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The repair of irregular bone tissue suffers severe clinical problems due to the
scarcity of an appropriate therapeutic carrier that can match dynamic and
complex bone damage. Fortunately, stimuli-responsive in situ hydrogel
systems that are triggered by a special microenvironment could be an ideal
method of regenerating bone tissue because of the injectability, in situ gelatin,
and spatiotemporally tunable drug release. Herein, we introduce the two main
stimulus-response approaches, exogenous and endogenous, to forming in situ
hydrogels in bone tissue engineering. First, we summarize specific and distinct
responses to an extensive range of external stimuli (e.g., ultraviolet, near-infrared,
ultrasound, etc.) to form in situ hydrogels created from biocompatible materials
modified by various functional groups or hybrid functional nanoparticles.
Furthermore, “smart” hydrogels, which respond to endogenous physiological
or environmental stimuli (e.g., temperature, pH, enzyme, etc.), can achieve in situ
gelation by one injection in vivo without additional intervention. Moreover, the
mild chemistry response-mediated in situ hydrogel systems also offer fascinating
prospects in bone tissue engineering, such as a Diels–Alder, Michael addition,
thiol-Michael addition, and Schiff reactions, etc. The recent developments and
challenges of various smart in situ hydrogels and their application to drug
administration and bone tissue engineering are discussed in this review. It is
anticipated that advanced strategies and innovative ideas of in situ hydrogels will
be exploited in the clinical field and increase the quality of life for patients with
bone damage.

KEYWORDS

exogenous stimulus, endogenous stimulus, in situ hydrogels, smart hydrogels, bone
tissue engineering

1 Introduction

As the load-bearing structure of the human body, the bone skeleton plays crucial
functions, such as constituting a motion system and protecting nerves and organs (Harada
and Rodan, 2003;Wu and Chang, 2014). However, the bone tissue easily suffers damage due
to crashing, falling, infection, and age (Stolzing et al., 2008). Although bone tissue possesses
a strong self-repair capacity, it fails to self-heal when the defect exceeds a certain boundary.
Therefore, the reconstruction of bone tissue is an extremely significant challenge for clinical
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surgeons. Several approaches have been exploited for treating bone
damage, relying on various therapies (e.g., autografts, xenografts,
and allografts) ((Harada and Rodan, 2003; Wu and Chang, 2014).
However, these approaches still have challenges, such as donor site
breakage, large segmental bone loss, morphology structure
mismatch, etc. (Stolzing et al., 2008). To deal with those
challenges, many therapeutic strategies using biomaterial-based
systems (e.g., bone tissue engineering, bone organoids, etc.) have
been exploited and utilized in vivo and in vitro and have
demonstrated a satisfactory therapeutic effect (Liu S. et al., 2023).

The extracellular matrix (ECM) plays a vital role in signaling
transfer and the exchange of nutrition and oxygen with emergent
tissue (Shang et al., 2021). When designing novel biomaterial
systems, it is necessary to match the properties of ECM to mimic
the microenvironment of cell proliferative differentiation and
improve bone tissue regeneration (Li J. et al., 2023). Hydrogels,
an excellent biocompatible replacement material for the ECM, are
considered to be the most promising applicants in bone tissue
engineering because of their unique 3D-network structure, water-
swellable, and adjustable physical and chemical properties (Cui et al.,
2019). The hydrogel can also function as a carrier and depot for the
delivery of drugs, bioactive peptides, and filling agents to adjust the
tissue regeneration processes and boost the development of novel
natural tissue (Zheng et al., 2023; Goh et al., 2024; Kalairaj et al.,
2024; Park et al., 2024). Various hydrogel-based biomaterials have
been extensively utilized in bone tissue regeneration, such as
chitosan, gelatin, hyaluronic acid (HA), etc. (Neves et al., 2020;
Zhuang and Cui, 2021). In addition, hydrogels have the potential to
enhance the proliferation, adhesion, and differentiation properties
of bone marrow mesenchymal stromal cells (BMSCs) during bone
tissue regeneration (Chaudhuri et al., 2016). Thus, hydrogels are
attractive biomaterials in bone tissue regeneration.

The synthesis and application of hydrogels have developed
rapidly based on advanced technology, which paves a significant
way for bone tissue regeneration (Choi et al., 2021; Yan et al., 2021;
Zhang et al., 2022). Smart hydrogels are becoming more attractive in
the biomaterial fields for promising applications (Balakrishnan and
Banerjee, 2011; Chen et al., 2023). These strategies present several
novel possibilities to overcome the shortcomings of traditional
materials in bone tissue regeneration, including weak bioactivity
and lack of spatial-temporal regulation (Xue et al., 2022a; Kurian
et al., 2022). Injectable in situ hydrogels are usually modified to
mimic the cell environment in terms of having similar properties to
the ECM; they can match any defect shape (Liu et al., 2017;
Hernández-González et al., 2020). Furthermore, the in situ
hydrogel system used as a filler and carrier can be loaded with
growth factors or bioactive molecules to enhance bone tissue
regeneration and avoid surgical intervention in a nidus
(Saravanan et al., 2019).

ISmart in situ hydrogels can be transformed from fluid to gel
under external stimuli and can be used to fill and treat various
irregularly shaped bone tissue defects. However, injectable hydrogels
(which were in a gel state prior to injection) do not achieve this
function. Although both can be stimulus-responsive, the stimulus
response described in this article is mainly to realize the
transformation of the gel precursor from a liquid state to a gel
state in vivo. Traditional transplant hydrogels are manufactured
before implantation and cannot be dynamically adjusted in an

externally controlled and user-defined manner. Compared with
traditional prefabricated surgical implant scaffolds, the most
significant properties of these hydrogels is that they can be easily
injected into the default site in situ and form a solid hydrogel, which
helps to resist geometric deformation (Fan and Wang, 2017).
However, the in situ hydrogel systems are subjected to the trigger
approaches in the process of converting the precursor into a solid gel
structure. To date, the trigger approaches of smart responsive in situ
hydrogel systems are achieved by exogenous or endogenous stimuli.
The exogenous stimuli strategies require an extra-activation
instrument in the process of forming a solid 3D network
hydrogel, such as ultraviolet (UV), near-infrared (NIR), or
ultrasound (US) (Li et al., 2017). The endogenous stimuli
strategies mainly depend on the interaction of both physical
microenvironments and precursors (e.g., temperature, pH,
enzyme, etc.) (Kumar and Mohammad, 2011; Cheng et al., 2016;
Gong et al., 2017). To achieve the various smart responses, the
various natural or synthetic hydrogels are usually modified by
functional groups (e.g., unsaturated bond) or compounded with
functional nanoparticles (e.g., MoS2, Cu2O, F3O4, etc.) (Faustino
et al., 2023; Wihadmadyatami et al., 2023; Hong et al., 2024).

This review provides a brief overview of the various triggers of in
situ hydrogels in smart crosslinking hydrogel administration and

FIGURE 1
Different stimulus-responsive in situ hydrogel systems based on
biomaterials were explored to obtain excellent treatment in bone
tissue engineering. Exogenous stimulus-responsive systems form in
situ hydrogels in response to triggers such as UV, NIR, US, etc.
Endogenous stimulus-responsive systems form in situ hydrogels in
response to internal triggers such as temperature, enzyme, etc.
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bone tissue regeneration (Figure 1). The various conceptions of
trigger approaches for in situ hydrogels in bone tissue engineering
are highlighted and commented on. In this work, we first introduce
the bone tissue structure and microenvironment. Then, we
summarize specific and distinct responses to various external
stimuli (e.g., UV, NIR, US, etc.) by in situ formed hydrogels,
which modified biocompatible materials by various functional
groups or hybrid functional nanoparticles. Furthermore, we
summarize smart hydrogels that respond to physiological
environmental stimuli (e.g., temperature, enzyme, etc.) to form
an in situ delivery system in bone tissue. Lastly, we devote this
review to describing the various injectable in situ hydrogel systems
and their applications in bone tissue. We hope that this review can
provide a basic guide for further development of smart responsive in
situ hydrogels in bone tissue engineering and bone
organoid culturing.

2 Bone tissue structure and bone tissue
microenvironment

Bone is a hierarchical hard tissue that is mineralized and
neurovascularized, supports the skeleton, and has many
functions, including immunoregulation, growth, movement,
hematopoiesis, and organ protection (Sun W. et al., 2023; Wang
P. et al., 2024). The homeostasis regulation of bone tissue is
primarily relayed in the microenvironment of the ECM. The
bone microenvironment is a complex dynastic system composed
of a specific ECM, integrins, growth factors, and functional cells
(e.g., hematopoietic lineage cells, mesenchymal lineage cells, etc.) (Li
Y. Y. et al., 2023; Shi et al., 2023). By gaining a deep understanding of
this special biological and physical environment of bone tissue, we
can draw inspiration to design more appropriate bone tissue
regeneration approaches and promote the bone-healing process.

2.1 Bone tissue structure

Bone tissue is a highly dynamic and complex structure, which is
constantly updated and iterated via the balance of the osteoblasts
and osteoclasts (Rodolfi et al., 2023). The structure of bone primarily
includes the periosteum, sclerotin, and bone marrow (Abdalla and
Pendegrass, 2023). The periosteum is made up of fibrous connective
tissue, which is rich in nerves and blood vessels and plays a vital role
in bone nutrition, regeneration, and sensation (Caffarelli et al.,
2023). Sclerotin is a hierarchical and anisotropic structure, which
is mainly composed of dense cortical bone and spongy cancellous
bone (Delawan et al., 2023; Tang et al., 2023). The dense cortical
bone possesses high mechanical strength and encompasses the
cancellous bone on the periphery, which possesses an excellent
stabilizing and supporting function. The sponge-like cancellous
bone consists of countless flaky trabeculated bones, which are
laid out inside the bone. Bone marrow is present in the spongy
cancellous bone space and the bone marrow cavity of long bones and
is composed of various types of cells and reticulated connective
tissue (Caffarelli et al., 2023; Cao et al., 2024). Thus, the bone tissue
can be precisely divided into multiple levels for investigation. For
example, at the micron level, the cortical bone is arranged along the

long axis of the bone. An osteon is the functional basic unit of the
long bone, consisting of lamellar bones arranged in concentric
circles. Nerve fibers and blood vessels pass through the bones to
form the Havers system. The cancellous bone, an anisotropic
arrangement of rod-like trabecular bones, forms a honeycomb-
like network. Observing the microscopic structure, the main
component of ECM is collagen fibers, which have a diameter of
approximately 35–60 nm. The collagen fibers are formed by the self-
assembly of unique triple-helix biomolecules (Yin and Li, 2006;
Wegst et al., 2015; Zhu et al., 2021). Hydroxyapatite crystals with
superior anisotropic mechanical properties play a vital role during
controlled bio-mineralization (Figure 2A).

2.2 Cartilage and subchondral bone

Cartilage is a powerful gliding tissue that covers the moving
extremities of the bone skeleton. However, cartilage regeneration is
challenging due to its limited ability to self-heal, owing to complex
structures and components and a lack of blood vessels (Zhang et al.,
2023). Cartilage primarily consists of chondrocytes and ECM
(mainly composed of water and type II collagen fibers) (Sun L.
et al., 2023). Furthermore, the cartilage defects may initiate the
development of osteoarthritis (OA). One work demonstrated
bottom-up primary degeneration from subchondral bone during
cartilage erosion in OA with aging (Wang H. et al., 2024). The
special relationship between subchondral bone and cartilage via
various molecular signaling has been widely reported (Wu Z. et al.,
2023; Ouyang et al., 2023). For example, the subchondral bone
builds a bridge between cartilage and bone to provide both
mechanical and nutritional support for cartilage and maintain
the stability of the cartilage microenvironment, which is the bony
layer below the hyaline cartilage and cement line (Luo et al., 2024).
Anatomically, the subchondral bone consists of the subchondral
plate and the subchondral bone trabeculae. The subchondral plate is
a dense and crisscrossed poly-porous calcified plate. The
subchondral bone trabeculae possess a spongy-like cancellous
structure behind the subchondral plate, which contributes to
continuous bone regeneration and remodeling and maintaining
the physiological homeostasis microenvironment of the cartilage
(Su et al., 2023; Yu et al., 2023; Zhao et al., 2024) (Figure 2B).

3 Application of exogenous stimulus-
responsive in situ gelling in bone tissue
engineering

The ideal candidate biomaterials can bridge tissue damage and
improve regeneration by enhancing new natural tissue regeneration
(Xue et al., 2021). Simultaneously, they are also required to
demonstrate excellent biocompatible, tunable mechanical
properties and biodegradation as they degrade gradually during
tissue repair (Wu D. et al., 2024; Zhou H. et al., 2024; Vaidya et al.,
2024). To date, a variety of natural and synthetic biomaterials have
been applied in an attempt to simulate ECM of the natural bone
tissue (Xu et al., 2023; Sung et al., 2024; Yoon et al., 2024). Hydrogels
are regarded as the leader in biomedical and tissue regeneration
engineering applications, owing to their 3D structure and characters
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(Xue et al., 2022b). However, the extensive clinical application of
hydrogels faces significant challenges in matching the complex
functional and pathological alterations of the human body.
Therefore, novel hydrogel biomaterials with smart properties to
promote clinical practices in biomedicine and tissue regeneration
engineering are needed. Smart responsive in situ hydrogels are
extensively applied in bone tissue engineering (Ali et al., 2024;
Asadi et al., 2024; Zhou H. et al., 2024; Garg et al., 2024). This
strategy can guide hydrogels to adapt to diverse shapes and depths of
bone defects, which will promote integration with bone tissue.
Among the various fabrication strategies, an exogenous stimulus
is usually selected to fabricate in situ hydrogels for bone repair
because of easy control and manipulation via adjusting the input
energy flow density. This section mainly reviews the various
exogenous stimulus phase transition strategies used for in situ
hydrogel applications in bone tissue engineering (e.g., UV, NIR,
etc.), as shown in Figure 3.

3.1 UV light crosslinking to in situ hydrogel

Photo-sensitive hydrogels have the ability to achieve a liquid-gel
transition when exposed to special wavelengths of light stimuli
(Patel et al., 2022). They usually include polymeric systems and
functional photoreceptive parts, in which the physicochemical
properties are altered (liquid-gel) after light exposure. They have

multiple biomedical applications and mainly utilize visible light.
Photo-responsiveness is an attractive stimulus method because of its
advantages (e.g., light is non-invasive and allows remote control of
materials without byproducts). In addition, the light could be
precisely modulated by irradiation parameters (e.g., light
intensity, irradiation time, input power) to regulate the physical
properties of the gels.

However, most natural biomaterials fail to respond to the trigger
condition due to the absence of photo-responsive functional groups
(Ding et al., 2015). Fortunately, these in situ response systems are
achieved by introducing functional groups through photochemical
addition reactions or activation of functional groups via the release
of photo-caging groups and photoisomerization processes. Some
bioactive materials are modified via methacryloyl (MA) or
unsaturated bond groups (C=C or clickable C≡C) to respond to
light triggers (e.g., gelatin methacryloyl (GelMA) (Zhang et al., 2016;
Byambaa et al., 2017; Sun X. M. et al., 2018), hyaluronic acid-
butyramide (HA-NB) (Zhang et al., 2016), polyethylene glycol
(PEG) (Burke et al., 2019), etc.). For example, Qiao et al. (2020)
designed a novel injectable in situ osteogenic polypeptide hydrogel
system (GelMA-c-OGP) via ultraviolet radiation co-crosslinking
with photo-cross-linkable osteogenic growth peptides (OGP). The
in situ hydrogel system accelerates the bone regeneration process of
osteogenic precursor cells by reinforcing the expression of
osteogenic-related genes and increasing the precipitation of
calcium in osteoblasts (Qiao et al., 2020) (Figure 4A). The

FIGURE 2
Schematic diagram of bone tissue structure. (A) Bone hierarchical structure (Zhu et al., 2021). HAP, hydroxyapatite; GAGs, glycosaminoglycans;
NCPs, non-collagenous proteins. Copyright 2021, Elsevier. (B) Schematic diagram of cartilage and subchondral bone.

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Wu et al. 10.3389/fbioe.2024.1389733

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1389733


injectable hydrogel precursor converts to solid hydrogel with UV in
situ irradiation, which also can reinforce the mechanical properties
(e.g., stress-strain, shear force.) of the defective bone, avoid burst
release osteogenic drugs, and achieve timed release throughout the
bone-healing term. Similar work was reported byMontazerian, H. to
enhance the toughness, stretchability, and adhesive properties of
GelMA hydrogel. They conjugated the polydopamine to the GelMA
to improve the cell migration capacity and enhance bone
regeneration (Montazerian et al., 2021). Furthermore, researchers
have recently focused on RNA treatment due to its high
effectiveness. For example, Gan et al. (2021) utilized the
cholesterol-modified non-coding microRNA chol-miR-26a to
promote the osteogenic differentiation of human mesenchymal
stem cells (hMSCs). Chol-miR-26a was conjugated to an
injectable poly(ethylene glycol) (PEG) hydrogel by an ultraviolet
(UV)-cleavable ester bond. The injectable PEG hydrogel was formed
by a copper-free click reaction between the terminal azide groups of
8-armed PEG and dibenzocyclooctyne-biofunctionalized PEG,
while UV-cleavable chol-miR-26a was simultaneously conjugated
via a Michael addition reaction. Upon UV irradiation, Gel-c-miR-
26a (MLCaged) not only released chol-c-miR-26a selectively but also
exhibited a significantly improved efficacy in bone regeneration
compared to the hydrogel without UV irradiation and UV-
uncleavable MLControl (Gan et al., 2021) (Figure 4B).

In addition to traditional bone regeneration, the UV-
mediated in situ hydrogel is combined with an autologous

bone grafting technique to improve osseointegration and bone
fusion. For example, Wu et al. (Wu H. et al., 2023) initiated a new
method to mend the gaps between osteochondral plugs after
mosaicplasty. This approach employs an injectable photo-
sensitive hydrogel (BSN-GelMA), which is fabricated by
GelMA loaded with bioactive supramolecular nanofibers to
mimic IGF-1(IGF-1bsn) that can bind to IGF-1 receptors and
improve the bioavailability, due to their high stability and tissue
retention. The result demonstrated that the BSN-GelMA could
realize seamless osteochondral integration in the gap region
between plugs of osteochondral defects after mosaicplasty
because they can prevent cartilage degeneration and promote
graft survival. These bio-interactive materials offer a way to
bridge the gap and enhance osteochondral integration after
mosaicplasty (Figure 4C). Recently, UV-mediated in situ
hydrogel became an ideal strategy for improving cartilage
regeneration (Huang et al., 2018; Xue et al., 2022a). Articular
cartilage has limited self-regenerative capacity, and the
therapeutic methods for cartilage defects are still
dissatisfactory. To overcome this problem, Hu et al. (2020)
fabricated a GelMA/nanoclay hydrogel medium for sustaining
the release of extracellular vesicles that come from human
umbilical cord mesenchymal stem cell-derived small
extracellular vesicles (hUC-MSCs-sEVs) to improve the
cartilage regeneration, which exhibited outstanding mechanical
property. The results revealed that the GelMA/nanoclay hydrogel

FIGURE 3
Scheme of various exogenous stimulus strategies for in situ hydrogel triggering in bone tissue engineering.
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containing hUC-MSCs-sEVs stimulated chondrogenesis and
healed cartilage damage by improving the expression of
collagen II and glycosaminoglycan (GAG) (Figure 4D).

Although photo-sensitive hydrogels possess high sensitivity and
are widely applied in research, there are several shortcomings that
need to be considered in clinical application. Due to the limited

ability of ultraviolet light to penetrate tissue, photoactivation must
be directed in situ after gel injection, which is difficult in clinical
practice. Moreover, there is a need for additional chemical reactions
to graft special functional groups due to the most natural
biomaterials do not have triggers for photoactivation. This
complicates the preparation of photo-sensitive hydrogels and

FIGURE 4
Photo-crosslinking in situ hydrogel applied to bone tissue engineering. (A) Schematic representation of GelMA-c-OGP hydrogel construction and
its mechanical properties (Qiao et al., 2020). Copyright 2020, Wiley-VCH. (B) Schematic illustration of bone regeneration in vivo at the time of injection of
this hydrogel modeled with cholesterol-modified miR-26a at the site of bone malformation (Gan et al., 2021). Copyright 2021, Elsevier. (C) Schematic
diagram of the IGF-1bsn functioning as activators for promoting cell proliferation and inhibiting apoptosis (Wu H. et al., 2023). Copyright 2023,
Elsevier. (D) Schematic illustration of therapeutic sEVs released from GelMA/nanoclay hydrogel for cartilage regeneration (Hu et al., 2020). Copyright
2020, Taylor & Francis Group.
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makes industrial production more difficult. Therefore, the
production and preparation of photo-responsive gel precursors
with high safety can improve the clinical practice of UV-
stimulated in situ hydrogels.

3.2 NIR crosslinking to in situ hydrogels

Near-infrared (NIR) is an electromagnetic wave between visible
light (VI.S) and mid-infrared light (MIR) and has a wavelength in
the range of 780–2,526 nm as defined by the American Association
for Testing andMaterials Testing (ASTM) (Zhang et al., 2024c). The
NIR spectrum belongs to the frequency multiplier and main
frequency absorption spectrum of the molecular vibration
spectrum due to the non-resonance of the molecular vibration
(the molecular vibration is generated when the molecular
vibration transitions from the ground state to the high energy
level). The NIR possesses a strong penetration ability because of
its special physical properties (Wang K. et al., 2024). In addition,
NIR, without being strongly absorbed by body fluid, presents better
tissue transparency than other wavelengths and is an ideal candidate
for designing light-responsive in situ hydrogels (Raza et al., 2019).
Thus, many injectable hydrogel systems have been explored to
construct an in situ hydrogel in niduses via an NIR light trigger
due to its noninvasive nature, high spatial resolution, temporal
control, and convenience (Abueva et al., 2020) (Figure 5).

The photothermal effect is the primary mechanism of NIR-
responsive in situ hydrogels. Precisely, it refers to the release of
vibrational energy (heat) while the nanoparticle (NP)

photosensitizer is excited by a specific band of light in the
precursor (the conversion of light to heat) and then forms a
hydrogel via the tune temperature (Kim and Lee, 2018). The NIR
light was applied as an “on/off” trigger to remotely heat and activate
thermosensitive in situ hydrogels. Similar systems are used for on-
demand drug delivery and synergistic photothermal chemotherapy.
For example, Liu et al. (2019) designed an injectable,
thermosensitive photothermal-network hydrogel (PNT-gel)
through host-guest self-assembly of photothermal conjugated
polymers and ɑ-cyclodextrin. The conjugated polymer backbones
can directly convert incident light into heat, endowing the PNT-gel
with high photothermal conversion efficiency (g = 52.6%) and
enhancing photothermal stability. Meanwhile, the mild host-guest
assembly enables shear-thinning injectability and the
photothermally driven and reversible gel-sol conversion of
the hydrogel.

Many nanoparticles with photothermal conversion properties
(including nanostructures of Au, Ag, Pt, Pd, graphene oxide, carbon
nanotubes, CuS, MoS2, and PDA) have been developed to work as
multifunctional nanoplatforms to realize photothermal therapy in
tissue engineering (Jiang et al., 2019). Lee et al. (2021) designed a
novel type of NIR-triggered in situ gelation system based on the
defect-rich 2D MoS2 nano-assemblies and thiol-functionalized
thermos-responsive poly (N-isopropyl acrylamide-co-acrylamide-
co-2-mercaptoethylacrylamide) (PNAM). In this process, the
dynamic polymer–nanomaterial interactions activate under the
NIR radiation without a photoinitiator due to the photothermal
characteristics of MoS2 and the intrinsic phase transition ability of
the PNAM thermos-responsive polymer. Specifically, this phase

FIGURE 5
NIR-responsive in situ hydrogel in tissue engineering. (A) In situ gelation in vitro and in vivo of PNAM–MoS2 (Lee et al., 2021). Copyright 2021, Wiley-
VCH. (B) The controllable in situ synthesis of a CuS/131I -PEGDA hydrogel (Meng et al., 2018). Copyright 2018, American Chemical Society. (C) Schematic
illustration of NIR light-induced angiogenesis in a photoactivatable hydrogel with embedded UCNP-PMAOs (Zheng et al., 2020). Copyright 2021, RSC.
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transition behavior of PNAM stems from dynamic changes in the
hydrophilic properties of the lateral radicals. Thus, as the
temperature increases, the hydrophobic interaction of MoS2
nanoparticles increases with the PNAM chain. In addition, the
MoS2 nanoparticles generate heat under near-infrared irradiation
to attract vulcanized PNAM chains to wrap themselves, while the
defects of MoS2 nanoparticles react rapidly with the thiol side groups
to form covalent bonds (Figure 5A). Consequently, the remotely

controlled on-demand release of drugs is achieved via a
photothermal-induced gel-sol transition (Wu et al., 2017; Meng
et al., 2018; Wang et al., 2020) (Figure 5B).

The photothermal effect of the incorporated photothermal agents
not only induced the on-demand drug release through the gel-sol phase
transition of thermosensitive hydrogel but also induced proliferative
differentiation of cells via hyperthermia (Shen et al., 2021). Here, Zheng
et al. (2020) described an NIR strategy for controlling activated cell

FIGURE 6
Schematic illustration of the design of in situ nanocomposite hydrogels with a controlled release of KGN and ultrasonic stimuli ROS production for
irregular cartilage repair (Wu S. et al., 2023). Copyright 2023, RSC.
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processes (3D cell diffusion and angiogenesis) by embedding up-
conversion nanoparticles (UCNPs) into the hydrogel, which is
modified with a photo-activated cell adhesion motif. The UCNPs
can convert NIR light (974 nm) into localized UV emission and
activate photochemical reactions on demand. This light regulation is
spatially controllable and dose-dependent and can be performed at
different time points in cell culture without causing significant
photodamage to the cells. Human umbilical vein endothelial cells
(HUVEC) cells embedded in this hydrogel can form a network of
blood vessels at predefined geometries determined by the irradiation
pattern (Figure 6C). There are twomainmechanisms of in situ hydrogel
gel formation induced by NIR. The first is to realize photothermal
conversion through a photothermal factor, and the other is to convert
near-infrared light into ultraviolet light by UCNPs and then induce in
situ gelling. However, the NIR utilization rate of both types of
gelatinization is very low.

3.3 US-responsive in situ hydrogel

Ultrasound is a potentially valuable trigger for hydrogels because
of the mechanical pressure waves that oscillate at high frequencies
(≥20 kHz) and produce a range of thermal and nonthermal effects
(Wiklund et al., 2012). The thermal effects refer to the transition
from acoustic energy to thermal energy, inducing a rise in
temperature in tissues (Gao et al., 2005). The nonthermal effects,
also named cavitation effects, refer to the tiny gas bubbles generated
by ultrasound vibration (Manouras and Vamvakaki, 2017).

Ultrasound can trigger reactions in polymers, which has been
reported since the 1930s (Price, 2003). This system enables
noninvasive, spatiotemporally controlled modulation and
morphological properties using focused ultrasound in the body. For
example, Wu S. et al. (2023) designed and prepared a novel ROS-
responsive controlled-release in situ drug nanohydrogel for articular
cartilage repair (Figure 6). Ultrasonic-cleavable ketothiol (TK)-based
nanoliposomes are loaded into cartilage drugs (KGNs), thrombin, and
sonics (PpIX). Partial rupture of liposomes under ultrasound
stimulation is accompanied by enzymatic reactions of fibrinogen
and thrombin to achieve in situ gelation for filling tissue defects. In
addition, the controllable release of KGN drugs and the appropriate
amount of ROS production were achieved by regulating the ultrasound
conditions. More importantly, the appropriate amount of ROS and the
continuous release of KGN in the in situ nanocomposite hydrogel
microenvironment effectively promoted the differentiation of BMSCs in
the direction of cartilage formation by stimulating the Smad5/mTOR
signaling pathway, thereby accelerating the repair of articular cartilage
defects. Current research also focuses on inducing in situ gelatinization
through cascade reactions. The development of ultrasound in situ
hydrogels is slow due to the lack of ultrasound responsiveness of
natural gel materials. There is still a long distance to clinical application.

3.4 Magnetic responsive in situ hydrogel

Magnetic hydrogels (MHGs) have extensive tissue engineering and
biomedical applications and possess the advantages of quick response,
biocompatibility, tunable mechanical properties, porosity, and internal
morphology (Asadi et al., 2024; Liu et al., 2024). MHGs can be

fabricated by blending exogenous additives (e.g., paramagnetic,
ferromagnetic) in the polymeric matrix and placing the matrix in a
magnetic field (static or oscillating) (Zhou K. et al., 2024; Zhang K.
et al., 2024).

The most common and straightforward method for making
magnetic composite hydrogels is blending with magnetically
responsive nanoparticles. For example, Fe3O4 is one of the most
common magnetic nanoparticles (MNPs) mixed with a polymer for
the preparation of magnetic hydrogels. The Fe3O4 magnetic
nanocomposite gel can be adjusted by applying a magnetic field
(Yan et al., 2022). In addition, the type of hydrogel networks and
MNPs (the content, size, distribution), as well as the interactions
between MNPs and polymer networks, can make a significant
impact on the physicochemical properties and magnetic
responsiveness of magnetic hydrogels (Thoniyot et al., 2015).
Magnetite and maghemite have been prepared and loaded into
dextran hydrogel to produce a magneto-sensitive composite
hydrogel system by photopolymerization (Brunsen et al., 2012). The
in situ synthesis ofMNP-based composite hydrogels is more accurate in
terms of particle size and hydrogel architecture (Farzaneh et al., 2021).
Gao et al. (2014) developed a magnetic hydrogel composed of anion
networks of poly (2-acrylamide-2-methylpropane sulfonic acid)
(PAMPS) and anisotropic nanocrystals of Fe3O4. The Fe3O4

nanocrystals were prepared in situ in the PAMPS networks, where
negatively loaded SO3 facilitated the adsorption and uniform
distribution of iron ions in the hydrogel network. They found that
the size and shape of Fe3O4 nanocrystals can be adjusted by modifying
the crosslinking density of hydrogel without applying stringent
experimental conditions (Gao et al., 2014). Although the magnetic
response in situ hydrogel has achieved excellent results, it still faces great
challenges in the clinical transformation stage due to the complex
composition and the need to introduce magnetic response factors.
Therefore, simplifying the composition of magnetic response in situ
hydrogels and increasing their usability will be conducive to their use in
tissue engineering.

4 Application of endogenous stimulus-
responsive in situ hydrogels in bone
tissue engineering

Endogenous stimulus-responsive in situ hydrogels with no
additional stimulus approaches and easy control have been
extensively applied in tissue engineering (e.g., temperature, enzyme,
etc.) under physiological and pathologic environment conditions (Wu
P. et al., 2024; Gang et al., 2024). In particular, these stimuli-sensitive
hydrogels can exhibit significant sol-to-gel transitions after certain
stimuli. Hydrogels with appropriate reactivity are synthesized for
different practical applications, such as modulation of cargo release
and/or replication of dynamic interactions/evolutions in the in situ
microenvironment (Yoon et al., 2012).

4.1 Temperature stimulus-responsive in
situ hydrogel

Amongst several stimuli-responsive in situ hydrogel systems, the
thermal stimulation in situ hydrogel is one of the most widely
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investigated classes because they have a lower critical solution
temperature (LCST) and can flexibly modify their physical
characteristic (e.g., changes in volume) in response to alters in

various temperatures (Ma et al., 2019; Li X. et al., 2021; Wang
J. et al., 2021; Nguyen et al., 2021). Thermo-gel behavior combines
different thermosensitive mechanisms, such as the precipitation of

FIGURE 7
Temperature stimulus-responsive in situ hydrogel applied in bone tissue engineering. (A) Graphical representation of the injectable in situ hydrogel
experimental strategy in vivo or in vitro (Muscolino et al., 2021). Copyright 2021, Elsevier. (B) Schematic representation of PF127-based copolymer
temperature stimulus-responsive in situ hydrogel in chondral regeneration (Madry et al., 2020). Copyright 2020, Wiley-VCH. (C) Schematic diagram of
one-time injection of the TePN hydrogel system for long-term osteoarthritis treatment (Seo et al., 2022). Copyright 2022, Elsevier. (D) Preparation of
DFO-GMs hydrogel complex for repairing a critical-sized femoral defect (Zeng et al., 2022). Copyright 2022, Elsevier.
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water-insoluble polymers above LCST and then the aggregation of
thermo-gelling (Zhang K. et al., 2021). Precisely, the hydrogel
precursor is liquid when kept at temperatures lower than the
critical solution temperature and transforms into solid-phase gel
at body physiological temperature (Zhang et al., 2019). This smart
strategy can form an in situ hydrogel and offer the possibility of
injecting those systems and conforming to any irregular defects (El-
Husseiny et al., 2022).

Many kinds of thermo-responsive hydrogels have been reported
to improve the regeneration of bone tissue. Temperature-responsive
hydrogels usually possess distinctive thermoplastic characteristics
owing to hydrophobic moieties (e.g., propyl, ethyl, methyl group,
etc.) (Sood et al., 2016). For example, poly (N-isopropyl acrylamide)
(PNIPAm) gel has an obvious coil–globule transition at 32 °C
(LCST); the compound is hydrophilic below this temperature and
hydrophobic above it. Thus, these injectable precursors show a
solution state at ambient temperature; the gel form is produced
in situ at physiologic temperature (Karimi et al., 2016). Many
thermo-responsive hydrogels based on PNIPAms have been
designed and applied in tissue engineering, including N-isopropyl
acrylamide hydrogel crosslinked with di(ethylene glycol) divinyl
ether poly (NIPAAm-co-DEGDVE) (Werzer et al., 2019) and
polymer poly [(propylene sulfide)-block-(N,N-dimethyl
acrylamide)-block-(N-isopropyl acrylamide)] (PPS-b-PDMA-b-
PNIPAAM) (Gupta et al., 2014).

Poloxamers are another biodegradable biomaterial that has been
widely applied to thermo-responsive in situ hydrogel systems in
tissue engineering due to the suitable sol-gel transition temperature
(Liu et al., 2020; Zhang T. et al., 2021). For example, Madry et al.
(2020) designed an injectable and thermosensitive hydrogel based
on poly(ethylene oxide) (PEO)–poly(propylene oxide)(PPO)–PEO
poloxamers, capable of controlling the release of a therapeutic
recombinant adeno-associated virus (rAAV) vector
overexpressing the chondrogenic Sox9 transcription factor in full-
thickness chondral defects. This work indicated that the rAAV-
FLAG-hsox9/PEO–PPO–PEO hydrogel significantly improves
cartilage repair with a collagen fiber orientation similar to the
normal cartilage and protects the subchondral bone plate from
early bone loss in a minipig model (Madry et al., 2020) (Figure 7A).

Several natural biomaterials (e.g., cellulose and gelatin) and
artificial synthetic polymers (e.g., poly (N-isopropyl acrylamide)
(PNIPAAm), poloxamer, and polyfluorene 127, etc.) are exploited to
fabricate thermosensitive hydrogels which suggest promising
applications for bone tissue engineering (Chatterjee et al., 2018).
For example, Ren et al. (2015) developed a thermosensitive hydrogel
by gelatin grafted with PNIPAAm (Gel–PNIPAAm). These
injectable hydrogel precursors exhibit an excellent biocompatible,
sol-to-gel transformation property at physiological temperature and
an excellent fill-ability for complex and irregular bone defects. The
result demonstrated that this gel–PNIPAAm thermosensitive in situ
hydrogel can induce bone differentiation and improve bone
regeneration compared to the control in a cranial damage model.

As recently reported, several natural polysaccharides (e.g.,
agarose, amylose, carrageenan, etc.) possess thermo-gelling
properties, but they failed to form gels at body temperature
(Zhang B. et al., 2024; Elizalde-Cárdenas et al., 2024; Riviello
et al., 2024). Fortunately, when xyloglucan is partially
degalactosylated (Deg-XG), it will achieve sol-to-gel at a

physiological temperature of concentration over 2 wt%
(Chandramouli et al., 2012). For example, E.M and colleagues
presented a simple strategy based on the synergic combination of
forming in situ hydrogels and spheroids of adipose stem cells
(SASCs) with great potential for minimally invasive regenerative
interventions aimed to treat bone and cartilage defects. They loaded
SASCs in aqueous dispersions of partially Deg-XG and either a
chondroinductive or an osteoinductive medium to induce bone and
cartilage regeneration. The dispersions rapidly set into hydrogels
when the temperature was brought to 37°C. The physicochemical
and mechanical properties of the hydrogels are controlled by
polymer concentration (Muscolino et al., 2021) (Figure 7B).
Similar results were reported by Dispenza et al. (2017). They
designed the same injectable thermosensitive hydrogel (Deg-XG
loading with the growth factor FGF-18) to promote cartilage
reconstruction at gelation at 37°C.

Thermosensitive hydrogels were also extensively applied in the
effective treatment of osteoarthritis by local injection to replace oral
administration. For example, Seo et al. (2022) designed an injectable
polymeric nanoparticle hydrogel system with
poly(organophosphazenes), which is loaded with triamcinolone
acetate (TCA, nonsteroidal anti-inflammatory drugs) for
achieving a long-term anti-inflammatory effect and treat
osteoarthritis. The TePN precursor turned into a solid hydrogel
after intra-articular injection, and the formed 3D TePN hydrogel
released TePNs for months in an in vivo microenvironment. Long-
term release of TCA treats OA by inhibiting matrix proteinase
(MMP) expressions in the cartilages via decreased pro-inflammatory
and increased anti-inflammatory cytokine expressions (Figure 7C).

Insufficient vascularization is still a great challenge in the
regeneration of critical-sized bone tissue defects (Takaoka et al.,
2024; Yuan et al., 2024). The formation of the H-type vessel plays a
key role in the progress. To address this problem, Zeng et al. (2022)
designed an injectable thermosensitive demethoxyamine (DFO) gelatin
microsphere (GMs) hydrogel complex to stimulate the production of
functional H-type blood vessels. The results showed that the DFO-GMs
thermosensitive hydrogel complex could stimulate the production of
functional H-type blood vessels and effectively promote the
proliferation, formation, and migration of HUVECs in vitro.
Moreover, this thermosensitive hydrogel can expand the distribution
range of H-type blood vessels in the defect area and increase the native
bone tissue, whichwas confirmed via fluorescence immunostaining and
radioactivity examination in vivo (Figure 7D).

The thermo-responsive hydrogels possess great potential to adjust
the threshold response levels and allow on-demand triggers due to
excellent biocompatibility, mild trigger conditions, no toxicity, etc.
More studies should examine the integration of thermo-responsive
hydrogels with multi-gradient temperature triggers. In addition,
thermo-responsive hydrogel systems are generally regarded as crucial
triggers in designing advanced external stimuli (e.g., NIR, magnetic, US,
etc.) for smart, responsive platforms.

4.2 Enzyme stimulus-responsive in
situ hydrogel

Biocatalytic reactions of enzyme complexes are especially
important in naturally occurring multicellular organisms (Bleier
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et al., 2015). Furthermore, the enzymes catalyze the recognition of
the 3D substrate structures that are adapted to the enzymes for
binding. The “substrate specificity” closely regulates enzymatic
activity without adverse side effects. In recent years, the enzyme
medium stimulus-responsive in situ hydrogels have played an
increasing role in tissue repair due to the mild reaction
mechanism. Most enzymes involved in crosslinking also catalyze
natural reactions in our body (Jin et al., 2011) (Figure 8).
Furthermore, the enzymatic reactions are catalyzed with a
neutral-pH microenvironment in an aqueous medium at
moderate temperatures, which means that they can also be
utilized to develop in situ hydrogels. Smart enzymatic reaction
systems can be designed not only to create native extracellular
matrices (ECM) but also to construct degradable biomaterials
(Hubbell, 2003). These events capture, in substance, one of the
most significant biological features of the ECM, which is remodeling.
In addition to degradability, it is essential to adapt the gelation rate
to applications such as drug administration and tissue regeneration
strategies. A controlled gelation rate is essential to prevent diffusion
of the precursors, ensure localized drug delivery, obtain a suitable
cell distribution, and properly integrate the gel with the surrounding
tissues (mainly for irregular-shape filling applications) (Teixeira
et al., 2012). The enzyme stimulus-responsive in situ hydrogel
has raised much attention in bone tissue engineering (e.g., OA,
bone defects, fracture, etc.) (Zhou S. et al., 2024; Vidal et al., 2024). In
this contribution, the enzymatically crosslinked gels are reviewed in
the context of regenerative strategy applications.

4.2.1 Peroxidase
Peroxidases are a broad family of enzymes that usually catalyze

the following reaction: ROOR′ + electron donor (2e−) + 2H+—ROH
+ R′OH. Horseradish peroxidase (HRP) is the most common
peroxide used in the formation of hydrogel (Krainer and Glieder,
2015; Khanmohammadi et al., 2018). HRP is widely distributed in
the plant kingdom. It is a colorless enzyme protein comprising

brown iron porphyrin combined with glycoprotein. In addition,
HRP is combined with hydrogen peroxide (H2O2) to obtain an
[HRP-H2O2] complex that can oxidize a variety of hydrogel donor
substrates (Ryan et al., 2006).

In crosslinking, the basic physical properties (mechanisms) and
biologically inducible properties mainly rely on the precursor
concentration. Saghati and colleagues (Saghati et al., 2021) detect
the effect of several parameters, including H2O2 and HRP
concentrations, on the hydrogel properties of Alg-based
hydrogels via an enzymatic cross-linked procedure. They found
that the physical properties of 1.2% (v/w) Alg-Ph, 5 U HRP, and
100 mMH2O2 at the ratio of 1:0.54:0.54 are more appropriate for the
cartilage-like structure, which has a great potential to induce
cartilage regeneration. Several studies have been reported to
describe enzymatic crosslinking in situ hydrogels (Arora et al.,
2017; Qi et al., 2018; Behrendt et al., 2020; Li Q. et al., 2021).
For example, Arora et al. (2017) developed a novel enzymatically
cross-linked injectable hydrogel composed of carboxymethyl
cellulose (CMC), sulfated carboxymethyl cellulose (sCMC), and
gelatin for the delivery of infrapatellar fat pad-derived MSCs and
articular chondrocytes to a cartilage defect site while enabling TGF-
β1-mediated chondrogenesis (Figure 9A). Similarly, Zhang et al.
(2020) fabricated an in situ hydrogel consisting of collagen-type
I-tyramine (Col-TA) and hyaluronic acid-tyramine (HA-TA) that
also loaded the BMSC for cartilage regeneration. Further, the
proliferation and differentiation of BMSCs within the Col-HA
hydrogel were evaluated, and the ability of in vivo cartilage repair
was also examined in the presence of the TGF-β1. These results
illustrated that this hydrogel could provide an excellent
microenvironment for BMSC growth and cartilage differentiation
in vitro and in vivo (Zhang et al., 2020) (Figure 9B).

4.2.2 Per-oxygen transglutaminases
Transglutaminase, a type of biological glue, is found in plasma,

tissues, keratinocytes, and epidermal cells in the human body.

FIGURE 8
Various enzyme stimulus-responsive in situ hydrogel schemes. Enzyme response mechanisms of horseradish peroxidase (A), transglutaminase (B),
and thrombin (C).
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Transglutaminase catalyzes the development of an isopeptide
binding of the amide group of a glutamine residue to the
primary amine group of a lysine residue (Greenberg et al., 1991).
The amide portion of the glutamine residue attacks the enzyme as
the donor acrylic substrate (an intermediary thioester form),
resulting in an acrylic-enzyme form. In the presence of an acyl-
acceptor substrate, such as a lysine residue, the imidazole group in
the active site was deprotonated by the amine group, while the acyl-
enzyme and lysine residues form a tetrahedral group (Lai et al., 2017;
Savoca et al., 2018). Finally, this group decomposes into an
isopeptide group to form a reticulated system78. In addition,
transglutaminase was applied to hydrogel as an enzymatic
crosslinking agent to achieve in situ gelling, due to the safe and
highly effective catalytic effect. For example, Chen X. et al. (2021)
manufactured a novel gelatin-based hydrogel that was crosslinked
by transglutaminase (TG) and tannic acid (TA). This hydrogel,
when incorporated into the MPs-His6-T4L-BMP2, demonstrated
excellent in situ injectability, heat sensitivity, adhesion, and
mechanical properties. The efficient charging mode resulted in a
controllable and sustainable release of His6-T4L-BMP2 to improve
bone regeneration in a critical bone defect (Figure 10). The injection
and tunable hyaluronan-transglutaminase hydrogel were obtained

by adding coagulation factor XIII. The specific amino acid residues
from substrate FXIIIa contribute to reducing toxicity during
crosslinking (Anjum et al., 2016).

4.2.3 Fibrin-thrombin hydrogel
Thrombin, a serum protease found in the bloodstream, is

specific to arginine-glycine bonds in fibrinogenic peptides. Thus,
thrombin and fibrin are generally applied to tissue engineering as a
field administration system (Noori et al., 2017). Injectable fibrin-
based hydrogels have been extensively investigated for applications
in bone tissue regeneration due to their minimally invasive implant
procedure and shortened healing time, which reduces patient
discomfort and complications and decreases healthcare costs
(Kim et al., 2014). Furthermore, they can easily bridge faults of
irregular shapes and provide the necessary mechanical support (van
der Stok et al., 2015). During the final step of the biological
polymerization process, soluble fibrinogen is cleaved by thrombin
to produce insoluble fibrin, which binds to form fibers and a
network. Meanwhile, a large number of red blood cells, platelets,
and other entities are encapsulated in the network into a firm
hydrogel system (Hickman et al., 2018). The in situ injection
strategy offers the benefits of simple surgical procedures and the
prevention of patient discomfort. Non-surgical strategies involving
cellular or in situ hydrogels have been reported (Lyu et al., 2020). For
example, Chen et al. (2022) developed a double-function injectable
fibrin hydrogel with semi-synthetic chitosan sulfate nanoparticles
that dramatically improves the level of recombinant human bone
morphogenetic protein-2 (BMP-2) to induce osteogenesis and
reduces the inflammatory response at the damage site. This
fibrin-based hydrogel system effectively manages the release of
BMP-2 and induces osteogenetic differentiation. Furthermore, the
hydrogel system regulates the polarization of macrophages from the
M1 toM2 stage with a significant decrease in inflammatory cytokines
(Figure 11A). However, most injectables were composed of
biomaterials that have not yet been clinically approved. In
addition, they were also subjected to low mechanical stresses to
reduce the load-bearing stresses applied to the meniscus. Therefore,
mechanically stable, highly bioactive biomaterials must be
developed for translational research using biomaterials approved
by the FDA. For example, An et al. (2021) developed a clinically
applicable and injectable semi-interpenetrated network (semi-IPN)
hydrogel system based on fibrin, reinforced with F127 and
polymethyl methacrylate (PMMA) to improve the intrinsic weak
mechanical properties. Through the dual-syringe device system, the
hydrogel could form a gel state within approximately 50 s, and the
increment of compressive modulus of fibrin hydrogels was achieved
by adding F127 from 3.0% (72.0 ± 4.3 kPa) to 10.0% (156.0 ±
9.8 kPa) (Figure 11B). Similar work has been reported by Kim et al.
(2021), who fabricated a semi-IPN hydrogel system consisting of
fibrin and polyethylene oxide (PEO) to improve the treating a
segmental defect of the meniscus in a rabbit meniscal defect
model (Figure 11C).

4.2.4 Glucose oxidase (GOD)
Glucose oxidase (GOD) is an important industrial enzyme in the

food industry, textile bleaching and dyeing, biofuels, glucose
biosensors, and other emerging fields. It is widely distributed in
animals, plants, and microorganisms. Importantly, GOD can

FIGURE 9
Peroxidase enzymatically crosslinking injectable in situ
hydrogels. (A)Overall scheme of enzymatically cross-linked injectable
hydrogels for delivery of cells and TGF-β1 for cartilage tissue
engineering (Arora et al., 2017). Copyright 2017, Europe PMC. (B)
Preparation of the BMSC-laden injectable Col-HA hydrogel for
cartilage regeneration (Zhang et al., 2020). Copyright 2020, RSC.
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specifically catalyze the β-D-glucose to form gluconic acid and
hydrogen peroxide under aerobic conditions. It offers the
possibility of inducing in situ hydrogels by the cascade reaction
from oxidation products. However, it has been applied to a special
pathological model (diabetes) to achieve in situ hydrogel because it
requires much glucose in this in vivo process. Thus, several works
focus on GOD to induce an in situ hydrogel to treat wounds and
bone tissue damage in patients with diabetes (Figures 12A,B) (Zhao
et al., 2017; Chen Y. et al., 2021). For example, Zhang Q. et al. (2021)
proposed a cascading enzyme polymerization process triggered by
tissue fluids catalyzed by glucose oxide and ferrous glycinate, which
improves the ultra-fast gelification rate of acryloylate and
acrylamide chondroitin sulfates. The highly efficient production
of carbon radicals and macromolecules helps the gel to rapidly
polymerize, promoting soft tissue growth in bone defects. In
addition, this copolymer hydrogel demonstrated potential for
cartilage regeneration in vivo and in vitro. As a first example of
using artificial enzyme complexes for in situ polymerization, this
work provides a biomimetic approach to the design of force-
adjustable hydrogels for bio-implantation and bio-printing
applications (Figure 12C).

An enzyme is an active substance with high catalytic
efficiency and specificity. Because of this, enzyme-catalyzed in
situ hydrogels have a singular nature. Human enzyme catalysis is
affected by the concentration of enzymes in the body. In addition,
it is easy to lose enzyme activity when specific enzymes are
introduced in vitro due to the special storage conditions of
enzymes. These shortcomings limit the clinical application of
enzyme-catalyzed in situ gels. In the future, vigorously
developing synthetic nanozymes to replace natural enzymes
may become a novel strategy to promote the development of
enzyme-catalyzed in situ hydrogels.

4.3 Chemical reaction crosslinking stimulus-
responsive in situ hydrogels

Compared with physical crosslinking, the in situ hydrogels
produced by chemical crosslinking possess higher stability in the
physiological state and showed excellent mechanical properties, gel
stiffness, and slower degradation rates due to the covalent linking of
the interpolymer chain (Chai et al., 2024). In addition, they exhibit
flexible biodegradation and mechanical properties by adjusting
hydrogel precursors and providing longer-lasting spatial support
for slow regeneration processes (Pranantyo et al., 2024). Usually,
those chemical reactions promote covalent linkage in hydrogels
through chemical crosslinking, such as click chemistry (e.g.,
Diels–Alder reaction, Michael addition reaction, or thiol–Michael
addition reaction). In the assembly of hydrophilic polymers, those
deterministic groups, such as COOH-, OH-, and NH2-, are utilized
to construct a hydrogel system via a covalent bond between amine-
carboxylate and a Schiff alkali or isocyanate-OH/NH2 (Liu H. et al.,
2023; Wang X. et al., 2024; Qu et al., 2024).

4.3.1 Click chemistry
Recently, the development of click chemistry has presented a

possibility to further enhance the specificity of in situ hydrogel
systems. Click reactions are fast, spontaneous, versatile, and highly
selective chemical conjugation reactions that can be generated under
mild reaction conditions when two molecular substances or
components are mixed or reacted together (Albada et al., 2021).
Examples include strain-promoted azide-alkyne cycloaddition
(SPAAC) (Liu et al., 2021) and inverse electron-demand
Diels–Alder reactions, etc. (Vu et al., 2022). There are no
potentially toxic catalysts in the progress of hydrogel
crosslinking. Thus, click chemistry has expanded the research

FIGURE 10
Fabrication of hydrogel Gel/TG/TA-MPs-His6-T4L-BMP2 (Hydrogel/MPs-His6-T4L-BMP2), which was applied to bone defects (Chen X. et al.,
2021). Copyright 2021, Elsevier.
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fields of tissue engineering and regenerative medicine (Jewett and
Bertozzi, 2010).

Due to the mild, safe, and effective reaction conditions, click
chemistry offers the possibility of applying artificial chemical
reactions in vivo. The wide application of click-through responses
in vivo to increase the link between nanoparticles and target cells for
drug administration has paved a new path in bone tissue engineering
(Vu et al., 2022). For example, to obtain a quick gelling, Hermann
et al. (2014) prepared amulti-arm PEG polymer modified by azide (a
linear crosshair PEG-DBCO) via a SPAAC reaction between the
azides and the BOD to apply in bone regeneration. Both polymers
could be crosslinked in less than 30 s at ambient temperature and
form a stable hydrogel structure. The hydrogel was developed to
inhibit craniosynostosis via the release of the rmGremlin1 BMP
inhibitor. After injection into the calvarial defect in a mouse model,
this rmGremlin1 hydrogel successfully delayed synostosis in micro-
CT images, demonstrating the potential of the SPAAC-based
hydrogel. Similar work has been reported by Liu et al. (2021),
who reported a new oligomeric polyhedral oligomeric SPAAC
system of organic-inorganic nanohybrids (click-ON) that can be
crosslinked without toxic initiators or catalysts. Click-ON

scaffolding can also support high adhesion, proliferation, and
osteogenesis of stem cells. In vivo evaluation results revealed
exceptional bone formation with minimum cytotoxicity via a rat
head malformation model. A high expression of alkaline osteogenic
phosphatase and vascular marker CD31 was found at the defect site,
which indicates an excellent regeneration capability for in vivo
osteogenesis and vascularization (Figure 13A).

In addition, countless biomaterials (e.g., collagen, HA, alginate,
dextran, chitosan, gelatin, silk, etc.) are modified by chemical bonds
to achieve in situ click chemical crosslinking in physical conditions
(Lao et al., 2023; Morrison and Gramlich, 2023; Rizwan et al., 2023;
Tournier et al., 2023). For example, to prolong the degradation time
of HA in vivo, Park et al. (2020). exploited tetrazine-modified HA
and trans-cyclooctene-modified HA monomer to prepare an
injectable in situ hydrogel system by Diels–Alder click-
crosslinking reaction, which loaded a BMP2 mimetic peptide for
improving bone tissue regeneration. After the in situ construction of
hydrogel in vivo, this hydrogel system provided an excellent mimic
ECM microenvironment for the human dental pulp stem cells
(hDPSCs). The bone morphogenetic protein-2 (BMP-2) mimetic
peptide is similar to BMP-2, which possesses an excellent ability to

FIGURE 11
Fibrin-thrombin-based in situ hydrogels were applied in bone tissue disease. (A) Schematic illustration of rhBMP-2@SCS NPs to induce therapeutic
osteogenesis (Chen et al., 2022). Copyright 2022, Elsevier. (B) Scheme of the gelation process of Fb/F127/PMMA hydrogel through a dual-syringe device
while filling the meniscal defect region (An et al., 2021). Copyright 2021, SAGE Publications Ltd. (C) The schematic representation describes the overall
procedure during the injection. The fibrinogen and thrombin (Tb) solutions were injected, and the semi-interpenetrated polymer network was
subsequently formed (Kim et al., 2021). Copyright 2021, American Orthopaedic Society for Sports Medicine.
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induce the osteogenic differentiation of hDPSCs. This HA-based in
situ hydrogel quickly achieved sol-gel and formed a scaffold in vivo,
which retained the BMP-2 for over a month. Thus, the HA-based in
situ hydrogel is advantageous in inducing osteogenic differentiation
of loaded hDPSCs (Figure 13B).

Furthermore, smart hydrogel systems, such as those triggered by
UV (Sun S. et al., 2018; Jansen et al., 2018), NIR (Anugrah et al.,
2019), and enzymes (Nguyen et al., 2019; Criado-Gonzalez et al.,
2020), have been developed to induce the occurrence of click
chemistry. For example, Ding et al. (2021) constructed a pH-
responsive UV-cross-linkable chitosan hydrogel for actively
modulating drug release behavior. The C6-OH selectively
modified chitosan via a protection/deprotection strategy for the
amino groups. In addition, the allyl groups on the C6 site and the
amino groups on the C2 site endowed chitosan with UV crosslinking
capability and pH responsiveness, respectively. A rapid gelling by
UV crosslinking (30 s) with low-dose UV irradiation (4 mW/cm2)
by thiol-ene was demonstrated for in situ in vivo microgels
and hydrogels.

4.3.2 Thiol-Michael addition reaction
The Michael addition reactions have been broadly applied in

organic synthesis, such as material applications, surface

modifications, polymer modifications, and polymer synthesis
(Mather et al., 2006; Nair et al., 2014). Herein, we focus on a
specific Michael addition reaction: the thiol-Michael addition
reaction, which occurs between the thiol and vinyl groups and
can be initiated by various catalysts, such as bases, metals,
organometallics, and nucleophiles (Xiao et al., 2022). Among
those catalysts, bases and nucleophiles are the most effective,
with the least propensity to secondary reactions. In the
traditional method of a thiol-Michael addition catalyzed by a
base, the base extracts a thiol proton to produce a thiolate anion,
which subsequently undergoes the addition of a Michael thiol. In the
nucleophilic-mediated pathway, the nucleophile reacts with the
electron-deficient double bond to produce an intermediate
carbanion, which, in turn, deprotonates the thiol to produce a
thiolate anion. The versatility provided by the weak sulfuric-
hydrogen bond enables the thiol-Michael addition reaction to be
initiated using a wide range of precursor materials.

The thiol-Michael addition reaction can be carried out under
physiological conditions, which results in irreversible reactions in
the bioengineering toolkit to fabricate a 3D hydrogel scaffold (Yu
and Chau, 2012). For example, Gilchrist et al. (2021) described a
functional gelatin hydrogel with maleimide, which can be
crosslinked by a thiol-maleimide addition reaction for

FIGURE 12
Glucose oxidase-based in situ hydrogels were applied in bone tissue engineering. (A) Scheme of pH and glucose dual-responsive injectable
hydrogels with insulin and fibroblasts as bioactive dressings for diabetic wound healing (Zhao et al., 2017). Copyright 2017, American Chemical Society. (B)
Schematic illustrations of gelation mechanisms by O2 oxidation, direct addition of H2O2 solution, and the indirect H2O2 supplement method via GOD-
catalyzed glucose oxidation and glucose-triggered in situ forming keratin hydrogel as a drug depot for the treatment of diabetic wounds (Chen Y.
et al., 2021). Copyright 2021, Elsevier. (C) Fabrication of the CS-DMAA hydrogel. Themolecular structures of the acryloylated-CS and the poly (DMAA) are
given. This hydrogel is used as a tissue filler via in situ injection and glucose-responsive hydrogenation (ZhangQ. et al., 2021). Copyright 2021, Wiley-VCH.
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encapsulation of susceptible stem cell populations. This hydrogel
system has tunable mechanics to match the bone marrow
microenvironment for culturing hematopoietic stem cells in vivo
without generating free radicals (Figure 13C). Liu et al. (2015)
created a novel thiol-Michael addition reaction for in situ
hydrogels that crosslinks dextran derived from glycidyl
methacrylate and dithiothreitol. The encapsulation capacity of 3D
cells is demonstrated by encapsulation of rat mesenchymal BSCs and
NIH/3T3 fibroblasts in in situ hydrogels. The encapsulated cells
maintain high cell viability.

4.3.3 Schiff base reaction
Schiff base reactions are extensively applied to synthesize in situ

hydrogels for bone tissue regeneration applications due to the mild
reaction conditions and high reaction rate (Amirian et al., 2021).
The Schiff reaction takes place between the amino (R-NH2) or
hydrazide (R-NHNH2) and aldehyde (R-CHO) functional groups of
imine or acrylic hydrazone. It has grown into one of the most
popular strategies for developing biocompatible hydrogels in tissue
engineering (Wang B. et al., 2021; Hu et al., 2021). Recently, various
biomaterials have been explored for utilization in Schiff base in situ

hydrogels (Lee, 2018; Hernández-González et al., 2021). Chitosan is
an excellent biomaterial for the preparation of in situ hydrogel
systems based on Schiff reactions because of the abundance of amino
groups on its spinal column (Li Z. et al., 2021). For example, Cheng
et al. (2014) reported in situ chitosan polysaccharide hydrogel for
both cellular and protein administration. The chitosan
polysaccharide is crosslinked via an imine bond resulting from
the Schiff base reaction between the amino functionalities of
chitosan and the aldehyde groups of the dextran aldehyde
precursors. This approach eliminated the potential cytotoxicity
and improved the biocompatibility of polymers without
additional crosslinking agents. In addition, this work
demonstrated the versatility of the gel in terms of manufacturing
and the ability to change the mechanical properties by adjusting the
extent of crosslinking. Cao et al. (2015) successfully explored a
functionalized multi-benzaldehyde analog PEG, poly (ethylene-co-
glycidol ether)-CHO (poly (EO-co-Gly)-CHO), and glycol chitosan
to develop an in situ hydrogel system for cartilage tissue repair. This
multi-functionalized hydrogel system has been chemically
crosslinked by a basic Schiff reaction between the chitosan glycol
amino groups and polyaldehydes (EO-co-Gly)-CHO groups under

FIGURE 13
Chemical reaction crosslinking stimulus-responsive in situ hydrogel. (A) Oligomeric polyhedral oligomeric alkyne-azide cycloaddition (SPAAC)
system (Liu et al., 2021). Copyright 2021, Elsevier. (B) Schematic illustration of the in situ hydrogel formed by a Diels–Alder click-crosslinking reaction.
(Park et al., 2020). Copyright 2020, Elsevier. (C) Thiol-Michael addition reaction (Gilchrist et al., 2021). Copyright 2021, Elsevier. (D) Schematic
representation of the formation of injectable hydrogels chemically cross-linked by a Schiff’s base reaction between aqueous solutions of GC and
poly(EO-co-Gly)-CHO (Cao et al., 2015). Copyright 2015, RSC.
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physiological conditions (Figure 13D). The results indicated that the
in situ hydrogel system not only possesses excellent adjustable
physical properties (e.g., water uptake, degradation, mechanical
properties, and network morphology) but also has the excellent
ability to induce chondrogenesis. Furthermore, other in situ
hydrogels based on biomaterials coupled with the crosslinking of
the Schiff base have been extensively studied in tissue engineering
(Antony et al., 2019; Chen J. et al., 2021).

Chemical reaction crosslinking stimulus-responsive in situ
hydrogels were formed by special functional groups between
molecules in precise crosslinking and stable. However, the
functional groups or reaction products of these chemical grafts
can potentially be toxic. This will be detrimental to the
application and registration of gel products. Therefore, it is
necessary to improve and optimize the safe chemical grafting
preparation process in order to promote the industrialization
development of the chemical reaction crosslinking stimulus-
responsive in situ hydrogels.

4.4 Ion crosslinking stimulus-responsive in
situ hydrogel

Metal ions are an indispensable microelement in regulating
whole-body homeostasis (Zhang et al., 2024b). They can be
elaborately designed by linking with polymer chains to transform
in situ functional hydrogels to improve bone tissue regeneration
(Zhang P. et al., 2024). Ions can recognize biomaterial monomers,
promote crosslinking between molecules, and enhance the stability
of the structure. Therefore, the ion-triggered biomaterials that form
in situ hydrogels have received extensive research attention
(Ramírez et al., 2024). Alginate, a naturally derived
polysaccharide, has been regarded as an ideal hydrogel
biomaterial for bone tissue engineering because of its
biocompatibility, tunable mechanism properties, low
immunogenicity, and ease of gelation by metal ions (Li et al.,
2024). It is generally believed that this crosslinking mechanism is
the interaction of two carboxyl groups on the adjacent polymer
chain with divalent cations to form an ion bridge or chelate with ions
via the hydroxyl and carboxyl groups on polymer chains. Thus,
alginate-based hydrogel systems can be flexibly manufactured to
achieve metal ions response (e.g., Ca2+, Si2+, etc.) (Chen et al., 2024;
Li et al., 2024; Zhong et al., 2024). Usually, alginate-based hydrogels
are prepared by contacting alginate precursors with CaCl2 aqueous
solutions. However, the gelling rate is too fast and difficult to control
when using CaCl2 as a crosslinker. Thus, various crosslinking
retardation agents have been applied to tune the gelation rate to
form an injectable in situ alginate-based hydrogel (Nandi et al.,
2008). For instance, Jung et al. (2018) prepared in situ gel alginate
(ALG)/HA hydrogel system with a controlled gelatin rate by
blending CaSO4 and Na2HPO4 as crosslinking retardation agents.
The ALG/HA hydrogels possess a controlled gelation rate in vivo. It
is possible to stabilize and control the release of bioactive molecules
(BMP-2 immobilized in the hydrogel for 5 weeks) for bone
regeneration. The results of cell culture and animal studies on
micropigs revealed that osteogenesis differentiation of hBMSCs
improved with the increase of HA components in BMP-2-
stimulated ALG hydrogels. In addition, hBMSCs/BMP-2 loaded

in ALG/HA hydrogels can extensively enhance bone regeneration
by synergistic action compared to single ALG/HA hydrogels.

Metal-chelating hydrogels are physical hydrogels that are
completely crosslinked by complexes between ligand-modified
polymers and metal ions. The mechanical properties of these
hydrogels depend on the density and kinetics of the metal
coordination interaction (Raymond et al., 2015). For example,
HA and the catechol compound gallic acid (GA) have iron
coordination activity. The conjugates of HA and GA (HA-GA)
immediately form the hydrogel in the presence of the Fe3+ ion. After
subcutaneous injection into mice, HA-GA and Fe3+ ions form an in
situ hydrogel and remain at the injection site for at least 8 days (Ko
et al., 2019). The ions in the ion crosslinking can replenish the trace
elements of the human body. However, the amount of ions in the gel
is much higher than the normal level of ions in the human body.
Therefore, the safety of the tissues surrounding the gel must be
thoroughly evaluated and studied.

5 Conclusion and outlook

Stimuli-responsive in situ hydrogel delivery platforms have
demonstrated great potential in repairing various kinds of bone
damage (e.g., accidents, cancer, or age). Recent years have witnessed
rapid progress in the development of in situ hydrogel systems based
on different functional biomaterials and stimulus-response
approaches to treat bone-related diseases. This review
summarized the various strategies of the smart responsive in situ
hydrogel systems in bone tissue engineering. The two strategies of
exogenous and endogenous stimulus response are detailed and
introduced. The exogenous stimulus-responsive in situ hydrogel
systems usually require exogenous trigger apparatus, such as
ultraviolet light, near-infrared light, and ultrasonic apparatus, to
form gels. In this process, those nature or synthesis biomaterials are
usually modified by functional groups (e.g., unsaturated bonds) or
combined with functional nanoparticles (e.g., MoS2, Cu2O, F3O4,
etc.) to match special trigger approaches. However, the endogenous
stimulus-responsive in situ hydrogel systems, which are free of
exogenous trigger apparatuses, relay on the physical
microenvironment (e.g., temperature, enzyme) or chemical
reactions (click chemistry, thiol-Michael addition reaction, Schiff
base reaction) to form gels in vivo. Moreover, we analyzed the
research status and advantages and disadvantages of different kinds
of stimulus-responsive in situ hydrogels. It appears that
temperature-sensitive hydrogels will be most promising for
clinical application. The specific reasons are: 1) Temperature-
sensitive hydrogels can form in situ hydrogels at human body
temperature without the need for manipulation and specific
functional modifications. 2) The simple composition of
temperature-sensitive hydrogels both reduces cytotoxicity and
opens the possibility for industrial production. 3) Temperature-
sensitive hydrogels only need to be injected once to achieve
gelatinization therapy in vivo, which can greatly improve patient
compliance and is more suitable for clinical applications.

Numerous studies have confirmed that smart responsive in situ
hydrogel technology plays a significant role in bone tissue
engineering, which provides a theoretical foundation for future
clinical applications. Although excellent regeneration effects have
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been achieved, research is still in its infancy. Clinically, there are
many limits to the development of a reliable, efficient, smart,
responsive in situ hydrogel system. First, the systems are
subjected to advanced trigger conditions, so it is necessary to
develop novel stimulation methods. Second, the rapid rate of
degradation of the hydrogel platform must be adjusted to be
consistent with the rate of regeneration of the bone defects. In
addition, the poormechanical stability of the hydrogel system fails to
match bone tissue, including rapid degradation and burst release,
poor integration with native cells, low mechanical stability, and
immunogenicity.

Despite the significant challenges, the development of smart
responsive in situ hydrogel-based bone regeneration is
extremely promising for the future treatment of bone diseases
and damage. With a better understanding of hydrogels, bone
abnormalities, ECM, and how they interact, hydrogels will
undoubtedly become a powerful tool for the clinical
treatment of bone abnormalities.
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