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Tendons are a frequent site of injury, which greatly impairs the movement and
locomotion of patients. Regrettably, injuries at the tendon frequently require
surgical intervention, which leads to a long path to recovery. Moreover, the
healing of tendons often involves the formation of scar tissue at the site of injury
with poor mechanical properties and prone to re-injury. Tissue engineering
carries the promise of better and more effective solutions to the improper
healing of tendons. Lately, the field of regenerative medicine has seen a
significant increase in the focus on the potential use of non-coding RNAs
(e.g., siRNAs, miRNAs, and lncRNAs) as molecular tools for tendon tissue
engineering. This class of molecules is being investigated due to their ability
to act as epigenetic regulators of gene expression and protein production. Thus,
providing a molecular instrument to fine-tune, reprogram, and modulate the
processes of tendon differentiation, healing, and regeneration. This review
focuses particularly on the latest advances involving the use of siRNAs,
miRNAs, and lncRNAs in tendon tissue engineering applications.
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1 Introduction

Tendons are a crucial component of the musculoskeletal system, allowing for the
movement and stabilization of joints. Tendons sustain tensile loads and dissipate the stress
generated by muscle contraction and joint movement. The general tendon morphology
consists of a highly specialized extracellular matrix made up of proteoglycans, a high
content of water, and anisotropically aligned collagen fibers. Around 80% of the dry weight
of tendons comes from collagen, which organizes into hierarchical structures of fibrillar
networks aligned in the direction of loading (Buckley et al., 2013; Chartier et al., 2021).

The most abundant type of collagen found in tendons is the fibril-forming collagen type
I. Collagen type I is organized into microfibrils and fibrils, granting tendons its natural
mechanical durability and strength. Collagen type II and type III are also found in tendons
but in lower amounts. Collagen type II is mostly concentrated at the tendon-to-bone
insertion site (i.e., enthesis) while collagen type III is always associated with collagen type I.
Collagen type III forms thinner fibrils than collagen type I. These fibrils are typically more
disorganized and are mechanically weaker than those formed by collagen type I. However,
they play a key role in the healing and pathogenesis of tendons. During the initial stages of
healing, the content of randomly oriented collagen type III fibers increases at the wound site
forming a fibrous scar tissue. Later, this tissue is replaced by a stronger and better-aligned
network of collagen type I (Buckley et al., 2013; Chartier et al., 2021). Unfortunately, this
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remodeling phase often fails to completely regenerate the uninjured
morphology of the tendon, and the collagen type III-rich scar tissue
remains (Nguyen and Hsu, 2020; Shen et al., 2022). Thus, this
weakens the tissue and increases the chances of recurrent rupture.
The poor healing that is often seen after tendon injuries constitutes a
challenge that tissue engineers working on tendon regeneration are
trying to address by combining biomaterial design, cells, and
bioactive molecules.

The field of biomaterials for tendon tissue engineering
applications is extensive (Li et al., 2022; Xue et al., 2022; Huang
et al., 2023). It comprises the use of natural and/or synthetic
biomaterials in a wide range of combinations and designs to
provide the best possible substitute to the native tissue during the
process of healing while promoting de novo tissue regeneration.
Some of the most used natural polymers for tendon regeneration
applications are collagen, silk fibroin, chitosan, and fibrin (Dietrich
et al., 2015; Yan et al., 2017; Sarıkaya and Gümüşderelioğlu, 2021).
Natural polymers are praised for their biocompatibility and
biodegradability. Alternatively, synthetic biomaterials such as
poly-Ɛ-caprolactone, poly(lactic acid), poly(glycolic acid), or
poly(lactic-co-glycolic acid) have also gained significant attention
due to their tunable mechanical properties (Sensini et al., 2019;
Kempfert et al., 2022; Uyanik et al., 2022).

The development of tendon mimetic constructs usually
combines the design of structures that mimic the morphology
found in healthy tendons and the use of mesenchymal stem cells
(MSCs) or tendon progenitor stem cells (TPSCs). MSCs and TPSCs
have the potential to respond to the morphological cues provided by
the tendon mimetic structures to differentiate towards a tenogenic
lineage. Thus, they can promote the formation of tissue-engineered
tendon-like tissue (Font Tellado et al., 2017; Pardo et al., 2022).

In our consideration, the latest advances based on the strategies
for the obtention of tendon-mimetic cell-laden constructs for
tendon tissue engineering have been extensively reviewed (Lim
et al., 2019; Ruiz-Alonso et al., 2021; Huang et al., 2023). Instead,
the present review is inspired by the increasing evidence supporting
the role of bioactive molecules as candidates to aid and promote
tendon differentiation, regeneration, and healing. In particular, we
will focus on the non-coding RNA-mediated transcriptional and
post-transcriptional regulation of gene expression in the context of
tendon healing and regeneration. More specifically, on the potential
use of short interference RNA (siRNA), microRNA (miRNA), and
long non-coding RNA (lncRNA), as molecular tools for
reprograming or fine-tuning the processes of inflammation,
scarring, and tissue regeneration in tendon healing.

2 Non-coding RNAs and tendon tissue
engineering

Non-coding RNAs (ncRNA) are a heterogeneous group of RNA
transcripts that do not translate into protein. Instead, they are
implicated in a myriad of other cellular processes, most notably
genome organization and regulation of gene expression (Kapranov
et al., 2007; Nemeth et al., 2023). Over 70% of the human genome
encodes for ncRNAs, and several classes of ncRNAs have been
identified. This includes circular RNAs (circRNA), ribosomal RNAs
(rRNAs), small nuclear RNAs (snRNAs), Piwi-interacting RNAs

(piRNAs), siRNAs, lncRNAs, and miRNAs (Uszczynska-Ratajczak
et al., 2018; Nemeth et al., 2023). The discovery of the mechanisms of
RNA interference (RNAi) via ncRNAs as mediators of gene
silencing, allowed for the development of novel therapeutic
strategies to treat human diseases (Fire et al., 1998; Pal et al.,
2005; Felekkis and Deltas, 2006; Oh and Park, 2009). This led to
the first-in-human trial of an RNAi therapeutic in cancer patients via
silencing of VEGF and kinesis spindle protein (KSP) (Tabernero
et al., 2013).

Some of the best-studied ncRNAs are siRNAs, miRNAs, and
lncRNAs. They are recognized as key regulators in many biological
processes and have been associated with various human diseases. As
such, a multitude of synthetic siRNA-based therapies as well as
miRNA and lncRNA-based therapies are currently under
investigation (Beg et al., 2017; Colpaert and Calore, 2019; Jin
et al., 2021; Cerqueira et al., 2022; DiStefano and Gerhard, 2022;
Iacomino, 2023).

For many years, researchers have focused on the potential role of
ncRNAs in those human diseases that account for the highest
mortality worldwide, including cancer, neurodegenerative
diseases, and infectious diseases (Nemeth et al., 2023). However,
more recently, tissue engineers have dived into the intricate world of
ncRNA as a potential source of promising therapeutic tools that
could lead to important breakthroughs in the fields of regenerative
medicine and tissue engineering. Hereunder, we will summarize and
discuss the latest advances in relationship with the potential use of
lncRNA, siRNA, and miRNA-based therapy in tendon-tissue
engineering.

2.1 siRNAs

Small interfering RNAs (siRNAs) are a class of double-stranded
RNA molecules, typically between 21 and 23 nucleotides in length
that play a crucial role in the regulation of gene expression. They owe
their name to their ability to mediate in a process known as RNA
interference (RNAi), a natural mechanism that controls the activity
of genes by promoting the degradation of mRNA (Ipsaro and
Joshua-Tor, 2015; Lam et al., 2015).siRNAs are the result of the
processing of double-stranded RNA molecules (dsRNA) by the
RNase III-like enzyme Dicer. These dsRNAs can be directly
transcribed by the cells although they are often thought of as
exogenous dsRNAs that might come from infecting pathogens as
well as being artificially introduced into the cell via transfection
vectors (Oh and Park, 2009). Once a dsRNA is processed into
siRNAs, it can interact with the RNA-induced silencing complex
(RISC) to target for degradation those mRNA molecules to which
the siRNA guide strand is fully complementary. Thus allowing for a
highly specific gene-silencing effect (Lam et al., 2015).

Such mechanism of action has been exploited to specifically
target disease-related genes, most commonly in the context of
illnesses like cancer as well as to fight infectious pathogens
(Geisbert et al., 2006; Zamora et al., 2011; Sakurai et al., 2014;
Chen Y. et al., 2015). Nevertheless, the field of regenerative medicine
is rapidly expanding and recently has begun to explore novel tissue
engineering applications based on RNAi.

Early studies involving siRNAs and tendons were mostly
focused on the use of siRNA-mediated knockdowns to identify
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novel molecules relevant to the development, homeostasis, and
normal function of tendons (Richardson et al., 2007; Tiwari
et al., 2015; Gargano et al., 2021). Some examples include the
identification of PIN1 (Peptidylprolyl Cis/Trans Isomerase,
NIMA-Interacting 1) as a senescence inducer of tendon stem/
progenitor cells (TSPC) (Chen L. et al., 2015). Additionally,
RNAi knockdown of the transcription factor protein
P65 revealed that P65 promoted fibrogenic and proinflammatory
activity in tendon fibroblasts (Chen et al., 2017). Similarly, siRNA-
targeting of the activated transcription factor 6 (ATF-6) revealed an
antifibrotic role for ATF-6 in TGβ-1 pretreated fibroblasts from the
Achilles tendon in a rat model (Yao et al., 2019). Moreover, by
performing a tendon cell-specific RNAi screening, Tiwari et al.
reported 19 novel molecules with enzymatic function or known
to be involved in transcription activity, cell adhesion, protein
folding, and intracellular transport functions in the context of the
myotendinous junction of Drosophila (Tiwari et al., 2015).

The previous examples not only contributed to revealing the
fundamental biological functions of the molecules in question
but also pointed to potential therapeutic applications for the
siRNA-mediated modulation of tendon fibrosis and healing.
Thus, RNAi has been increasingly explored as a therapeutic
candidate to improve tendon healing. For instance, Liao et al.
reported the use of a collagen III-targeting siRNA to suppress the
expression of collagen type III in tenocytes cultured in the
presence of TGFβ-1. Thus, showing a proof of concept where
a siRNA-based approach could potentially serve as treatment for
the prevention of fibrosis by regulating collagen type III
production in tendon-related disorders (Liao et al., 2020).

Another study aimed at the improvement of tendon healing,
investigated the role of the small collagen fibrils in tendon repair,
more specifically collagen type V. Collagen type V is typically
increased during healing and plays an important role in
fibrillogenesis (Lu et al., 2011). Lu et al. demonstrated that
COLV-siRNA-engineered tenocytes displayed better tendon
regeneration capabilities by promoting the formation of larger
collagen fibrils achieving improved tendon contour and
morphology. However, this study concluded that the ratio
between collagen type V and collagen type I should be carefully
monitored as the full knockdown of COLV hinders the formation of
normal collagen fibrils. Hence, RNAi could be used to modulate the
expression of COLV to achieve the desired balance of collagen type I
and type V production necessary for the effective regeneration of
healthy tendon tissue while minimizing the occurrence of fibrosis
(Lu et al., 2011).

The combination of siRNA-based therapeutic approaches with
the use of biomaterials for tendon tissue engineering has proven to
enhance the potency of RNAi in tendon healing applications. Cai
et al. developed a self-healing hydrogel encapsulating SMAD3-
siRNA as an antiadhesion barrier to prevent tendon fibrosis and
improve tendon healing in vivo. The self-healing capabilities of the
hydrogel allowed for an attenuated inflammation of the injured
tendon as a consequence of the reduction of the shear stress between
the hydrogel-wrapped injured tendon and the peritendinous tissue.
Moreover, the SMAD3-siRNA reduced the expression levels of
SMAD3, leading to a decrease in the activation of the TGF-β1/
SMAD3 pathway and the consequent reduction in fibroblast
proliferation and collagen type III production (Cai et al., 2022).

Despite the growing interest in the potential tissue-engineering
applications for siRNA and RNAi technology in general, practical
limitations to their use in the clinic are still to be overcome (Ali Zaidi
et al., 2023). siRNAs can be degraded by endosomal nucleases or
remain trapped indefinitely in non-functional stress granules or
other cytoplasmatic bodies, which would greatly affect their efficacy
(LeCher et al., 2017; Wang et al., 2021). Additionally, siRNA
entrapment can also occur in the extracellular space, where
proteins from the serum could form a non-functional protein-
siRNA complex, thus, hindering the siRNA therapeutic effect (Ali
Zaidi et al., 2023).

2.2 miRNAs

MicroRNAs, also known as miRNAs, are naturally occurring,
short-non codding RNAs usually between 19 and 25 nucleotides in
length. They are typically transcribed by the RNA polymerase II and,
even when some miRNAs are individually produced from separate
transcription units, they can also be produced as clusters of different
miRNAs out from larger transcript-encoding miRNAs (Denli et al.,
2004). Directly after transcription, pri-miRNAs are obtained, which
will be later processed into pre-miRNAs. These are stem-loop
structures that are exported from the cell nuclei to the cytoplasm
where the terminal loop is removed by the enzyme Dicer to create a
mature miRNA duplex (Bartel, 2004; Carthew and Sontheimer,
2009). Similarly to siRNA, miRNAs are effectors of the RISC
complex and mediate the posttranscriptional regulation of a
myriad of genes (Carthew and Sontheimer, 2009).

One of the most distinctive features of miRNAs is their ability to
interact with hundreds of different mRNA sequences. This is
believed to be due to the fact that miRNAs can target mRNA
sequences to which they are not perfectly complementary.
Furthermore, the degree of miRNA-mRNA complementarity is a
crucial determining factor of their regulatory mechanism (Bartel,
2004; Carthew and Sontheimer, 2009). Perfect complementarity
often leads to the degradation of the mRNA by the RISC
complex while partial complementarity can sequester the mRNA
without achieving cleavage of the mRNA strand. In the latter
scenario, the recycling of the miRNA to the RISC complex can
be delayed, and the miRNA-mRNA interaction accelerates the decay
of the miRNA strand, as was demonstrated by a kinetic analysis of
the fate of miRNAs after target regulation by Baccarini et al.
(Carthew and Sontheimer, 2009; Baccarini et al., 2011).

As miRNAs are endogenous to the cell, miRNA-based therapies
can rely either on miRNA replacement or inhibition. Typically,
miRNA replacement is done through the use of miRNA mimics,
while miRNA inhibition is achieved with the use of antagomirs or
miRNA inhibitors (Gori et al., 2015).

In tendon tissue engineering, a plethora of miRNAs have been
and continue to be investigated for their potential regulation over
relevant tenogenic pathways. The miR-29 family is one of the best
studied in the context of tendon healing (Millar et al., 2015; Liu et al.,
2021). miR-29a, a member of this family, is known to regulate the
production of collagen type III in tendon fibroblasts. This inspired
Watts et al. who used intralesional injections of miRNA-29a in an
equine tendon model to achieve improved tendon healing by
reducing the expression of COLIII while increasing the
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expression of COLI. Likewise, miR-29b is reported to regulate
collagen production by interacting with the SMAD3/TGF-β1
pathway. According to a study by Chen et al., the overexpression
of miR-29b in the Achilles tendons of rats improved tendon healing
and reduced scar formation after surgery (Chen et al., 2014). Once
again, the regulation of the SMAD3/TGF-β1 pathway by ncRNAs is a
target for potential therapeutic approaches to achieve tendon
healing. Furthermore, miRNA-based regulation of collagen
production in tendon cells has been reported via alternative
pathways. miR-124-3p was found to inhibit EGR1, which is
known to activate the expression of the tendon markers MKX,
SCX, and COLI (Guerquin et al., 2013). The inhibition of EGR1 by
the overexpression of miR-124-3p in hTDSCs (tendon-derived stem
cells) prevented tendon differentiation whilst the inhibition of miR-
124-3p promoted the opposite effect (Wang et al., 2016). Thus,
suggesting that miR-124-3p is a promising therapeutic target for
tendon injury and healing.

In a recent study by our group, fibrosis-related miRNA profiling
in a rodent patellar injury model allowed for the identification of
dysregulated miRNAs at different time points after injury (Peniche
Silva et al., 2023). A total of 13 miRNAs known or predicted to
interact with important tenogenic pathways were identified to be
dysregulated upon tendon-to-bone enthesis injury. Among them,
the previously mentioned miR-124-3p was found upregulated while
EGR1 was downregulated. Additionally, miR-16-5p and miR-133-
3p were strongly upregulated in the fibrotic portion of the tendon
side of the enthesis 10 days after injury. Interestingly, both miRNAs
are known for their anti-fibrotic potential and are reported to inhibit
myofibroblasts activation by regulating SMAD3 and COLI
respectively (Wei et al., 2019; Yao et al., 2020). Hence, their
upregulation at the tendon side of the enthesis after injury
suggested an antifibrotic role for these miRNAs in tendon
healing. This highlights the relevance of miR16-5p and miR-133-
3p as therapeutic candidates to aid tendon healing and regeneration.

In another study involving miRNA profiling, Plachel et al.
profiled miRNAs in samples from sera and biopsy samples from
the supraspinatus and subscapularis tendons from patients suffering
from degenerative rotator cuff tears (RCT), chronic rotator cuff
tendinopathy, and healthy patients. They reported at least six
circulating miRNAs (i.e., miR-18, miR-19a, miR19b, miR-25,
mR-93, and miR192) that were downregulated both in sera and
biopsy samples in patients from degenerative RCT when normalized
against healthy controls. Furthermore, another six miRNAs were
dysregulated in both chronic tendinopathy and degenerative RCT:
miR-30-5p, miR-140-3p, miR-210-3p, miR-222-3p, miR-324-3p,
miR-425-5p (Plachel et al., 2020). Such data contribute to the
identification and establishment of miRNA signatures not only as
therapeutic tools but also as diagnostic and prognostic tools for
degenerative and chronic rotator cuff tendinopathies.

Inflammation is well known to play a major role in tendon
healing and scar formation (Arvind and Huang, 2021; Chartier et al.,
2021). Moreover, miR-205 has been found implicated in the
secretion of inflammatory factors and the amplification of the
NF-kβ-induced inflammatory response in cancer cells (Yeh et al.,
2016). However, it has been reported that the inhibition of miR-205
in rat tenocytes from the Achilles tendon leads to an increase in the
expression of the anti-inflammatory effector MECP2 (methylated
binding protein 2). Furthermore, the inhibition of miR-205

improved tenocyte proliferation and migration and increased the
expression of COLI, COLIII, SCX, and TNC. Hence, suggesting a
tenogenic effect for the inhibition of miR-205.

The RNAi mechanisms of siRNA and miRNA replacement
therapy are in many ways similar. They both are based on the
administration of synthetic siRNAs or miRNAs to achieve gene
silencing. However, miRNAs have the potential to interact with a
multitude of different pathways while siRNAs are specifically
designed to target one gene of interest. This highlights an
important difference that sets these classes of molecules apart, in
particular when considering aspects of their sequence design and
therapeutic approach. Additionally, miRNA-based therapy
comprehends the inhibition of miRNAs by means of miRNA
inhibitors, an approach that has no equivalent in the work with
siRNAs. Nevertheless, these types of small RNA molecules face
similar challenges that hinder their applications in the clinic such as
poor in vivo stability, the need for efficient transfection vectors, and
off-target effects (Lam et al., 2015).

2.3 LncRNAs

LncRNAs are non-coding transcripts longer than
200 nucleotides, although such length cut-off appears to be
somewhat arbitrary (Ponting et al., 2009; Cao, 2014). When first
discovered, lncRNAs were thought to be non-functional. However,
there is now plenty of evidence for the roles of lncRNAs as genomic
regulators as well as regulators of transcription and translation,
interacting either directly with DNA, and mRNA or acting as
miRNA sponges, thus, affecting cell identity, fate, and function
(Cao, 2014; DiStefano and Gerhard, 2022; Nemeth et al., 2023).

RNA-sequencing has allowed for lncRNA profiling, hence,
facilitating the identification of differentially expressed lncRNAs in
specific settings. In a conjoint analysis of lncRNA and mRNA
expression in the context of a RCT, Ge et al. identified
419 lncRNAs and 1,542 mRNAs that were differentially expressed
in patients with RCT in comparison with the expression in normal
tendon. Furthermore, competitive endogenous RNA network analysis
based on those results revealed interactions between 139 lncRNA, 126
mRNA and 35 miRNAs, most of which were related to the citrate
cycle, p53 signaling, and the renin-angiotensin system. Additionally,
they found differentially expressed genes involved in VEGF signaling,
which is in line with the changes in vascularity typically observed in
RCT. Thus, providing insights into the potential lncRNA-mRNA-
mediated mechanism underlying tendon pathology (Ge et al., 2020).

Among the lncRNAs described to be dysregulated in
tendinopathy, lncRNA X-inactive specific transcript (lncRNA
XIST) has been found highly expressed in relationship with
tendon injury (Peffers et al., 2015). Nevertheless, contrasting
functions have been described for XIST. In ligament fibroblasts,
XIST promotes osteogenic differentiation via the lncRNA XIST/
miR-302a-3p/USP8 axis (Yuan et al., 2021). While cancer research
acknowledges XIST as a cancer-promoting gene due to its
association with tumor occurrence and development via targeting
of the tumor-suppressing miR-34a-5p and miR-137 (Wang et al.,
2017; Sun et al., 2018). However, in the context of tendon injury in
mice models, the overexpression of XIST in populations at high risk
of tendon injury was linked to the decreased expression of miR-26-
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5p and the increased expression of cyclooxygenase 2 (COX2), with
the consequent increase in fibroblast proliferation, collagen
production, and the occurrence of tendon adhesion. Indicating a
role for lncRNA XIST targeted miR-26-5p in the healing of tendon
injury (Chen et al., 2022).

Other reports highlight the tenogenic role of lncRNAs. Such is
the case of the lncRNA H19, which has been described to
significantly accelerate the TGF-β1-induced tenogenic
differentiation in vitro and accelerate tendon healing in mouse
tendon defect models in vivo (Lu et al., 2017). H19 promotes
tenogenesis by directly targeting miR-29b-3p. As mentioned
before, miR-29b-3p has the potential to suppress the expression
of TGF-β1 and collagen type I (Chen et al., 2014; Lu et al., 2017).
Thus, the TGF-β1/H19/miR-29b-3p regulatory loop could be the
target of new strategies for treating tendon injuries. Similarly,
lncRNA MALAT1 has been shown to promote tendon healing in
rat models of tendinopathy by regulating the miR-378a-3p/
MAPK1 axis. MiR-378a is a biomarker for tendon injury and its
over-expression is associated with decreased COL1A1, SCX, MKX,
MMP3 and other tendon markers. Thus, MALAT1-mediated
regulation of miR-378a-3p could be another potential target of
molecular therapies to aid tendon healing.

3 Future perspectives

Non-coding RNAs are increasingly present in the
development of novel tissue engineering approaches to treat

tendon injuries. As molecular tools to modulate gene
expression and protein production, they hold the promise to
lead the field of regenerative medicine toward a more
personalized kind of medicine. Tailoring the ncRNA-based
strategies to individual patient profiles may improve the
efficacy of the treatments. Moreover, even when the possibility
for off-target effects is still a concern when working with
ncRNAs, they offer superior specificity to the traditional gene
manipulation methods (Kohn et al., 2023). Additionally, they can
be integrated into various biomaterials and scaffolds to achieve
enhanced regeneration capacity.

In our consideration, there is enough evidence of the potential
benefits associated with the use of ncRNAs in regenerative medicine
applications to justify the increasing interest in researching this class
of molecules, their mechanisms of action, and potential applications
in tendon tissue engineering. Nevertheless, siRNAs, miRNAs, and
lncRNAs exhibit individual strengths and limitations that should be
carefully considered when investigating their potential applications
(Figure 1). The RNAi mechanisms of siRNA and miRNA are similar.
However, siRNA can be specifically designed to target one mRNA
sequence. Alternatively, miRNAs can interact with many distinct
biological pathways and many pathways can regulate one specific
miRNA. This is both a curse and a blessing, and extensive research is
still required to fully understand the implications of dysregulating
miRNAs in a tissue-specific manner. Moreover, antagomirs or
miRNA inhibitors provide a valuable tool to research the effects of
the suppression or knockdown of miRNAs. Similarly, lncRNAs can
directly interact with miRNAs, acting as miRNA inhibitors thus

FIGURE 1
Schematic representation of the most commonly used ncRNA-based approaches for tendon tissue engineering applications. siRNAs are designed
to specifically interact with one mRNA sequence to achieve inhibition of gene expression. miRNA mimics inhibit one specific mRNA target while
interactions with secondary targets and alternative pathways are possible. miRNA inhibitors prevent the miRNA-mediated repression of the mRNA target
by inhibiting the activity of the endogenousmiRNAs. lncRNAs are used asmiRNA sponges to inhibit themiRNA-mediated repression of a target gene.
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restoring the function of the miRNA-targeted mRNA. However,
lncRNAs exhibit a wide range of targets beyond miRNAs. They
can interact with DNA, proteins, or mRNA. Additionally, they can
be found in either the nucleus, affecting chromatin structure, or in the
cytoplasm, modulating transcriptional and post-transcriptional
processes (Jin et al., 2021; Winkle et al., 2021). Compared to
siRNAs and miRNAs, lncRNA are functionally very complex and
their function is reported to be context dependent. Hence, the
understanding of the precise mechanisms and specific function of
individual lncRNAs in each tissue is an ongoing challenge. For the
moment, the focus on lncRNA in tendon tissue engineering
applications seems to be more or less limited to their regulation
over miRNAs. Future studies may unveil new applications addressed
to aid tendon healing and regeneration.

4 Conclusion

Tendons play a fundamental role in movement and locomotion.
Thus, injuries at the tendon can greatly impair the quality of life of
patients and represent a significant societal and economic burden.
Moreover, patients suffering from tendon injury undergo a long and
often painful path to recovery. Advances in the field of tendon tissue
engineering are expected to lead to better tissue healing with less scar
formation and superior recapitulation of the native tendon
morphology and function. ncRNAs offer a set of powerful tools
to fine-tune at the molecular levels processes of cell differentiation,
proliferation, matrix deposition, and tissue remodeling that could
greatly aid tissue regeneration and healing. However, siRNAs,
miRNAs, and lncRNA have only recently emerged as molecular
candidates for tendon tissue engineering applications. Thus,
extensive research is still required to fully harness their potential
for better healing of tendons.
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