanorobot upon US stimulation
(Figure 5C). Consistent results were corroborated through calcein-
AM/PI staining. Fluorescence microscopy revealed a noteworthy
increase in the red signal intensity following US stimulation
(Figure 5D). Collectively, these results suggest that after
incubation with FSC nanorobots for 24 h, tumour cells can be
effectively killed through US stimulation (1.0 MHz, 1.0 Wcm-2,
50% duty cycle, 5 min).

FIGURE 3
Magnetically actuated locomotion of FSC nanorobot collectives. (A) Schematic diagram of the magnetic actuation system. (B) Process of
magnetically actuated FSC nanorobot aggregation. (C) Trajectory locomotion of magnetic FSC nanorobot collectives in normal saline, PBS, and DMEM.
Scale bars indicate 3 mm.
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FIGURE 4
(A) Fluorescence images of ID8 cells stained with DCFH-DA after different treatments (control, Fe3O4@SiO2 only, Fe3O4@SiO2-Ce6 (FSC) only, and
Fe3O4@SiO2-Ce6 with US irradiation). The scale bars indicate 25 μm. (B) Results of quantitative flow cytometry analysis of ROS production in ID8 cells
stained with DCFH-DA after different treatments. (C) Relative GSH content in ID8 cells after different treatments. (D) The ratio of GSH/GSSG. (E) Relative
MDA content in ID8 cells.
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3.6 Efficacy of magnetic FSC nanorobot for
targeted tumor cell therapy

We further studied the efficacy of magnetic FSC nanorobots for
targeted tumour cell therapy. Two experimental groups were treated
with or without magnetic actuation. As shown in Figure 6A, the cell
dishes were divided into tumour cell areas and blank areas. The FSC
nanorobot dispersion was added to the blank area. In the control
group, no magnetic field was applied, and the nanorobots relied on
passive diffusion to reach the tumour cell area, simulating the
traditional systemic drug administration strategy. For the

magnetic actuation group, after the FSC nanorobot dispersion
was added to the blank area, a magnetic field was applied to
aggregate the nanorobots to one point and then direct the
nanorobot collectives to the tumour region. Both groups were
subsequently subjected to low-intensity ultrasound of the tumour
cell area. The results indicated that only a few FSC nanorobots
arrived at the tumour region in the control group, while in the
magnetic actuation group, nearly all the FSC nanorobots reached the
tumour region (Figure 6B). The SDT results further confirmed the
enrichment of Ce6 in the tumour area by the magnetic actuation
strategy. As shown in Figure 6C, more tumour cell death occurred

FIGURE 5
SDT of FSC nanorobot collectives. (A) Relative viability of ID8 cells after incubation with high concentrations (0, 100, 200, 400, and 800 μg mL-1) of
the FSC nanorobots for 24 h and 48 h (B). (C) Relative viability of ID8 cells after different treatments, including control (without treatment), Fe3O4@SiO2

only, Fe3O4@SiO2-Ce6 (FSC) only, and Fe3O4@SiO2-Ce6combined with US irradiation. (D) Fluorescence images of ID8 cells after different treatments,
stained with PI (red fluorescence) and calcein-AM (green fluorescence). The scale bars indicate 25 μm.
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under US irradiation. The enhanced sonodynamic effect highlights
the ability of FSC nanorobots to facilitate targeted drug delivery and
increase the therapeutic efficacy of SDT.

4 Conclusion

In summary, we have proposed a magnetically actuated
targeting strategy to increase the therapeutic efficacy of SDT and
applied it to ovarian cancer therapy in vitro as a proof of concept. To

validate this concept, a magnetic sonodynamic nanorobot coupled
with Ce6 was fabricated. In vitro targeting experiments
demonstrated the controlled movement of FSC nanorobot
collectives under a magnetic field, allowing directed enrichment
in the target area. This approach facilitated SDT, resulting in the
effective eradication of tumor cells under low-intensity US
irradiation. However, this study has certain limitations, including
the need for further verification of in vivo biosafety and the
enrichment rates and efficacy of tumor targeting. This study
successfully engineered magnetically actuated targeting

FIGURE 6
Magnetic FSC nanorobots for targeted tumor cell therapy. (A) Schematic illustration of the enhanced SDT effect of magnetic regulation by the FSC
nanorobots. (B) Process of targeted tumor cell therapy with magnetic FSC nanorobot collectives. (C) Fluorescence images of the simple diffusion + US
and magnetic actuation + US approaches to targeting FSC nanorobots to tumour cells, which were stained with PI (red fluorescence) and calcein-AM
(green fluorescence). The scale bars indicate 50 μm.
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multifunctional composite nanorobots, achieving increased
sonodynamic effects. This strategy provides a new approach for
establishing safe and effective targeted therapies for ovarian cancer.
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