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Modulating the catalytic activity of acyl-ACP thioesterase (TE) is an important
biotechnological target for effectively increasing flux and diversifying products of
the fatty acid biosynthesis pathway. In this study, a directed evolution approach
was developed to improve the fatty acid titer and fatty acid diversity produced by
E. coli strains expressing variant acyl-ACP TEs. A single round of in vitro directed
evolution, coupled with a high-throughput colorimetric screen, identified
26 novel acyl-ACP TE variants that convey up to a 10-fold increase in fatty
acid titer, and generate altered fatty acid profiles when expressed in a bacterial
host strain. These in vitro-generated variant acyl-ACP TEs, in combination with
31 previously characterized natural variants isolated from diverse phylogenetic
origins, were analyzed with a random forest classifier machine learning tool. The
resulting quantitative model identified 22 amino acid residues, which define
important structural features that determine the catalytic efficiency and
substrate specificity of acyl-ACP TE.
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1 Introduction

Human civilization has been enabled by our ability to harness and uniquely utilize
outputs from biological systems (Holdren and Ehrlich, 1974). Via the domestication of
animal, plant and microbial life forms (Stetter et al., 2017), we have developed technologies
that support the ability of the human species to colonize nearly all niches that are available
on the earth, and we are now contemplating technologies to colonize niches beyond the
confines of our planet. Paramount to the growth of human civilization has been the ability
to have ample food supply and the ability to harness energy from the environment that
supports these activities. Since the start of the industrial revolution in the 18th century, with
the invention of the steam engine, we have become increasingly dependent on the oxidation
of fossil carbon, first in the form of coal, and subsequently liquid (i.e., oil) and gaseous
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(i.e., natural gas) forms of fossil carbon. In parallel to these energy-
generating carbon-oxidation processes, we have developed
technologies that convert fossil carbon to materials that support
our modern forms of life (i.e., the petrochemical industry).

Over the past 250 years, these activities have increasingly
disrupted the earth’s ecological carbon-balance that has taken
millions of years to reach equilibrium. Thus, we now face the
increasing challenge of carbon in the atmosphere (CO2, CO,
CH4), which contributes to global warming and climate change
(Andrew, 2020), and the earth’s land and ocean environments are
increasingly polluted by non-degradable carbon polymers (e.g.,
single use plastics) (Barnes, 2019). In response, there have been
increasing research efforts to adapt or engineer biological systems as
platforms for generating biorenewable chemicals or biofuels
generated from photosynthetically fixed CO2 (Nikolau et al.,
2008; Chandel et al., 2020). Although global biological
photosynthesis can fix sufficient quantities of atmospheric CO2 to
meet current needs for fuels and chemicals, most of that biological
carbon occurs in the form of lignocellulosic material (Limayem and
Ricke, 2012). But unlike fossil carbon, which is chemically highly
reduced carbon that lacks oxygen, and is thus energy dense,
lignocellulosic carbon is partially oxidized, and thus has lower
energy density.

Fatty acids, in contrast, contain less oxygen and are energy
dense, and are therefore more similar to fossil carbon feedstocks,
particularly petroleum. Therefore, there’s been considerable interest
in converting lignocellulosic carbon (e.g., sugars) to fatty acids,
chemically removing oxygen and increasing the energy density of
the product. In biological systems, fatty acids are stored as
triacylglycerol in plant seeds, single cell microbes, animal
adipocytes or milk products. Societal consumption of these
natural products occurs not only via the food supply, but also as
industrial feedstocks of ingredients such as soaps, detergents,
surfactants, lubricants, cosmetics, and pharmaceuticals (Ohlrogge,
1994; Thelen and Ohlrogge, 2002; Dyer et al., 2008; Parsons and
Rock, 2013). With the rising cost of petroleum and growing
environmental concerns about oxidizing large amounts of fossil
carbon, the beginning of the 21st century has seen increasing interest
in using biological fatty acids for the production of biofuels or
chemical feedstocks (Durrett et al., 2008; Nikolau et al., 2008;
Santner et al., 2023).

In plants and bacteria, fatty acid biosynthesis is catalyzed by a
Type II fatty acid synthase (FAS), using acetyl-CoA and malonyl-
ACP as substrates. This process proceeds via the iterative cycle of
four reactions (condensation-reduction-dehydration and
reduction), which together elongate the acyl-chain by 2-carbon
atoms per cycle. The substrate intermediates throughout this
process are esterified to the thiol group of a phosphopantetheinyl
cofactor, carried by acyl carrier-protein (ACP). This elongation
process can be terminated by either the transacylation of the
acyl-chain to a glycerol backbone to begin the process of
membrane glycerolipid assembly, or by the hydrolysis of the
thioester bond of acyl-ACP, catalyzed by acyl-ACP thioesterase
(TE), to release a free fatty acid. Many acyl-ACP TEs have been
isolated and characterized, and they exhibit different fatty acyl chain
length specificities, and thus play a crucial role in determining the
chain lengths of the fatty acid products generated by plant and
bacterial FAS systems (Pollard et al., 1991; Voelker et al., 1992;

Leonard et al., 1998; Serrano-Vega et al., 2005; Lennen and Pfleger,
2012; Pfleger et al., 2015).

Four oil seed crops (i.e., palm, soybean, canola, and sunflower)
generate 80% of the world’s 220 million metric tons of vegetable
oils (https://ourworldindata.org/grapher/vegetable-oil-production).
These oils serve as feedstocks for both dietary needs and as
precursors for industrial applications (Kumar et al., 2016; Savva
and Kafatos, 2016; Huang et al., 2021). The fatty acids obtained from
these oils have relatively narrow chemical diversity, primarily
providing fatty acids of 16- and 18-carbon chain lengths with
different degrees of unsaturation (i.e., 0 to 3 carbon-carbon
double bonds). In contrast, seeds of a few discrete phylogenetic
plant clades (e.g., palm, coconut and cuphea) are the source of the
world’s 12 million metric tons of lauric acid-containing oils, which
are the primary feedstocks for the soap and detergent industry
(Smith, 2019).

In more recent years, with better understanding of the regulation
of the fatty acid biosynthesis pathway, and the rapid advances in
synthetic biology, there has been intense interest in the metabolic
engineering of this pathway for the production of fatty acids of
different chain lengths or different fatty acid derivatives (Handke
et al., 2011; Liu et al., 2011; Zhang et al., 2011; Lennen and Pfleger,
2012; Ranganathan et al., 2012; Zhang et al., 2012; Heil et al., 2019).
These efforts have focused on increasing the titers and chemical
diversity of fatty acids, and have concentrated on using three
biological chassis: plant seeds (Dehesh et al., 1996; Inckemann,
2022), bacteria (Pfleger et al., 2015; Adams, 2016) and yeast
(Gajewski et al., 2017; Schindler, 2020). Because of genetic
tractability, the bacterial chassis has primarily focused on
Escherichia coli, and two approaches for increasing fatty acid
titers have been demonstrated, either independently or in
combination. One is the overexpression of acyl-ACP TEs, which
release free fatty acids from the FAS system, and another is the
elimination of the fatty acid β-oxidation pathway via mutations of
either fadD (acyl-CoA synthetase) or fadE (acyl-CoA
dehydrogenase) (Lennen and Pfleger, 2012; Heil et al., 2019).

The expression of acyl-ACP TEs in bacterial systems confers
two novel attributes. Based on the substrate specificity of the
acyl-ACP TE that is used, one can control the acyl chain lengths
of the fatty acids that the FAS system will produce (Voelker and
Davies, 1994; Jing et al., 2011). In addition, expression of acyl-
ACP TEs enhances fatty acid titer of the resulting strain by
creating a new metabolic product-sink for the FAS pathway, and
by depleting the in vivo long chain acyl-ACP pool size, which
relieves feedback inhibition of upstream enzymes in the FAS
pathway (Jiang and Cronan, 1994; Heath and Rock, 1996;
Lennen and Pfleger, 2012). These attributes can be optimized
by controlling the expression of acyl-ACP TEs by using
expression plasmid vectors with different promoter strengths,
and/or different plasmid copy numbers (Steen et al., 2010;
Youngquist et al., 2012; Zhang et al., 2012). Thus, prior
studies have used acyl-ACP TEs sourced from a variety of
different natural sources, each of which has evolved for that
organism’s environmental niche. However, that natural
evolutionary adaptation may not be optimal for the
envisioned industrial application in a heterologous host, such
as an E. coli strain bioengineered for increased fatty acid titers or
production of a fatty acid of a specific acyl chain length.
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Limited structural information and a not well-understood
catalytic mechanism for acyl-ACP TEs (Mayer and Shanklin, 2005;
Serrano-Vega et al., 2005; Feng et al., 2017; Jing et al., 2018a) make it
challenging to increase the activity of this enzyme by rational design.
Directed evolution is an alternative approach that mimics the natural
evolutionary process at the lab scale, and provides a strategy to identify
and exploit genetic space that natural evolution may not have
explored (Dougherty and Arnold, 2009; Turner, 2009; Cobb et al.,
2013). Directed evolution involves iterative rounds of random
mutagenesis and screening for the desired biological properties.
This strategy has been successfully applied on a number of
biocatalysts to tailor their functions, including substrate specificity,
catalytic turnover, and thermostability (Nair and Zhao, 2008; Zha
et al., 2008; Turner, 2009), including acyl-ACP TEs (Feng et al., 2017;
Hernández Lozada et al., 2018).

In this study, directed evolution was undertaken to optimize the
catalytic efficiency of acyl-ACP TE with the goal of improving fatty
acid titers in microbes. Specifically, we selected six previously well-
characterized plant acyl-ACP TEs as parental enzymes that display
diverse catalytic efficiencies and substrate specificities (Jing et al.,
2011), and used a PCR-based approach to generate a library of acyl-
ACP TE variants. In vivo screening of this library for individual
variants that express higher fatty acid titers enabled the isolation and
characterization of novel acyl-ACP TEs that exhibit improved
catalytic efficiency, as compared to the initial parental acyl-ACP
TEs. These novel enzymes were found to also express diverse
substrate specificities relative to the acyl-chain length of the
preferred acyl-ACP substrate. Taking advantage of these acyl-
ACP TE variants and other functionally characterized acyl-ACP
TEs reported in our prior studies (Jing et al., 2011; Jing et al., 2018b),
we implemented and optimized a random forest-directed approach
that ranked the importance of each residue in determining acyl-ACP
TE catalytic efficiency and substrate specificity, providing a
quantitative basis for additional directed evolution strategies.

2 Materials and methods

2.1 Design of mutagenesis oligonucleotides

Amino acid sequences of the six acyl-ACP TEs that were used in
this study are: CvFatB1 (AEM72522.1) and CvFatB2 (AEM72523.1)
from Cuphea viscosissima; CnFatB2 (AEM72520.1) and CnFatB3
(AEM72521.1) from Cocos nucifera; UaFatB1 (AAB71731.1) from
Ulmus americana; and CpFatB1 (AAC49179.1) from Cuphea
palustris. Supplementary Figure S1 shows comparisons of the
sequences of these 6 TE proteins (without the N-terminal
chloroplast targeting sequences). Random mutagenesis was used to
generate 2–8 possible substitutions at 98 selected positions. These
98 positions were primarily selected for convenience in the design of
the primers used to reassemble the acyl-ACP TE variant library. The
variant library was generated by PCR reassembly of mutant acyl-ACP
TEs by using 30 DNA oligonucleotide primers (labeled as M1-1 to M1-
10, M2-1 to M2-10, and M3-1 to M3-10) that incorporated mixed
nucleotides at each of the 98 selected positions (Supplementary Table
S1). The ends of each of these 30 oligonucleotide primers overlapped
with the adjoining oligonucleotide sequences by 22–25 nucleotides; the
Tmvalues for these overlapping regions were in the range of 54°C–56°C.

In addition, the 5′- and 3′-ends of oligonucleotides M1-1 and M3-10
encoded BamHI and EcoRI restriction sites, respectively. These
characteristics enabled PCR-based reassembly of the entire acyl-ACP
TE sequence into a single DNA fragment, which contained terminal
BamHI and EcoRI restriction sites for subsequent cloning purposes.

2.2 PCR-assembly of the variant acyl-ACP
TE library

The acyl-ACP TE-encoding variant library was generated by
assembling the 30 oligonucleotide primers by two rounds of PCR.
The first round of PCR was conducted in a 50 μL reaction mix
containing 0.15 μM of each primer (primers M1-1 to M1-10, M2-1
to M2-10, and M3-1 to M3-10), commercial Taq PCR buffer (New
England Biolabs, M0273), 0.4 mM dNTP, 3 mM MgCl2, and 1 Unit
of Taq DNA polymerase (New England Biolabs, United States). The
thermal cycling program for the first round of PCR was initiated by
incubating the mix at 95°C for 3 min, and then 25 cycles of
incubations at 95°C for 15 s, 50°C for 20 s and 68°C for 40 s; the
final extension step was at 68°C for 5 min. Two-μL aliquots of
product from the first round of PCR were used as the template for
the second round of PCR. This second round of PCR consisted of a
50 μL reaction mixture containing 0.2 μM of primer M1-1 and
0.2 μM of primer M3-10, commercial Taq PCR buffer (New
England Biolabs, M0273), 0.2 mM dNTP, 1.5 mM MgCl2 and
1 Unit Taq DNA polymerase. The thermal cycling program
began at 95°C for 3 min, and then 28 cycles of 95°C for 15 s,
60°C for 20 s and 68°C for 40 s, and a final 5-min extension step
at 68°C.

Products from the second round of PCR were fractionated by
electrophoresis in a 1% agarose gel, and the 950 bp DNA fragment
was purified with the QiaQuick gel extraction kit (Qiagen, Valencia,
CA, United States). The recovered DNA was digested with BamHI
and EcoRI, and cloned into the corresponding restriction sites of the
vector, pUCHisGm (Supplementary Figure S2); this plasmid was
specifically modified from pUC57 in this study. In this vector, the
expression of the acyl-ACP TE sequence is under the transcriptional
control of the lacZ promoter, and the acyl-ACP TE coding sequence
is fused at the N-terminus to a 6x His-tag, and at the C-terminus it
was fused to a gentamicin resistant gene (GmR) that is separated
from the acyl-ACP TE coding sequence via a dodecapeptide flexible
linker-sequence, [(Gly)3-Ser]3 (Chen et al., 2012). The resulting
mixture of plasmid vectors containing the variant acyl-ACP TE
ORFs were transformed into E. coli K27 by electroporation. Hence,
each recovered colony from this transformation event carried a
plasmid that has the potential of expressing an individual variant
acyl-ACP TE. As controls, the DNA fragments of the six mature
wild-type acyl-ACP TE-coding sequences (UaFatB1, CpFatB1,
CvFatB1, CvFatB2, CnFatB2, and CnFatB3) were also cloned into
pUCHisGm and transformed into E coli strain K27.

2.3 Colony screening of acyl-ACP TE
variants by Neutral Red staining

The initial screening of the acyl-ACP TE variants was conducted
on solid media containing the pH indicator stain, Neutral Red.
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These 10-cm diameter Petri plates contained M9 minimal medium
(50 mM Na2HPO4, 20 mM KH2PO4, 10 mM NaCl, 20 mM NH4Cl,
2 mM MgSO4, and 0.1 mM CaCl2) solidified with 15 g/L agar and
supplemented with 0.4% glucose, 100 mg/L carbenicillin, 2.5 mg/L
gentamicin, 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG),
and 100 ppm Neutral Red dye. Each Neutral Red plate was
inoculated with an appropriate amount of the electroporation-
transformation mixture so that each plate supported the growth
of 300–500 colonies. Upon inoculation these plates were incubated
at 30°C for 3 days, and colonies that showed the most intense red
color were selected for further characterizations.

2.4 Analysis of fatty acids by gas
chromatography-mass spectrometry

Intensely red-staining colonies were selected from the Neutral
Red plates, inoculated into 0.7 mL of LBmedium supplemented with
100 mg/L carbenicillin, and cultured overnight at 30°C at a 250 rpm
agitation rate. A 0.1 mL aliquot of the overnight culture was used to
inoculate 2 mLM9medium supplemented with 2% glucose, 100 mg/
L carbenicillin and 0.1 mM IPTG in 16-mL culture-tubes. After
incubating at 30°C with agitation at 250 rpm for 48 h, a 1.5 mL
aliquot of the culture was used for fatty acid extraction. Following
the addition of 50 μg heptanoic acid (7:0), 50 μg undecanoic acid
(11:0), and 100 μg heptadecanoic acid (17:0) (Sigma-Aldrich, St.
Louis, MO, United States) as internal standards, the mixture was
acidified with 0.5 mL of 1 M HCl, and 4 mL chloroform-methanol
(1:1 vol/vol) was used to extract and recover the fatty acids from the
culture. After vortexing for 10 min, and centrifugation at 3000 g for
4 min, the lower chloroform phase was passed through an
anhydrous MgSO4 column to remove trace amounts of water,
and the volume of the recovered solution was reduced to
approximately 0.2 mL by evaporation under a stream of N2 gas.
The samples were subjected to fatty acid analysis by GC-MS (Jing
et al., 2011). Control fatty acid profiles produced by E. coli cultures
that harbored the non-modified pUCHisGm vector were subtracted
from the fatty acid profiles produced by each acyl-ACP TE variant.

2.5 Statistical analysis, random forest
classification and model performance
prediction

Fatty acid titer and composition data obtained with each acyl-
ACP TE variant were assessed by analysis of variance (ANOVA) and
post hoc Tukey’s Honestly Significant Difference (HSD) tests using
JMP, Version 15 (SAS Institute Inc., Cary, NC). Principal
Component Analysis (PCA) was performed using the prcomp ()
function in the R/stats package and 95% confidence ellipses were
constructed using the dataEllipse function in the R/car package (Fox
and Weisberg, 2011).

For the machine learning approach, the random forest classifier
was applied to calculate the relative importance of individual amino
acid residues in determining the substrate specificity of acyl-ACP TE
(Wang et al., 2012; Basu et al., 2017; Luttrell et al., 2019). The
strategy used sequence variants of acyl-ACP TE enzymes, whose in
vivo catalytic capabilities were quantitatively evaluated in E. coli. The

instances used to construct the random forest classifier included the
comparison of substrate specificity (response) and sequence
variation (feature) between any two acyl-ACP TEs
(Supplementary Figure S4). The features of the classifier were
defined based on the multiple sequence alignment among all
acyl-ACP TE variants and the sequence variation between any
two acyl-ACP TEs was represented as a vector using a binary
scoring method, where the value “0” is assigned at an amino acid
position if two acyl-ACP TEs have the same residue, and the value
“1” is assigned if they have different residues at that position
(Supplementary Figure S4).

The responses (i.e., the pairwise comparison of substrate
specificities) were binary scores defined based on the clustering
analysis of fatty acid profiles. The fatty acid profiles were first
normalized so that the average concentrations of all individual
fatty acids were mathmetically converted to a value of 0, and the
associated standard deviation was converted to a value of 1. Next,
Ward’s hierarchical clustering analysis (Ward, 1963) was performed
based on the Euclidean distances of the scaled fatty acid profiles,
using the hclust function in the R/stat package (R core team, 2020).
The resultant dendrogram was pruned to determine the enzyme
cluster membership by the cutreedynamic function using the
method “hybrid” in the R package “dynamicTreeCut” (Langfelder
and Horvath, 2008). Any 2 TEs belonging to the same cluster were
deemed to have similar substrate specificities and assigned the value
“0”. Acyl-ACP TE pairs belonging to different clusters were
categorized as having different substrate specificities and assigned
the value “1” (Supplementary Figure S4).

Random forest classification models were constructed using the
R package, “ranger” (Wright and Ziegler, 2017). The training phase
included the construction of 500 decision trees using gini impurity
(i.e., the probability of misclassifying the substrate specificity
relationship between two acyl-ACP TEs) as the node-split criteria
for each tree (Guyon and Elisseeff, 2003). The prediction of a
random forest model is made by pooling the predictions from all
trees. Feature importance scores for each residue position of the
enzyme, including a randomly-generated position (i.e., a control
feature), were calculated based on the total decrease in node gini-
impurity averaged over the 500 trees. These calculations provide a
quantitative measure of the importance of each residue in classifying
the enzyme pairs into two classes, i.e., the pair of enzymes that each
express the same or different catalytic capabilities. The importance
scores and the associated p-values were calculated using the
importance_pvalues function in the “ranger” package. The
p-values were corrected across all residues by controlling the false
discovery rate at <5% (Benjamini and Hochberg, 1995). To account
for the randomness involved in the classifier construction, the
random forest classifier was implemented ten times with the
same dataset, and the average importance scores were calculated
at each of the residue positions of the enzyme. The reported p-value
for each position is presented as the maximum value of the ten
classifiers.

To further refine the search for the important residue positions
that determine enzyme substrate specificity, an incremental feature
selection approach was used to identify the random forest classifier
with a minimum number of features, but having an optimal
predictive performance for substrate specificity. Briefly, the
residue positions were ranked in descending order based on their
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importance scores. For incremental feature selection, an initial
random forest model was constructed using the two residue
positions with the highest importance scores as the features.
Additional models were subsequently constructed by iteratively
adding one position based on the importance score rank to the
initial model. We then applied a ten-fold cross-validation to evaluate
the predictive performance of the models. The predictive
performance of each model was evaluated by the metrics of
recall, specificity, and Matthews Correlation Coefficient (MCC).
We define the enzyme pairs displaying the same substrate
specificity as a negative instance (i.e., having a binary response
score of 0), and the enzyme pairs displaying different substrate
specificities as a positive instance (i.e., the binary response score
being 1). The three evaluating metrics were calculated based on the
number of true positives (TP), number of false negatives (FN),
number of true negatives (TN), and number of false positives (FP) in
a classification model, using the following formula:

Recall � TP
TP + FN

Specificity � TN
TN + FP

MCC � TP × TN( ) − FP × FN( )
�����������������������������������
TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )√

This incremental feature selection calculation was iterated
20 times, and the average values of recall, specificity, and MCC
were deduced. The model with the highest MCC value is considered
as the optimal model, and the residue positions included in this
model were identified as the most significant residues that influence
the enzyme’s substrate specificity. The R scripts used for hierarchical
clustering analysis of fatty acid profiles, random forest classification
and incremental feature selection strategy are available at: https://
github.com/ketingchen/Acyl_ACP_TE_MachineLearning.

3 Results

3.1 Sequence polymorphisms encompassed
by the acyl-ACP TE variant library

Six parental acyl-ACP TEs (i.e., CnFatB3, CvFatB1, CnFatB2,
UaFatB1, CvFatB2, and CpFatB1) (Supplementary Figure S1) were
selected to initiate the directed evolution study because prior
characterizations had identified that these enzymes express
diverse substrate specificities and generate diverse in vivo fatty
acid titers upon expression in E. coli (Jing et al., 2011). The
directed evolution strategy implemented herein generated variant
enzymes that were initially screened for increased fatty acid titers in
E. coli. Ninety-eight sequence polymorphisms (i.e., residue
variations) that occur among the six parental acyl-ACP TEs were
randomly recombined in vitro by a PCR-based reassembly of the
acyl-ACP TE-coding sequences (See Methods).

An initial pilot study evaluated the diversity of the acyl-ACP TE
sequences recoverable from the constructed variant library. In this
pilot experiment, 47 colonies were randomly chosen from the initial
transformants without the Neutral Red selection for enhanced
fatty acid accumulation, and the acyl-ACP TE sequences were

determined from the recovered plasmids. The sequences of these
47 variant acyl-ACP TEs all differ from each other and from the six
parental acyl-ACP TE sequences that went into the design of the
variant library. However, only two of the reassembled acyl-ACP TE
sequences encode a fully translatable, full length acyl-ACP TE
protein. The majority of the recovered mutants in this small sub-
sample contained nonsense mutations (e.g., premature stop codon),
or frame shifts due to an insertion or deletion of a single nucleotide.
These are likely due to mis-alignments during PCR assembly.

3.2 Neutral Red colony-staining screen to
identify hyperactive acyl-ACP TEs

Prior studies established that the E. coli strain K27 host used to
propagate the variant acyl-ACP TE library, which carries a mutation
in acyl-CoA synthetase (fadD), results in the over-production of free
fatty acids (Voelker and Davies, 1994). Indeed, when expressed in
this strain there is a direct relationship between the levels of acyl-
ACP TE activity and the titer of free fatty acids produced (Jing et al.,
2018a; Jing et al., 2018b). Therefore, the acyl-ACP TE variant library
was bulk screened by growing transformants on media plates
supplemented with the pH indicator dye, Neutral Red. Because
the higher accumulation of free fatty acids acidifies the media, the
Neutral Red dye is a gauge of fatty acid accumulation within
individual colonies. Figure 1A shows colonies on a typical
Neutral Red-containing plate. The majority of the recovered
colonies (−98%) displayed a light red/pink color, but about 2% of
the colonies exhibited a more intense red color, indicative of
acidification due to increased fatty acid accumulation.

Based on this rationale, we initially selected 133 dark red-staining
colonies and 77 light red/pink colored colonies and determined the fatty
acid titers generated by these strains. Among the 133 dark red-staining
strains, 75% produced more than 600 µM of fatty acids, 50% produced
more than 1000 µM of fatty acids, and 25% produced even more,
reaching levels greater than 1200 µM of fatty acids (Figure 1B). In
contrast, the majority of the strains identified as light red/pink colored
colonies produced <100 µM of fatty acids; the maximum amount of
fatty acid produced by these light red/pink colonies was 260 µM
(Figure 1B). These results confirm that there is a positive correlation
between the intensity of the color produced by Neutral Red staining of
colonies and the fatty acid titers generated by these strains.

Ultimately, approximately 30,000 colonies were screened, which
resulted in the selection of 480 strains that were expected to express a
higher fatty acid titer based on enhanced Neutral Red staining
(Supplementary Table S2). The fatty acid titers of these strains
were determined and compared to the titers of the strains expressing
the original six parental acyl-ACP TEs that were used as guides for
the design of the acyl-ACP TE variant library. The fatty acid titer of
the strains expressing these parental acyl-ACP TEs range between
100 μM and 900 µM (Figure 2, green data bars). Among the
480 colonies that were selected with the Neutral Red colony-
staining assay, 151 expressed a fatty acid titer that is higher than
600 μM, ranging up to a maximum of 1700 µM (Supplementary
Table S3). These titers are between 4- and 15-fold higher than five of
the parental acyl-ACP TEs. Even compared to the most productive
parental acyl-ACP TE (i.e., CpFatB1), the titer expressed by the
variant acyl-ACP TEs are nearly 2-fold higher (Figure 2).
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3.3 Sequences of acyl-ACP TE variants

The 174 acyl-ACP TE variants that expressed the highest in vivo
fatty acid titers (ranging between 500 μM and 1700 µM) were
sequenced. These sequences identified 26 distinct acyl-ACP TE
variant proteins (Supplementary Figure S3). One of these variant

proteins, TEGm162, recurred 147 times in the sequenced collection,
TEGm204 was recovered 3 times, and TEGm198 was recovered twice;
the remaining 22 sequences occurred uniquely in this collection
(Supplementary Tables S2, S3). None of these recovered sequences
identified by the Neutral Red staining screen were included among the
original 47 randomly selected control sequence variants that were

FIGURE 1
Efficacy of the Neutral Red plate screening assay. (A) Colonies expressing acyl-ACP TE variants were grown at 30°C for 3 days on Petri plates with
media supplemented with Neutral Red dye. The colonies displaying a more intense red color are indicated by arrows. (B) Box-and-whisker plot of fatty
acid titer of cultures that were inoculated from “dark-red” (n = 177) and “light-red” (n = 77) colonies. t-test p-value <0.01.

FIGURE 2
Fatty acid titers of six parental acyl-ACP TEs (green data-bars) and representative acyl-ACP TE variants (blue data-bars and red diamond data-points).
Data-bars represent fatty acid titer data and are presented as µmol/L (data bars) and as mg/L (red-diamond data-points).
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isolated without the Neutral Red-staining screen. Hence, these findings
indicate that the Neutral Red staining screen has strong selection
capability for acyl-ACP TE variants that express higher titers of fatty
acids. The collective average of the fatty acid titers of the
147 independently-isolated TEGm162 variants was 1170 ± 210 μM,
and the average for the three TEGm204 variants was 1100 ± 140 µM.
These titers are −30% higher than the most effective parental acyl-ACP
TE (i.e., CpFatB1), and 10-fold higher than the titer obtained with the
least effective parental acyl-ACP TE (i.e., CnFatB3).

The sequences of the 26 distinct acyl-ACP TE variants selected
by this directed evolution strategy (Supplementary Figure S3) were
compared to each other and to the sequences of the six parental acyl-
ACP TEs that were used to initiate this study. These analyses
demonstrate that the recovered acyl-ACP TE variants share an
overall sequence identity of −67%. Among the 307 amino acid
positions of these recovered variant enzymes, polymorphisms
occur at 100 positions, which is very close to the number of
positions (i.e., 98) that we targeted for mutagenesis in the design
of the variant library. The two additional polymorphic positions
may be attributable to variants introduced by errors in DNA primer
synthesis or by PCR errors.

Hierarchical clustering analysis of these variant sequences
identify a majority clade that is most similar to two of the
parental sequences, CvFatB1 and CpFatB1 (Figure 3A). Within
this clade, variants TEGm413 and TEGm419 are closest in
sequence to the CpFatB1 and CvFatB1 parents, and these four
proteins share −64% amino acid identity, and they yield fatty
acid titers that range between approximately 240 μM
and approximately 1390 µM (Figure 3B).

3.4 The substrate specificities of acyl-ACP
TE variants

In addition to generating differences in in vivo fatty acid titer, the
six parental acyl-ACP TEs that were used to guide this directed
evolution strategy also displayed differences in acyl-chain length
substrate specificity. This variation provided an added opportunity
to explore the relationship between the structure and substrate
specificity attributes of acyl-ACP TEs. Therefore, we evaluated
how substrate specificity evolved in the acyl-ACP TE variants
that were selected for inducing enhanced in vivo fatty acid titers.

FIGURE 3
Fatty acid titers and fatty acid specificity of evolved acyl-ACP TE variants. (A) Dendrogram representation of sequence similarities among acyl-ACP
TE variants. The dendrogramwas inferred using the Minimum Evolutionmethod (Rzhetsky and Nei, 1993). The bootstrap consensus tree (bootstrap value
identified at each node), which was inferred from 250 replicates, represents the evolutionary history of each acyl-ACP TE. (B) Fatty acid profiles of
26 unique acyl-ACP TE variants generated in this study and compared to the six parental acyl-ACP TEs used to constrain the directed evolution
strategy. The intensity of the green shading of each cell is proportional to the mol% of each fatty acid. a Among the 175 acyl-ACP TE variants recovered in
this study, the TEGm2198, TEGm204 and TEGm162 variants recurred 2, 3, and 147 times, respectively. b Acyl-ACP TEs can be classified into three groups
based on their substrate specificity: Class I enzymes primarily hydrolyze acyl-ACPs of 14- and 16-carbon acyl-chains, Class II enzymes prefer 8- to 16-
carbon acyl-chains, and Class III enzymes have a preference for 8-carbon acyl-chains.
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Figure 3B shows the fatty acid profiles produced by the
26 evolved acyl-ACP TE variants as compared to the six parental
acyl-ACP TEs. Prior characterizations of the six parental acyl-ACP
TEs, in the context of 31 naturally occurring diverse acyl-ACP TEs
from plant and microbial sources, had categorized these parental
enzymes into three classes, Class I, Class II and Class III (Jing et al.,
2011). CvFatB2 and CnFatB2 are Class I enzymes that primarily

hydrolyze acyl-ACPs of 14- and 16-carbon fatty acyl-chains,
CnFatB3 is a Class II enzyme that prefers acyl-ACPs of 8- to 16-
carbon acyl-chains, and CpFatB1, CvFatB1, and UaFatB1 are Class
III enzymes that have a preference for 8-carbon acyl-chains (Jing
et al., 2011). The 26 acyl-ACP TE variants generated by the directed
evolution study distributed somewhat unevenly among these three
functional classes, with a preference for Class I and Class II enzymes

FIGURE 4
Categorizing acyl-ACP TEs based on fatty acid profiles. (A) Enzyme cluster membership was determined by hierarchical clustering of fatty acid
profiles produced when each acyl-ACP TE was expressed in E. coli. (B) The PCA plot based on the fatty acid profiles produced when each acyl-ACP TE
was expressed in E. coli. PC1 and PC2 together explain 59% of the data variation, and segregate the 57 enzymes into three clusters demonstrated by 95%
confidence ellipses. (C) The fatty acid profiles produced by the acyl-ACP TEs that belong to Cluster A (as defined in panels (A) and (B)). (D) The fatty
acid profiles produced by the acyl-ACP TEs that belong to Cluster B (as defined in panels (A) and (B)). (E) The fatty acid profiles produced by the acyl-ACP
TEs that belong to Cluster C (as defined in panels (A) and (B)).
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(13 and 9 variants, respectively), and only four variants (TEGm162,
TEGm169, TEGm258, and TEGm288) belonged to Class III acyl-
ACP TEs. Although these 26 variant acyl-ACP TEs are classifiable
among these three categories, an analysis of variance (ANOVA)
demonstrates that these substrate specificity classifications do not
correlate with the observed variations in the in vivo fatty acid titer
generated by the E. coli host (p-value >0.05). Therefore, structural
features that determine substrate specificity are independent of the
structural features that determine catalytic efficiency of
these enzymes.

3.5 Machine learning model reveals
structural constraints to substrate specificity

Because acyl-ACP TE classification based solely on sequence
similarity and diversity does not fully predict the fatty acid titers
generated by these enzymes, we adopted an alternative classification
strategy based on the fatty acid product profiles. Thus, in addition to
clustering the variant acyl-ACP TEs relative to their sequence
similarity (Figure 3A), clustering was performed based on the
fatty acid profiles produced when variant enzymes were
expressed in vivo to evaluate their substrate specificity
(Figure 4A). These analyses not only evaluated the acyl-ACP TEs
generated by the current in vitro directed evolution study, but also
included previously characterized natural variants of acyl-ACP TE
isolated from a wide variety of different phylogenetic clades (Jing
et al., 2011; Jing et al., 2018a). Thus, collectively 57 acyl-ACP TE
variants were analyzed, 26 being products of in vitro directed
evolution selection, and 31 being products of natural
evolution selection.

Hierarchical clustering that minimized within-cluster variance
in substrate specificity separated the 57 acyl-ACP TE variants into
three distinct clusters (Clusters A-C) (Figure 4A). A similar
segregation pattern occurs upon principal component analysis
(PCA) of these data (Figure 4B), and in combination the two
primary principal components (PC1 and PC2) explain nearly
60% of the variation in the substrate specificity among these
variants. PC1, which accounts for 43% of the variation in the
fatty acid profiles, primarily separates Cluster C-enzymes from
Clusters A and B, while PC2 explains 16% of the variation, and
separates Cluster A from Cluster B and Cluster C (Figure 4B). This
tripartite classification of the variants reflects the prior classification
of naturally occurring acyl-ACP TEs variants (Jing et al., 2011),
which identified three classes of acyl-ACP TEs, with preferences for
C14/C16 (Class I), C8 (Class III) or broad range chain-length (Class
II) acyl-ACP TE substrates. Similarly in this study, Cluster A and
Cluster C enzymes exhibit preferences for C8 and C14/C16 acyl-
ACPs, respectively, whereas Cluster B enzymes have broader
substrate specificities, enabling hydrolysis of C8 to C16 acyl-
ACPs (Figures 4C–E).

Manual comparisons of the recovered acyl-ACP TE sequence
variants and their substrate specificities can provide constraints on
the relationship between primary structure and substrate specificity
of these enzymes. For example, by comparing the acyl-ACP TE
sequence variants that are sorted into the same sequence-based
hierarchical cluster, but are separated into different functional
classes based on substrate specificities (i.e., Classes A-C;

Figure 4A), one can heuristically identify those polymorphic
residues that contribute to altered substrate specificity. We
instead developed a systematic computational machine learning
random forest classification model that improves on this manual
strategy, and quantitatively assesses the importance of each
polymorphic amino acid residue in determining the substrate
specificity of the acyl-ACP TE variants.

The random forest classification strategy utilized both binarized
substrate specificity data and amino acid sequence data as described in
the Methods. Substrate specificity was binarized according to the fatty
acid profiles produced by each variant enzyme in E. coli, and two acyl-
ACP TEs were defined as sharing substrate specificity if they were
members of the same Cluster (A, B or C) (Figure 4A). In juxtaposition,
two acyl-ACP TEs that had membership in separate Clusters were
deemed as having different substrate specificities. After transforming and
encoding the data, a random forest classifier was trainedwith all encoded
data, and the mean feature importance scores for the 350 amino acid
positions were calculated based on ten iterations of themodel (Figure 5A
and Supplementary Table S4A). These analyses quantified the
importance of individual residues in determining substrate specificity
of each acyl-ACP TE variant. A total of 174 residue positions with
importance scores ranging from approximately 0.5 to approximately 15,
had a statistically significant impact on substrate specificity
(i.e., corrected p-values <0.001; Supplementary Table S4A), and these
are blue-highlighted in Figure 5A.

This list of residues was refined by a two-step approach. Initially,
an incremental feature selection (IFS) approach was used that built a
series of random forest models, in which each model added an
additional residue to the evaluation process. The random forest
classifier that included the 59 residue positions with the highest
importance scores as the predictors exhibited optimal predictive
performance, with a recall (i.e., true positive rate) of 92%, a
specificity (true negative rate) of 95%, and a MCC of 0.87, which
measures the correlation between the predicted and actual outcomes
(Figure 5B; Supplementary Table S4A). Next, the list of 59 residues
was further prioritized by pairwise comparisons of MCC scores using
Student’s t-tests between every pair of adjacent models (i.e., the model
that included one additional residue position versus the previous
model that did not include that residue) until all 59 residues were
examined (Figures 5B,C). The final model that contained the top
22 residue positions (orange-highlighted in Figure 5A) reached the
statistical plateau of MCC (q-value >0.05; Supplementary Table S4A),
and thus these 22 residues were considered as most impactful in
determining the substrate specificity of the enzyme.

Mapping these 22 residues onto a predicted three dimensional
structure of CvFatB2 indicates that the majority of these residues
(17 of 22) are located in the N-terminal hot-dog domain structure
(Figure 6). The other five residues are in the C-terminal hot-dog
domain structure, among which four are adjacent to the catalytic
residues we identified in a previous study (Jing et al., 2018b).

4 Discussion

A number of microbial chassis have been proposed for the
conversion of sugar feedstocks to fatty acids, including bacteria and
yeast (Lennen and Pfleger, 2012; Leber and Da Silva, 2014; Cho et al.,
2020). One of the key biocatalysts that has been the focus of these
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conversion processes is acyl-ACP TE, the enzyme that terminates
the process of fatty acid biosynthesis by hydrolyzing the fatty acid
product from the FAS enzyme (Swarbrick et al., 2020). Beginning
with the pioneering work conducted at the biotechnology company,
Calgene Inc. (Voelker et al., 1992), a bioengineering strategy has
been developed to use diverse acyl-ACP TEs (Jing et al., 2011) to

intercept the FAS system, and thereby generate new products from
this metabolic process (e.g., Hernández Lozada et al., 2018; Cahoon
and Li-Beisson, 2020). This bioengineering strategy releases the FAS
system from the “normal” regulatory circuit that controls the fatty
acid productivity of the chassis, resulting in the over-production of
fatty acids. Because of this utility of acyl-ACP TEs, the ThYme

FIGURE 5
Identification of residue positions predicted to govern acyl-ACP TE substrate specificity. (A) The importance scores for each residue position were
generated by the random forest model that uses all 350 positions and one random variable as the predictors. Themost impactful positions that determine
the substrate specificity of the enzyme (orange-colored data points) were identified via Incremental Feature Selection (IFS) and have q-values <0.001.
Non-significant positions are in black. (B) IFS selects the most important predictor set by evaluating the predictive performance of the associated
model, as demonstrated by recall, specificity, and MCC. (C) A zoom-in view of the predictive performance evaluated by IFS. MCC hits the plateau when
the top 22 residue positions (highlighted by filled circles) are included in the model.
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database (Cantu et al., 2011) has compiled nearly 40,000 sequences
of such enzymes from plant and bacterial sources (i.e., Families
TE14 to TE19, and TE30) (Caswell et al., 2022).

In this study we developed a facile, directed evolution strategy to
generate novel acyl-ACP TEs for the purpose of enhancing the fatty
acid titers generated by E. coli. The effectiveness of this strategy is
exemplified by the fact that just a single round of directed evolution,
screening only approximately 30,000 variants, yielded 26 distinct
acyl-ACP TEs, with up to 10-fold increase in fatty acid titer, as
compared to the initial parental enzymes that constrained the
in vitro directed evolution strategy. Thus, the resultant bacterial
strains that harbor these enhanced biocatalysts improved the
efficiency of the conversion of glucose to fatty acids.

While the improvement of enzymatic activity is an important
target for using acyl-ACP TE enzymes to overproduce fatty acids,
this enzyme’s substrate specificity is another significant attribute
that can be bioengineered because it determines the chain length of
fatty acids produced by a microbial chassis. This latter trait is
important in determining the “performance” of the fatty acid
products in the application arena, which is a prominent
determinant for the market niche of these fatty acid products.

We had previously determined substrate specificity of a small
subset of these acyl-ACP TEs cataloged in the ThYme database
(Cantu et al., 2011), which enabled the classification of acyl-ACP
TEs into three categories (Class I, II, and III) (Jing et al., 2011). More
recently, using such substrate specificity data and primary sequences
for 115 experimentally characterized acyl-ACP TEs gleamed from
the academic (e.g., (Jing et al., 2011; Jing et al., 2018a), and patent
literature, a machine learning discriminatory strategy
(i.e., EnZymClass) was developed (Banerjee et al., 2022).
EnZymClass was used to predict the substrate specificity
categorization of 617 acyl-ACP TEs from primary sequences,
considering common sequence motifs, physicochemical

properities, and evolutionary history. This categorization was
validated by the identification of two novel Class I acyl-ACP TEs
(Banerjee et al., 2022). However, the underlying sequence features
dictating the substrate specificity of these enzymes remains elusive.

Although the directed evolution strategy implemented in the
current study was designed to increase fatty acid titers generated by
the microbial chassis, the recovered enzymes also diversified the
fatty acids produced by the microbial chassis. These data therefore
provided an opportunity to explore the relationship between acyl-
ACP TE sequence and substrate specificity. Because the directed
evolution strategy changed the parent enzymes’ catalytic capabilities
by mutating individual amino acids, we aimed at quantifying the
importance of each residue relative to these changes. Hence, we
integrated data from the 26 variant enzymes generated within this
study with data previously generated from 31 naturally occurring
variant enzymes isolated from plants and bacteria (Jing et al., 2011).
Using fatty acid profile data combined from these 57 variant
enzymes, a random forest classification algorithm systematically
assessed the impact of each acyl-ACP TE residue on determining the
substrate specificity of the enzyme. Such random forest strategies
have proven useful in quantitatively modeling relationships between
protein sequence and different protein functionalities, including
protein folding and crystallizability (Jahandideh andMahdavi, 2012;
Jo and Cheng, 2014; Bonetta and Valentino, 2020). Collectively,
these analyses assigned an importance score to each residue for its
ability to affect a change in substrate specificity of the enzyme.
Twenty two of the most significant contributors in determining the
substrate specificity of the enzyme were identified. Six of these
residues had previously been identified in the CvFatB2 enzyme
(i.e., V115, N121, R124, R125, L155, and I166 of the
CvFatB2 sequence) via a domain shuffling strategy and
confirmed by site-directed mutagenesis studies as being critical in
determining substrate specificity (Jing et al., 2018b).

FIGURE 6
Residues that are significant in determining the substrate specificity of acyl-ACP TE. The top twenty-two residues selected by the random forest
classifier (Figure 5) are shown as stick models. Red colored residues have previously been experimentally verified to affect substrate specificity (Jing et al.,
2018a; Jing et al., 2018b). Catalytic residues are shown in yellow (Mayer and Shanklin, 2005; Serrano-Vega et al., 2005; Feng et al., 2017; Jing et al., 2018a).
The dotted ovals indicate the structural region where the substrate binding pocket is located.
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The majority of highest scoring residues (17 out of 22 residues)
reside within the N-terminal hot-dog structure of the predicted
tertiary structure model of CvFatB2a (Figure 6). This location is
consistent with our prior postulate (Jing et al., 2018a) that the
substrate specificity of this enzyme is determined by the
chemophysical nature of the substrate binding pocket located in
the N-terminal hot-dog domain of these enzymes; the substrate
binding pocket being formed between the central α-helix and the
antiparallel β-sheets in the N-terminal hotdog domain (Jing et al.,
2018b). Specifically, the active site residues of acyl-ACP TE are
located on the C-terminal hot-dog structure at the interface
between the N-terminal and C-terminal hot-dog structures.
While four of these residues (i.e., V115, N121, R124, and R15)
that are located on the antiparallel β-sheets had previously been
identified as being important in determining substrate specificity
(Jing et al., 2018a), five additional amino acids (i.e., I52, L59, A63,
L64, and V67) located on the central α-helix of the N-terminal hot-
dog structure have been identified by the current machine
learning strategy.

By localizing the three dimensional positions of the 22 most
significant residues identified by machine learning (Figure 6), we
hypothesize that the residues on the central α-helix and the
antiparallel β-sheets of acyl-ACP TE determine the substrate
specificity of this enzyme by defining the size and chemophysical
properties of the substrate binding pocket. Other residues identified
(i.e., V26, D29, N74, Y84, D87, N100, and A192) are located at the
opening of the active site cleft near the surface of the acyl-ACP TE
protein, and they may affect the substrate specificity by modulating
the interactions between the enzyme and the ACP moiety of the
substrate. Indeed, we had previously identified residues at the
surface of the acyl-ACP TE enzyme that are important for
protein-protein interaction and thus affect catalytic efficiency and
substrate specificity of acyl-ACP TE (Jing et al., 2018b).

Collectively, the findings presented herein provide an
experimentally-based computational model that pinpoints amino
acid residues that potentially determine the substrate specificity of
acyl-ACP TEs. This study demonstrates the feasibility of combining
an in vitro directed evolution approach with downstream
computational analysis to identify key structural features
(i.e., amino acid residues) of an enzyme that can be targeted in a
rational redesign strategy to further enhance the titer and specificity
of a microbial fatty acid biofactory.

In this study, we demonstrate an integrated directed evolution-
machine learning strategy that has been used to understand the
structural features of the protein that contribute to increasing the
catalytic efficiency of acyl-ACP TE and further expand the
knowledge on the structural determinants of the substrate
specificity of this enzyme. Such a strategy enables the alteration
of two attributes of this important biocatalyst and its utilization to
build an efficient biosynthetic pathway for producing desired fatty
acids as feedstocks for biorenewable chemicals.
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