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The significance of point-of-care testing (POCT) in early clinical diagnosis and
personalized patient care is increasingly recognized as a crucial tool in reducing
disease outbreaks and improving patient survival rates. Within the realm of POCT,
biosensors utilizing magnetic nanoparticles (MNPs) have emerged as a subject of
substantial interest. This review aims to provide a comprehensive evaluation of
the current landscape of POCT, emphasizing its growing significance within
clinical practice. Subsequently, the current status of the combination of MNPs in
the Biological detection has been presented. Furthermore, it delves into the
specific domain of MNP-based biosensors, assessing their potential impact on
POCT. By combining existing research and spotlighting pivotal discoveries, this
review enhances our comprehension of the advancements and promising
prospects offered by MNP-based biosensors in the context of POCT. It seeks
to facilitate informed decision-making among healthcare professionals and
researchers while also promoting further exploration in this promising field
of study.
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1 Introduction

Point-of-care testing (POCT) is a vital component of modern healthcare by providing
rapid diagnostic results at the POC, ultimately enhancing patient care standards (Islam
et al., 2020). It is an innovative immunodiagnostic technique that offers real-time clinical
diagnosis, distinguished by its exceptional sensitivity and rapidity, and is experiencing a
rapid growth in the industry (Luppa et al., 2011). In modern healthcare, POC testing is a
vital component, particularly in the diagnosis of specific diseases (Parihar et al., 2023c). For
instance, in acute myocardial infarction (AMI) diagnosis, timely and accurate identification
is crucial for reducing patient mortality rates. POC testing enables rapid detection of
changes in biomarker levels, such as cardiac troponin I (cTnI), in the blood. This aids
physicians in promptly determining whether a patient has experienced myocardial
infarction (Boeddinghaus et al., 2020). Similarly, in diabetes management, monitoring
blood glucose levels essential. POC testing allows for the quick measurement of patients’

OPEN ACCESS

EDITED BY

Sharmili Roy,
Stanford University, United States

REVIEWED BY

Arpana Parihar,
Advanced Materials and Processes Research
Institute (CSIR), India
Shusheng Zhang,
Linyi University, China

*CORRESPONDENCE

Song Li,
sosong1980@gmail.com

Hongna Liu,
hnliu82@gmail.com

†These authors have contributed equally to this
work and share first authorship

RECEIVED 29 February 2024
ACCEPTED 09 April 2024
PUBLISHED 25 April 2024

CITATION

Wang M, Jin L, Hang-Mei Leung P,
Wang-Ngai Chow F, Zhao X, Chen H, Pan W,
Liu H and Li S (2024), Advancements in
magnetic nanoparticle-based biosensors for
point-of-care testing.
Front. Bioeng. Biotechnol. 12:1393789.
doi: 10.3389/fbioe.2024.1393789

COPYRIGHT

© 2024 Wang, Jin, Hang-Mei Leung,
Wang-Ngai Chow, Zhao, Chen, Pan, Liu and Li.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Review
PUBLISHED 25 April 2024
DOI 10.3389/fbioe.2024.1393789

https://www.frontiersin.org/articles/10.3389/fbioe.2024.1393789/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1393789/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1393789/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2024.1393789&domain=pdf&date_stamp=2024-04-25
mailto:sosong1980@gmail.com
mailto:sosong1980@gmail.com
mailto:hnliu82@gmail.com
mailto:hnliu82@gmail.com
https://doi.org/10.3389/fbioe.2024.1393789
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2024.1393789


blood glucose levels, enabling physicians and patients to adjust
medications and diet effectively to maintain blood glucose levels
within the appropriate range (Gourlay et al., 2024). POCT
encompasses a wide range of applications, including clinical
laboratories (Van Hoof et al., 2022; Xiao et al., 2022), chronic
disease management (Herbin et al., 2020; Bots et al., 2022), drug
monitoring (Young et al., 2019; Ates et al., 2022; Wang X. et al.,
2022; Chen Z. et al., 2022; Song et al., 2022; Beduk et al., 2023), food
safety assessment (Tang et al., 2019; Hu et al., 2021; Zaczek-
Moczydlowska et al., 2021), environmental quality testing (Xu
et al., 2020), and emergency response measures, setting it apart
from traditional testing methods.

In contrast to conventional testing approaches that are labor-
intensive, time-consuming, and reliant on large instruments like
Chemiluminescence Analyzers (Sun et al., 2020; Cacicedo et al.,
2023), POCT offer several advantages. These include swift
turnaround times, minimal analysis duration, and a user-friendly
operating procedure. As a result, POCT expedites disease diagnosis,
improves technician efficiency, and saves valuable time for both
patients and physicians (Zhang L. et al., 2022). This transformative
shift in global medical hygiene holds the potential to revolutionize
healthcare practices worldwide.

Traditional diagnostic methods, such as polymerase chain
reaction (PCR), immunofluorescence technique (FIA), immune
colloidal gold technique (CGIA), and chemiluminescence
immunoassay (CLIA), often require expensive equipment and
lengthy experimental procedures (Shen et al., 2014). Emerging
detection systems that offer ease of operation and rapid analytical
results stand to benefit greatly from POCT. In clinical testing, certain
metabolites such as CO2, urea, inorganic salts, and excess water can
influence the sensitivity and selectivity of PCR reactions (Wen et al.,
2014). These effects may involve changes in the activity and stability
of DNA polymerase, alterations in the pH and ion concentration of
the reaction buffer, and interference with the primer-template DNA
pairing. Such factors can reduce the efficiency of PCR reactions,
leading to potential false positives or negatives. Hence, POCT
instruments with rapid detection capabilities and sensitive
biosensors offer substantial advantages in clinical settings.

Biosensors traditionally consist of biological recognition
elements (receptors), signal transducers (conversion transducers),
and detectors (Capriotti et al., 2019). Magnetic nanoparticles
(MNPs) constitute a unique class of nanoparticles (NPs) that
significantly enhance biosensor efficiency and selectivity (Wang
Y. et al., 2022). They possess properties such as high biomolecule
binding rates (Li B. et al., 2017), large specific surface areas
(Kellnberger et al., 2016), low toxicity (Lee et al., 2016), and
magnetic enrichment capabilities (Su et al., 2019; Gavilán et al.,
2021), making them an excellent choice for various biological assays.
Moreover, MNPs can be tailored to different analyses (Ren et al.,
2020), reducing both cost and time (Lin et al., 2017; Yang et al.,
2022). Additionally, they are environmentally friendly and pose no
harm to human health.

For instance, Li J. et al. (2017) developed a magnetic nano-
biosensor utilizing MNPs, fluorescence-activated cell sorting
(FACS), and magnetic separation for the rapid clinical diagnosis
of cancer patients, particularly in detecting circulating tumor cells
(CTCs). MNPs also find applications in diverse biomedical fields,
including targeted drug delivery (Guo et al., 2022), bioimaging

(Zong et al., 2021), targeted hyperthermia for cancer treatment
(Zhao et al., 2019; Dash et al., 2022), as well as the capture, isolation,
concentration, and detection of nucleic acids (Zhao et al., 2023),
bacteria (Behzad et al., 2022), and viruses (Labib et al., 2021; Xing
et al., 2022), They have proven effective in immunoassays and
immune sensors (Ha and Kim, 2022; Li et al., 2023).

In recent years, there has been significant progress in synthesizing
and applying MNPs, with numerous studies discussing various
synthesis methods (Adewunmi et al., 2021; Billings et al., 2021;
Shukla et al., 2021; Niculescu et al., 2022; Parihar and Khan, 2023).
The continuous advancement of science and technology has enriched
and improved the preparation methods of MNPs, leading to their
widespread use in fields such as biomedicine, environmental science,
and materials science. Researchers are dedicated to enhancing the
efficiency, purity and stability of MNPs by exploring different
synthesis routes and optimizing preparation conditions to meet the
demands for high-performanceMNPs in various fields. Meanwhile, the
dynamic and promising nature of MNPs is attributed to their surface
modification capabilities, facilitating interactions with target substances
and the isolation of specific molecules from complex biological
environments. MNPs can also amplify detection signals, thanks to
their high specific surface areas, thereby increasing biosensor sensitivity
(Parihar et al., 2023b). Moreover, MNPs enable POCT through various
methods, including optical, magnetic, and electrochemical approaches,
as well as combined detection devices andmicrofluidic technology. This
makes them a critical component in achieving rapid, convenient, and
cost-effective clinical diagnoses (Sivakumar and Lee, 2022).

In summary, this review underscores the pivotal role of MNPs in
transforming POCT. Their versatility, sensitivity, and multifaceted
applications make them indispensable in clinical diagnoses. This
comprehensive review covers a wide range of MNPs functions and
applications in bioassays, exploring the latest advancements in MNPs-
based biosensors, with a specific focus on their integration into POCT.

2 The impact of magnetic nanoparticles
on biological detection

Sample preparation is crucial for detecting qualitative and
quantitative trace analytes in complex biological samples (Chen
et al., 2021). Factors that can affect the detection of analytes in a
sample include concentration, separation, enrichment, and
derivatization. In essence, sample preparation refers to the process of
eliminating interfering substances from biological samples, thereby
reducing their inherent complexity (Wang et al., 2023). The primary
goal is to enhance the accuracy, sensitivity, and selectivity of subsequent
analytical measurements and analyses by selectively removing or
minimizing interferences, such as matrix components, contaminants,
or co-existing analytes. Themost common biological samples, or liquids
such as urine, plasma, serum, and saliva. Typical techniques for sample
separation include protein precipitation and centrifugation. The general
phases of sample extraction comprise of cell or tissue disruption.
removal of membrane lipids and proteins, and other contaminants
by denaturing and inactivating nucleic acids, and the subsequent
concentration and purification of nucleic acids (Tavallaie et al., 2018).

Due to the high surface area and distinctive physicochemical
features of MNPs, nanomaterials have been developed rapid and
effective sample analysis, thanks to the rapid growth of
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nanotechnology. These materials enable the magnetic separation of
biological targets from the original sample without damaging the
biological samples and reducing unspecific absorption of interfering
biomolecules (Meng et al., 2023). This is critical for the development
of real-time assay systems, providing amore convenient platform for
extracting desired analytes from patient samples. With its
advantages of precision, speed, mobility, simplicity, and reduced
cost, this technology streamlines the process, produces easier-to-
read data, and enhances clinical decision-making efficiency.

Extensive research has been dedicated to studyingMNPs due to their
two intrinsic characteristics: superparamagnetism and a high surface
area-to-volume ratio. Superparamagnetic nanoparticles are nano-sized
particles with magnetic responsiveness, typically having a diameter of
less than 30 nm. MNPs exhibit a superparamagnetic state when the
particle size falls below the critical size for superparamagnetic effects.
Within this size range, MNPs not only remain unaggregated in the
absence of external magnets but also lack a net magnetization strength
(Hou et al., 2022). As a result, they can rapidly disperse in liquids,
facilitating the efficient identification of bacteria, cells, biomolecules and
proteins. Simultaneously, their fast diffusion rate and highly specific
surface area contribute to the enrichment and effectiveness of ions,
inorganic compounds, and organic compounds. Moreover, the
properties of superparamagnetism and high surface-to-volume ratio
are closely related to the shape, size, strength, and surface chemistry of
magnetic nanoparticles, making them highly adaptable for magnetic
biosensor applications. Herein, we summarized several representative
magnetic nanomaterials for Biological detection (Table 1).

2.1 Sample extraction detection and
separation

The separation of biological samples is a crucial step in their
subsequent. Ideal separation methods should be simple to operate,
offer high resolution, specificity, and short analysis times. MNPs

play a pivotal role in achieving successful separation of biological
samples due to their unique magnetic properties. MNPs enable
specific identification, concentration, and contamination-free
separation of samples, facilitating rapid solid-liquid separation
when subjected to an applied magnetic field. This feature makes
automated operations feasible. When a magnetic field is applied,
MNPs aggregate toward the magnet, and upon removing the
magnetic field, MNPs disperse in solution. Consequently, MNPs
have found extensive use in the separation and purification of
various biological samples, including cells (Bhati et al., 2021),
proteins (Sharma et al., 2022), and nucleic acids (Nguyen et al.,
2022; Huang et al., 2023). MNPs are particularly effective in
recognizing whole-cell bacteria in large samples without the need
for enrichment processes, concentration, identification, or
quantification of bacterial samples. For example, in the
concentration of bacteria in large samples, Kaushal et al.
(Kaushal et al., 2022) developed a tunable magnetic capture box
(TMCC) that combines Staphylococcus aureus-specific antibodies
with magnetic nanoparticles in controlled liquid samples for
magnetophoretic concentration and capture (Figure 1). The size
of the MNPs and the strength of the magnetic field determine the
duration required to capture the bacteria.

Quantification is carried out using digital images captured by a
portable reader to observe the reaction of the target probe with
bacteria and human cells. MNPs exhibit rapid responses and swift
movement in the presence of an external magnetic field.
Importantly, the identification and separation of target
substances, enabling effective separation and purification (Tang
et al., 2020). In contrast to traditional biological separation
methods, which can potentially cause damage to biological
samples, magnetic separation methods offer simplicity. They do
not require high-performance liquid chromatography (HPLC)
systems or filtration and centrifugation steps (Zhang Y. et al.,
2022). The analysis procedure involving MNPs is straightforward,
easy to operate, and portable device-based signal reading is

TABLE 1 Representative Magnetic nanomaterials for Biological detection.

Biomedical
materials

Experimental
sample

Combination Advantages References

Ab-MNPs Staphylococcus aureus Portable digital fluorescence
reader

High sensitivity and high specificity Kaushal et al. (2022)

MNP Low abundance cell Assisted microfluidic system High recovery efficiency Sun et al. (2022)

MNPs S. typhimurium Probe sandwich complexes \ Liu et al. (2022)

MNPs AMI. ICTS Highly sensitive, quantitative and dual-readout Gong et al. (2018)

Fe3O4@SiO2 sEVs MCAs-based ELISA High stability Yang et al. (2021)

MNPs Pathogenic bacteria Cationic polymer chains Rapid capture and enrichment Kim et al. (2021)

MNPs Monoclonal antibodies VIM polyme Rapid and high efficiency separation Zhou et al. (2023)

Fe2O3 respiratory viruses Magneto-opto-fluidic (iMOF) Rapid analysis of multiple swine respiratory viruses Zhang Q. et al.
(2022)

MNPs Salmonella enteritidis Amp Cost-effective, non labor intensive, stable, sensitive
and efficient

Bu et al. (2020)

Magnetic quantum dot SARS-CoV-2 LFIA High accuracy, specificity, and stability in saliva Wang et al. (2021)

AuNPs protein biomarkers pNIPAAm Rapid capture and enrichment Nash et al. (2010)
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FIGURE 1
Schematic representation of the TMCC design, bacterial capture, and quantification process. (A) Exploded view (I) and cross-sectional (II) view of the
TMCC and its sequential assembly. (B)Development of Ab-conjugatedMNPs (Ab-MNPs) as the capture probe (I) and aptamer-conjugatedQDs (Ap-QDs) as
the imaging probe (II) using carbodiimide coupling. (C) Pre-sample preparation of the homogenized food sample spiked with S. aureus cells and incubation
with the capture probe (Ab-MNPs) to concentrate the sample and separate unbound probes and foodmatrices. (D) Loading of recovered S. aureus cells
bound with the detection probe into the TMCC for bacterial capture, followed by washing to remove unbound Ap-QD detection probes. The quantification
process is conducted using a portable fluorescence reader based on digital imaging. Reprinted with permission from Kausha et al. (2019).

FIGURE 2
(A) Schematic representation of the active-passive integrated microfluidic system. (B) Internal view of the microfluidic chip depicting three types of
microstructures and the applied magnetic field, illustrating the passive and active capture mechanisms, respectively. Reprinted with permission from Sun
Y. et al. (2022).
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convenient, making it suitable for POCT in biomedical diagnostics,
benefiting human health.

Moreover, the integration of MNPs and microfluidics enhances
the performance of bioanalytical systems by incorporation
functionalized magnetic nanoparticles into microchip devices
(Zhong et al., 2023) Microfluidic chips, which incorporate
mixing, separation, washing, and detection functions, are
commonly used for the automated detection of pathogenic
bacteria. For instance, Sun T. et al. (2022) developed a
microfluidic system that utilizes MNPs labeling to tag target cells
and employs magnetic fields for separation, enabling the effective
isolation of low-abundance cells (Figure 2).

This technology has also paved the way for liquid biopsies and
fundamental biomedical research, offering excellent target cell
recovery and successful isolation of low-abundance Hela cells.
Notably, Liu et al. (2022) introduced a novel approach. They
simultaneously injected bacterial samples into a microfluidic chip
using capture antibody-modified MNPs and enzyme probes for
detecting antibody and glucose oxidase (Gox) modifications. These
components were mixed and incubated to form MNPs bacterial-
probe sandwich complexes. Subsequently, under the influence of an
applied magnetic fields, these complexes were magnetically captured
in the separation chamber. Finally, high-impedance glucose was
introduced into the isolation chamber to determine the amount of
the complex, enabling rapid and sensitive detection of Salmonella.

2.2 Markers and carriers for biomolecules

The detection and manipulation of biomolecules on a versatile
platform hold significant value not only in devices like diagnostic
tools but also in the fundamental research of biological and medical
systems (Bhardwaj et al., 2019; Clifford et al., 2021; Hwang et al., 2021;
Chen Z. et al., 2023). In recent years, there has been a proliferation of
electrochemical biomarker sensors employing various biomarkers, such
as biomaterials (Mathew et al., 2021), two-dimensional materials
(Bakirhan et al., 2018), and fluorescent materials (Wang et al., 2017).
Biomarkers like proteins, exosomes, nucleic acids, and viruses play
pivotal roles in identifying structural or operational changes in
systems, organs, tissues, cells, or subcells. Currently, several methods
allow for specific quantitative detection of biomarkers, including
radioimmunoassay (Kaplan et al., 1981; Grange et al., 2014), enzyme-
linked immunosorbent assay (Castelli et al., 2022), and fluorescent
antibody approaches (Li J. et al., 2021; Ma et al., 2022). However,
these existingmethods suffer fromdrawbacks such as complex operation
steps, the need for sample separation and purification, and limited
capability to rapidly and effectively differentiate biomarker content in the
sample. MNPs, on the other hand, can serve as functional materials on
electrode surfaces, accelerating electron transfer, acting as carrier signal
marker, biomarkers for sensitive molecular detection, or carrier signal
markers themselves (Zhao et al., 2021).

Immunochromatography test strip (ICTS) hold promise for acute
myocardial infarction (AMI) biomarker screening. Still, their clinical
application is hindered by limited sensitivity and the absence of
quantitative results. MNPs possess exceptional fluorescence
quenching properties, making them suitable for marker detection
applications. Gong et al. (Gong et al., 2018) devised a rapid, highly
accurate, qualitative, and dual-reading ICTS that addresses the

limitations of AMI biomarker screening via ICTS. The method
utilized MNPs to quench the fluorescence of Cy5, which was
attached to capture antibodies on test (T) lines. The sensitive
quantification of cTnI and CK-MB enables the swift diagnosis of
patients with urgent and severe AMI, facilitated by the fluorescence
intensity shift brought about by the MNP probe. This advancement in
ICTS technology overcomes previous challenges in clinical application.

To enable magnetic capture assays (MCAs) to recognize, bind, and
sense tiny extracellular vesicles (EVs) based on their form and size, Yang
et al. (2021) proposed the use of MNPs (Fe3O4@SiO2) as carrier
materials and organosilanes to create a recognition layer (Figure 3).
The process involves attaching the template of small extracellular
vesicles (EVs) to the MNPs, followed by culturing the SEV-modified
MNPs with a mixture of organosilanes to grow the silicone recognition
layer. Finally, the MNPs undergo ultrasonic treatment to remove the
SEVs, resulting in three dimensional SEV imprint on the surface of the
MNPs. This study introduces an advanced and innovative SEV
detection platform that combines sensitivity, speed, and user
friendliness, making it ideal for point-of-care testing.

The utilization of MNPs as markers and carriers of biomolecules
presents a promising approach. MNPs possess unique magnetic
properties, primarily owing to magnetic materials like Triiron
tetroxide. Active groups are introduced on their surfaces,
enabling them to bind with biomolecules such as enzymes and
antibodies through coupling reactions (Popov et al., 2021). The
exceptional superparamagnetic nature of MNPs allows labeled
biomolecules to move directionally when subjected to an external
magnetic field. Detection is performed using a superconducting
quantum interference device, and a magnetic signal reader on the
test paper enables rapid and quantitative detection of biological
target molecules (Li Y. et al., 2021). Importantly, MNPs are
biocompatible, meaning they do not induce toxicity or adverse
effects in biological systems. The biocompatibility ensures their
safe use in vivo without harm to the human body.

It is worth noting thatMNPs have undergone extensive research and
find wide application as biomarkers and carriers in POCT (Nasseri et al.,
2018; Khizar et al., 2020; Han et al., 2021; Zhang Z. et al., 2022; Mi et al.,
2022; Parihar et al., 2023a). These applications encompass
immunoassays, microfluidic devices, imaging, targeted drug delivery,
and more. For instance, in immunoassays, MNPs can be functionalized
with specific antibodies or antigens designed to recognize target
biomolecules in patient samples. This enables rapid and sensitive
detection of various biomolecules, such as proteins, hormones, or
viruses. MNPs also serve as biomarkers in nucleic acid amplification
assay, including techniques like PCR and LAMP (Zhang C. et al., 2022).
In these assays, MNPs are functionalized with specific probes that can
recognize and bind to the nucleic acid sequences of interest. The
interaction of MNPs with target biomolecules generates a magnetic
signal that can be readily detected and quantified using a magnetic
sensor or reader (Lapitan et al., 2019). This capability enables the quick
and sensitive detection of nucleic acids present in blood, saliva, or urine
samples from patients.

2.3 Rapid enrichment and purification

MNPs offer a versatile means to extract and purify molecules
from complex substrates, making it easier to isolate and concentrate
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viral particles, proteins, nucleic acids, or other biomarkers from
biological samples like blood, saliva, or urine (Chen Y. et al., 2023).
This simplifies the sample preparation process, leading to quicker
and improved detection. Additionally, MNPs’ ability to concentrate
target analytes, reduce interferences, simplify sample preparation,
and enable POC applications enhances the sensitivity, specificity,
and efficiency of rapid detection methods (Eivazzadeh-Keihan
et al., 2021).

Efficient isolation and enrichment of pathogenic bacteria from
complex samples are vital for downstream biomedical research.
Kim et al. (2021) developed a floating magnetic film using cationic
polymer chains and MNPs to create a semipermeable barrier,
enabling the rapid capture and enrichment in capillary glass
tubes, suggesting the potential for magnetic membranes to
detect large samples of bacteria and rapidly enrich biological
targets in microfluidic devices. Zhou et al. (2023) introduced a
method involving a composite membrane material composed of a
hydrophilic membrane modified with high-density vinyl imidazole
(VIM) polymer brush and Fe3O4 MNPs. This composite
membrane exhibited excellent performance in antibody
enrichment during purification processes.

For virus detection by PCR, which typically involves samples
extraction, nucleic acid purification, and detection, Zhang Q. et al.
(2022) developed an immunomagnetic virus enrichment method using
MNPs and a biosensor system-on-chip (IMOF) based on photonic
crystals (PC) (Figure 4). This approach employed antibody-
functionalized MNPs to specifically target and concentrate the virus
while improving the output efficiency of the PC sensor, enabling
automated detection. This technology holds promise as a rapid
diagnostic tool for target virus detection.

In advanced bacteria detection technology, lateral flow assays
(LFA) have gained recognition for their simplicity, low cost, short
testing time, and lack of complex steps, making them important for
POCT (Yu et al., 2017). Bu et al. (2020) developed a novel LFA
biosensor that uses MNPs to label Amp, a beta-lactam antibiotic,
facilitating the binding and enrichment of S. enteritidis in highly
concentrated samples. This approach demonstrated high sensitivity
and excellent selectivity for potentially interfering bacteria, enabling
the quick and cost-effective real-time detection of pathogenic
microorganisms.

To achieve rapid and sensitive POCT for SARS-CoV-2 infection,
Wang et al. (2021) developed a fluorescent LFIA biosensor based on a
bi-functional magnetic nanocomposite material. This system utilized
MagTQD tags provided by Fe3O4 cores for magnetic separation and
highly stable multi-layer quantum shells (Figure 5). It offered both fast
direct mode for emergency screening and enriched mode for high-
sensitivity quantitative analysis, with ultrasensitive detection limits for
SARS-CoV-2 antigens.

Furthermore, for the purpose of enriching and identifying
protein biomarkers in human plasma, Nash et al. (2010).
Introduced a novel diagnostic method. This system employed
pNIPAAm-MNPs capable of capturing pNIPAAmAuNPs
through coaggregation, enabling efficient and thermally triggered
enrichment of gold labeled biomarkers in a single step. Model
studies demonstrated the system’s efficacy in purifying and
enriching human plasma spiked with the model biomarker
protein streptavidin. The resulting aggregates responded quickly
to a magnetic field, allowing for rapid capture and enrichment.

Overall, these applications of MNPs showcase their immense
potential in advancing biomedical research and diagnostic tools.

FIGURE 3
(A) Schematic representation of the synthetic route of MCAs. (B) Illustration of the MV-chip assays for small extracellular vesicle (sEV) detection.
Reprinted with permission from Yang et al. (2021).
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FIGURE 4
iMOF sensor chip for swine respiratory virus analysis. (A) Overview of the iMOF sensor chip design featuring a sample mixer, an MNP collection
chamber, and three PC sensing chambers. (B) Integrated virus purification and detection method employing antibody-coated MNPs and PC sensors. (C)
Diagram illustrating the label-free analysis via resonant reflection spectra measured from PC sensors, with MNPs enhancing the shift of the resonant
wavelength due to the absorption of target MNP–virus conjugates. Reprinted with permission from Zhang Q. et al. (2022).

FIGURE 5
Schematic Illustration of the Dual-Mode LFIA for Simultaneous Detection of SARS-CoV-2 S and NP by MagTQD Fluorescent Tags: (A) Direct
Detection Mode and (B) Enrichment Detection Mode of (C) Two-Channel LFIA Strip. Reprinted with permission from Wang et al. (2021).
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3 Application of MNPs-based biosensor
for POCT

Target recognition stands a pivotal aspect of biosensors,
necessitating the immobilization of bio-recognition molecules on
MPs. Biosensors rely on various biometric mechanism, including
aptamer target recognition, antibody-antigen interactions, and
molecular identification using molecularly imprinted polymers
(Gowri et al., 2021). Thanks to the unique properties and
functions on MNPs, MNP-based biosensors have emerged as
vital tools for POCT. These biosensors employ MNPs as a
sensing plating platform, offering several advantages in POCT
applications (Table 2).

One of the primary advantages of MNP-based biosensors in
POCT is their capability for efficient and sensitive target analyte
detection. MNPs can be functionalized with specific bio-recognition
target molecules, such antigens, aptamers, or enzymes, allowing
them to selectively capture and detect target molecules of interest

(Baig et al., 2022). This targeted recognition ensures highly specific
and accurate detection, even at low concentrations, making MNP-
based biosensors ideal for POCT scenarios where rapid results are
imperative. Furthermore, MNP-based biosensors offer convenient
and versatile signal readout options. Captured target analytes can be
detected through various signal transduction mechanisms, including
optical, electrochemical, or magnetic signals (Pashchenko et al.,
2018). This flexibility in signal readout permits compatibility with
different detection platforms, ranging from portable handheld
devices to more advanced instrumentation, tailored to the
specific requirements of POCT.

However, the efficient conjugation of recognition biomolecules
onto MPs remains a challenge due to the inherent instability and
weak affinity of bare MPs towards these molecules, hindering
practical applications. Surface modification of MPs holds great
promise for addressing this challenge by enhancing colloidal
stability and introducing functional molecules that facilitate
efficient biomolecule adherence.

TABLE 2 MNPs-based biosensor for POCT.

Biosensors type Biosensors technology Biosensors features References

Magnetic Induction
Biosensors

Planar Hall Effect-based magnetic sensors High sensitivity, low power consumption, a wide operating temperature
range

Hosu et al. (2019)

Fan et al. (2021)

Issadore et al. (2014)

Tunnel Magnetoresistive (TMR) Sensors High sensitivity, stability, rapid response Denmark et al. (2019)

Sharma et al. (2017)

Yan et al. (2022)

Magnetic Relaxation Switch (MRS)
Sensors

High sensitivity, rapid response, tunability Liu et al. (2018)

Hu et al. (2022)

Shen et al. (2022)

Electrochemical Biosensors electrochemical impedance spectroscopy Analyze complex systems and interfaces Qiu et al. (2021)

Suan Ng et al. (2022)

electrochemiluminescence sensor High sensitivity, low background noise, wide dynamic range Hanoglu et al. (2022)

Sanli et al. (2020)

electrochemical biosensor High specificity, rapid response, ease of miniaturization Khoshfetrat et al.
(2022)

Chen and Wu (2022)

Optical Biosensors Colorimetric-Based Biosensors Ease of use, visual readouts, rapid detection Cai et al. (2021)

Choi et al. (2021)

Song et al. (2011)

Surface Plasmon Resonance (SPR)
Sensors

High sensitivity, real-time monitoring capabilities, label-free detection Sun et al. (2022)

Liu et al. (2014)

Bhandari et al. (2022)

Fluorescent-Based Optical Biosensors High sensitivity, selectivity, real-time monitoring capabilities Xue et al. (2018)

Wang et al. (2018)

Chen et al. (2022b)
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3.1 Magnetic induction biosensors

Complex biological samples often pose challenges for
conventional detection methods in the realm of biosensor
technology. Magnetic biosensors have become essential for
addressing these challenges, primarily due to the absence of
detectable magnetic signals in crucial aspects of most biological
samples. These magnetic biosensors are particularly well-suited for
the development of POCT biosensors, owing to several unique
properties that set them apart.

Notably, magnetic biosensors offer remarkable stability, ease of
functionalization, direct signal readout, and swift separation from
complex samples (Li et al., 2022). Magnetic Induction Biosensors
stand out by achieving a high signal-to-background contrast while
requiring minimal sample cleaning. Their ability to be customized to
the size of biological targets positions them as excellent candidates
for downsizing, enabling the sensitive detection of rare cells and
minute molecular markers. Recent advancements in magnetic
induction biosensors have showcased their notable attributes,
including simplicity, reliability, cost-effectiveness, high sensitivity,
and specificity. Categorized based on the versatility of MNPs, these
biosensors hold the potential to revolutionize POCT diagnostics
(Nabaei et al., 2018).

3.1.1 Planar hall effect -based magnetic sensors
The combination of Planar hall effect (PHE) sensors and MNPs

in POCT offer several notable advantages. PHE sensors, in
particular, exhibit sensitivity to variations in local spin
configurations and can easily derive transverse voltages, a
common technique in sensor technology for imaging complex
spin phenomena (Hosu et al., 2019). Additionally, PHE sensors
provide a high signal-to-noise ratio and fast response time, making
them valuable for real-time detection and quantification of target
analytes. Consequently, this approach holds significant potential for
applications in infectious disease diagnosis, cancer screening,
therapeutic drug monitoring, and more.

MNPs play a critical role in effectively capturing and enriching
biomolecules, thereby enhancing the assay’s detection limit. This
capability enables rapid and accurate diagnosis and the POC, even
when dealing with small sample sizes. By harnessing the synergistic
capabilities pf PHE sensors andMNPs, the combines system exhibits
improved performance characteristics, enabling sensitive and
precise analysis of analytical substances in POCT settings.

The classic PHE occurs when an electrical conductor exposed to
a magnetic field develops a voltage difference. This effect arises as
mobile charge carriers experience deflection due to the Lorentz
force, resulting in their accumulation along an aspect of the
conductor (Fan et al., 2021). While PHE sensors typically exhibit
lower field sensitivity compared to sensors based on
magnetoresistance (MR), they demonstrate exceptional linearity
even under high magnetic fields. This advantageous characteristic
allows for the utilization of large magnetic fields to fully magnetize
MNPs (Issadore et al., 2014). The use of MNPs and micro-Hall
detectors for detecting rare cells holds immense promise for POCT
diagnostics. This approach is well-suited for practical clinical
environments due to its fully automated nature and minimal
sample processing requirements. As an example, Issadore (2015)
developed a mincrofluidic chip-based micro-Hall detector (μHD),

capable of directly measuring single, immunomagnetically tagged
cells in whole blood. The μHD can detect individual cells even in the
presence of large number of blood cells and unbound reactants,
eliminating the need for washing or purification steps. Furthermore,
this cost-effective, single-cell analytical technique is suitable for
miniaturization into a mobile platform for low-cost POC use.

3.1.2 Tunnel magnetoresistive (TMR) sensors
A Magnetoresistive (MR) sensor is a resistor whose resistance

changes when it is affected by an external magnetic field. This
phenomenon, known as the magnetic resonance effect, is caused by
the spin-orbit coupling between the conducting electron and the
magnetosphere. The tunnel magnetoresistive (TMR) sensor is a
representative of the MR sensor (Denmark et al., 2019). TMR
sensors are advanced semiconductor devices that leverage the
tunnel magnetoresistance phenomenon to detect variations in
magnetic fields. These sensors are composed of thin layers of
magnetic materials that are sandwiched between non-magnetic
spacers (Lei et al., 2016). When a field of magnets is applied, the
sensor’s resistance undergoes modification, enabling precise and
sensitive magnetic field detection.

Magnetoresistive (MR) sensors, including tunnel
magnetoresistive (TMR) sensors, plat a crucial role in magnetic
field detection due to their unique resistance changes in response to
external magnetic fields. TMR sensors, in particular, are advanced
semiconductor devices that utilize the tunnel magnetoresistance
phenomenon, involving thin ayers of magnetic materials
sandwiched between non-magnetic spacers. When subjected to a
magnetic field, TMR sensors exhibit changes in resistance, enabling
precise and highly sensitive magnetic field detection. THE TMR
effect, harnessed by TMR sensors, provides resistance, sensitivity,
compactness, and energy efficiency, making them attractive for
various biomedicals applications. These sensors are employed in
determining the presence of concentration of target analyte
molecules, such as DNA and proteins, often labeled with MNPs
(Sharma et al., 2017). TMR sensors are invaluable tools for ultra-
sensitive, multiplexed, real-time electronic sensing, thanks to their
unique MR values. The fundamental operation of TMR sensors
involves changing the magnetization direction of two ferromagnetic
layers by applying an external magnetic field, controlling the tunnel
current (resistance) perpendicular to the insulating barrier.
Magnetic tunnel junctions (MTJs), the core of TMR sensors, are
highly sensitive to magnetic fields and require only minimal applied
magnetic fields to achieve maximum TMR. Integration of MNPs as
markers enhances the signal-to-noise ratio in complex samples,
making MR-based sensors particularly suitable for immediate
detection in POCT. Figure 6 illustrates the detection process
using TMR sensor (Yan et al., 2022). The detection process using
TMR sensors typically involves pre-coating the sensor’s surface with
probe molecules capable of sensing specific target analytes. These
probe molecules serve as captors for the target molecules labeled
with MNPs. Quantitative analysis of the signal generated allows for
the determination of sample concentration. When TMR sensors are
integrated with microfluidic channels, lab-on-chip systems become
achievable, holding significant potential for portable POC devices.

Wu and colleagues (Wu et al., 2017) developed a rapid and
highly sensitive bacterial detectionmethod by combining a magnetic
immunoassay with a TMR sensor. Escherichia coliO157:H7 bacteria
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were specifically identified by tagging them with magnetic beads
through a magnetic immunoassay. The marked test strip was then
subjected to the TMR for direct testing. The weak magnetic fringe
field produced by the magnetic beads in an external magnetic field
led to changes in the magnetoresistance of the TMR sensor. This
system achieved a detection limit of 100 CFU/mL of E. coli O157:
H7 bacteria within 5 h, showing great promise for applications in
food safety and biomedical detection. It addresses the need for
sensitive and efficient detection in these critical areas.

3.1.3 Magnetic relaxation switch (MRS) sensors
Magnetic relaxation switch (MRS) sensors have gained

significant attention in recent years for their ability to detect
biological and chemical targets based on changes in the
transverse relaxation time (T2) of water particles, which result
from the dispersion/aggregation of MNPs (Xianyu et al., 2019).
MRS sensors are highly effective because the magnetic properties of
most targets are negligible, leading to minimal background
interference and requiring little sample preparation. By utilizing
T2 as the readout signal, MRS sensors offer nondestructive, accurate,
and rapid detection of targets in complex mixtures (Liu et al., 2018).

However, one of the challenges in conventional MRS sensors has
been the stability of MNPs aggregation, which relies on covalent,
non-covalent, or nonspecific interactions. This has limited the
sensitivity and accuracy of target detection. To address these
limitations, Hu et al. (2022) proposed an advanced MRS sensor
that integrated magnetic separation into the analysis process. They
usedMNPs of different sizes, with 1,000 nm diameter MNPs serving
as the magnetic separation carrier and 30 nm diameter MNPs as
magnetic signal probes. This configuration allowed for efficient
separation of the larger MNPs within 0.5 min, while the smaller
MNPs remained in the solution for 24 h. Compared to conventional
MRS sensors, this system exhibited higher sensitivity to changes in
magnetic probe concentration, resulting in improved stability and
accuracy. Signal amplification strategies were also employed to
enhance sensitivity, enabling the accurate and reliable detection
of trace amounts of chloramphenicol.

In another example, the detection of bisphenol A (BPA) in
water, a concerning environmental contaminant, was addressed
using an aptamer-functionalized MRS sensor developed by
Huang and Wang (2021). This sensor leveraged the high
selectivity of aptamers and the excellent magnetic relaxation

signal of MNPs, resulting in high sensitivity and straightforward
signal readout. The aptamer-functionalized MRS sensor
demonstrated great potential for practical applications in
detecting BPA.

MRS biosensors hold promise in the field of food safety due to
their simplicity and good signal-to-noise ratio. However, sensitivity
and stability challenges have been encountered due to issues like
insufficient crosslinking or non-specific binding of MNPs to targets.
To overcome these challenges, Shen et al. (2022) integrated the
CRISPR-Cas12a system into a MRS biosensor for the sensitive
detection of Salmonella. This biosensor was designed based on
the distinct magnetic properties of two sizes of MNPs (Figure 7).
The presence of the target Salmonella triggered the collateral
cleavage activity of the CRISPR-Cas12a system, inhibiting the
binding of the two sizes of MNPs and resulting in an increase in
unbound MNP30. This CRISPR-MRS biosensor demonstrated
sensitive and specific detection of Salmonella, offering a
promising alternative for pathogen detection with satisfactory
sensitivity.

3.2 Electrochemical biosensors

The integration of MNPs into electrochemical biosensors has
brought about significant advancements in POCT and biomedical
diagnostics. These MNP-based biosensors combine the signal
amplification capabilities of MNPs with the selective detection
capabilities of electrochemicals biosensors, leading to increased
sensitivity, improved selectivity, and the ability to perform multi-
detection with portable diagnostic capabilities in various healthcare
settings (Karimi-Maleh et al., 2020; Mollarasouli et al., 2021; Castelli
et al., 2022; Mahmudiono et al., 2022; Suan Ng et al., 2022).

One key advantage of MNPs in electrochemical biosensors is
their ability to amplify the electrochemical signal produced by the
sensor upon binding to the target analyte. This signal amplification
step significantly enhances the detection sensiticity, enabling the
monitoring of low concentrations of analytes that would otherwise
be challenging to detect using only the electrochemical sensor. For
instance, Qiu et al. (2021) developed an electrochemical detection
method that combined proximity binding-triggered hybridization
chain reaction (HCR) signal amplification with the use of MNPs for
efficient separation and detection of thrombin in complex sera. This

FIGURE 6
Schematics for biodetections using TMR sensors: Molecules detection. Reprinted with permission from Yan et al. (2022).
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method utilized magnetically separated precipitates concentrated on
the electrode surface, enabling sensitive thrombin detection through
amplified current signals generated by the electroactive substance
MB. This approach offers high sensitivity, reduced background
noise, and simple signal amplification steps, making it promising
for protein biomarker detection.

MNP-based electrochemical biosensors have also shown
potential in the sensitive detection of DNA methylation, which is
crucial in various biomedical applications (Parihar and Khan, 2023).
Khoshfetrat et al. (2022) designed a magnetic nano biosensor for
DNA methylation analysis by combining it with a highly sensitive
electrochemiluminescence immuno-DNA sensor. This sensor
utilized a sandwiching approach, where the target methylated
DNA was placed between MNPs and an anti-5-methylcytosine
monoclonal antibody (MNPs/anti-5mc) and a phosphorylated
DNA capture probe. This innovative approach demonstrated
extraordinary sensitivity, capable of discriminating methylation
levels as low as 0.1%.

The incorporation ofMNPs within an electrochemical biosensor
leads to a significant enhancement in the performance of the sensor
compared to using a solitary molecule label (Ting et al., 2009; Geagea
et al., 2015). This enhancement primarily stems from the unique
properties and capabilities of MNPs, resulting in a substantial
amplification of the current signal. MNPs offer amplification
potential comparable to that of exceptional enzyme labels in
electrochemical biosensors, while also providing several
advantages, including eliminating the need for timed signal
recording and mitigating the risk of denaturation during storage

(Cai et al., 2002). Simgle (Hanoglu et al., 2022) developed an MNPs-
based electrochemical biosensor for assessing the methylation
septin9 (mSEPT9) gene in early-stage colorectal cancer (CRC)
(Figure 8). This biosensor leverages the stability and signal
amplification capabilities of MNPs to accurately and selectively
detect methylated SEPT9 gene sequences which serve as a
diagnostic marker for CRC. Overall, MNPs play a crucial role in
improving the performance and usability of electrochemical
biosensors, making them valuable in various applications,
including the early diagnosis of diseases like CRC.

The development of portable and efficient devices for POCT is
crucial across various fields, including healthcare and athletics. One
such application is the detection of doping substances like
testosterone in sports to ensure fair competition and maintain
the integrity of sports events. Sanli et al. (2020) created a
portable biosensor for the detection of testosterone using a
screen-printed electrode (SPE) and iron (II/III) oxide MNPs. The
working electrode is the SPE, known for its simplicity and rapid
response times. The proposed biosensor portability, speed and
specificity make it a valuable tool for anti-doping agencies and
sports organizations.

Early on, Chawla and Pundir (2011), designed a novel
amperometric biosensor utilizing silicon-formed core-shell Fe3O4

(Fe3O4–SiO2) MNPs capable of detecting glycosylated hemoglobin
effectively. The core-shell MNPs are functionalized with
Ferroceneboronic acid (FAO), which is known for its ability to
bind glucose molecules. FAO serves as a recognition element in the
biosensor, allowing it to selectively capture glycosylated hemoglobin.

FIGURE 7
Illustration of the CRISPR-MRS biosensor for Salmonella detection. Reprinted with permission from Shen et al. (2022)
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This sensor is relevant in the field of diabetes management, where
monitoring hemoglobin levels is crucial for assessing long-term
blood glucose control.

Chen and colleagues (Chen and Wu, 2022), a fast and
ultrasensitive electrochemical sensor based on magnetically
trapped DNA. Thiolated MB-modified DNA probes were used to
functionalize the surface of AU@MNPs. This functionalization
allows the DNA probes to specifically bind to the target
TP53 gene sequences. TP53 is a critical tumor suppressor gene,
and mutations in this gene are associated with various cancer. The
DNA probes, when attached to AU@MNPs, facilitate the
concentration of target DNA sequences. This increased
concentration leads to a more pronounced electrochemical signal
during detection. The combination of magnetic trapping, signal
amplification, and electrochemical sensing enables the rapid
ultrasensitive, and specific detection of genetic mutations.

The utilization of nanomaterials, such as MNPs in
electrochemical biosensors have opened up exciting possibilities
for ultrasensitive and specific biological detection. One example
is the detection of miR-21 with Padlock Exponential Rolling Circle
Amplification (P-ERCA) and CoFe2O4 MNPs-Assisted nano
electrocatalysis (Chen and Wu, 2022). The combination of
P-ERCA, CoFe2O4 MNPs, and the modified graphene surface
results in a significantly enhanced detection sensitivity. In
addition, Pd-based nanomaterials (Pd NPs, Pd@UiO-66) are
combined with catalytic hairpin assembly (CHA) to create an
ultrasensitive detection of miR-211, a microRNA associated with
various diseases, including cancer (Meng et al., 2020a; Meng
et al., 2020b).

3.3 Optical biosensors

Optical biosensor systems offer an array of advantageous
attributes making them highly suitable for POCT applications,
particularly when combined with colorimetric and
chemiluminescent detection methods. A few key benefits of
optical biosensors consists of noise-free operation, inherent
stability, exceptional sensitivity, simplicity and accessibility,
reduced instrumentation and rapid results (Chen and Wang, 2020).

Optical biosensors showcase a diminished reliance on
laboratory-specific instrumentation, making them more cost-
effective and portable. With the strides made in photometry,
contemporary smartphones equipped with commonplace ambient
light sensors now possess the capacity to function as detectors in
both systems. Colorimetric and chemiluminescent-based biosensors
are user-friendly and straightforward. They often produce visible
color changes or emit light, which can be easily interpreted with the
naked eye. The simplicity makes them accessible to a broader range
of users, including healthcare professionals with varying levels of
expertise. By utilizing specific ligands or capture molecules
(antibodies or aptamers), optical biosensors can achieve high
specificity for target analytes. This reduces the likelihood of false
results and enhances diagnostic accuracy. When combined with
MNPs, optical biosensors can retain their portability. MNPs, with
their small size and magnetic properties, facilitate sample
manipulation and transport, making them suitable for POCT
applications.

In summary, optical biosensors systems, especially those
employing colorimetric and chemiluminescent detection, offer a

FIGURE 8
Step by step surface design and the analysis principles. Reprinted with permission from Hanoglu et al. (2022).
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compelling combination of sensitivity, specificity, simplicity, and
portability that aligns well with the requirements of POCT. These
biosensors have the potential to revolutionize healthcare by
providing rapid, accurate, and accessible diagnostic solutions for
a wide range of diseases and conditions.

3.3.1 Colorimetric-based biosensors
In the realm of optical biosensors, the colorimetric-based

biosensor constitutes a distinct category. Colorimetry, a scientific
field that quantifies color, encompass various facets of photometry,
including color specification, the CIE (International Commission on
Illumination) system, and models for color perception and
appearance (Monogarova et al., 2018). This comprehensive
framework enables the quantitative representation of color in
terms of intensity. Consequently, the colorimetric biosensor
emerges as a sensor type that employs a comparative assessment
of color intensity to quantitatively or qualitatively characterize
specific analytes of interest. The presence of an analyte is often
signaled by a color shift induced by chemical or light stimulation
(Cai et al., 2021). This change in color results from the interaction
between the chromogenic substance used as a probe and the
subsequent substrate involved in a reaction with color-developing
chemicals (Choi et al., 2021). Remarkably, the most notable feature
of this biosensor is its ability to produce a visible color change, even
discernible to the naked eye.

Colorimetric optical sensors are analytical devices designed to
measure the amount of light emitted or absorbed when a bioreceptor
recognizes a target molecule (Aydindogan et al., 2020). These
sensors effectively convert biosensing events into observable color
changes. Nanomaterials, including MNPs and AuNPs have found
widespread use in this context. These systems are often
characterized as simple, practical, and cost-effective, as they can
be visually interpreted without the need for specialized instruments
(Song et al., 2011). Among these nanomaterials, AuNPs are
particularly popular in biosensor platforms due to their unique
spectroscopic and colorimetric properties. AuNPs appear red when
dispersed and turn blue when aggregated. This distinctive behavior
has been harnessed for the detection of various biological analytes,
such as cellular DNA and enzymes, making them valuable in
colorimetric and UV-visible spectroscopic assays.

For instance, in Sahar’s research (Cheraghi Shahi et al., 2021), a
novel colorimetric biosensor was proposed for the precise detection
of aflatoxin in saffron samples. This biosensor relies on the
inhibitory interaction of aflatoxin B1 (AFB1) and a bacterial
enzyme digestion process. The mechanism involves impact of
specific enzymatic activities on AuNPs functionalized with gelatin
(AuNPs@gelatin). This approach exhibited an exceptional
sensitivity, with a detection limit as low as 4 pg mL−1, and was
successfully tested with real-world saffron samples.

Given that food is a common carrier of harmful bacteria,
ensuring food quality control is of paramount importance for
food safety and healthcare. Therefore, it is a critical need for the
development of rapid and straightforward methods to identify
hazardous microorganisms in food. Chen F. et al. (2022) This
method relies on the rapid and sensitive color changes induced
by the dispersion and aggregation AuNPs. The POCT visual sensing
system comprises two key components: (1) an alkaline phosphatase/
graphene oxide (GO@PEI-ALP) nanoconjugate that can release free

ALP molecules in the presence of pathogenic bacteria; (2)
D-glucose-6-phosphate (pGlu) and 3-aminobenzene boric acid
(AMBA)-functionalized AuNPs (pGlu/AMBA-AuNPs) that
undergo cross-linking upon pGlu digestion by free ALP
molecules, resulting in significant color change. This sensing
system demonstrated an impressive detection limit for target
bacteria, was as low as 24 CFU mL−1 under optimal conditions,
and proved effective for analyzing complex real-world samples.

Compared to other optical biosensing approaches, colorimetric
assays exhibit tremendous potential as cost-effective and portable
analytical techniques. However, further research is needed to
integrate this transducer with an approach biorecognition
component to develop miniature POC biosensors.

3.3.2 Surface plasmon resonance (SPR) sensors
Surface plasmon resonance (SPR) biosensors have become

indispensable tools for POCT of across various biomarker classes
due to their user-friendly operation, rapid response times, and
exceptional selectivity (Sun Y. et al., 2022). SPR is a powerful
and widely adopted technology in biological and chemical
sensing, facilitating real-time monitoring of molecular
interactions in POCT diagnostics (Chiu, 2022). MNPs have
gained recent attention for their integration into SPR systems for
biomolecule immobilization and purification. MNPs are
incorporated into SPR for several reasons: first, they possess a
large surface area, allowing for a high density of biomolecule
immobilization; second, their strong magnetism enables the
direct capture, separation, and concentration of target molecules
through an external magnetic field; and third, their high refractive
index and molecular weight effectively enhance SPR signals. These
characteristics endow MNPs with the dual function of amplifying
SPR sensor sensitivity and acting as concentration purifiers to
eliminate background interference from unknown molecules in
SPR experiments.

Detecting small molecules or trace analytes directly using
conventional SPR sensors can be challenging due to the minimal
changes in refractive index resulting their binding to the sensor
surface. Liu et al. (2014) introduced an innovative method for
deltamethrin detection by integrating SPR sensor technology with
Fe3O4 MNP tests. The carboxyl groups on Fe3O4 MNPs surfaces
facilitate antibody functionalization. Fe3O4 MNPs, coupled with
antibodies, serve as “carriers” rapid transfer of target analytes from a
sample to the sensor surface and as labels to enhance SPR detection
sensitivity, given their high refractive index and molecular weight.
Consequently, Fe3O4 MNP-anti-deltamethrin monoclonal antibody
conjugates allow for direct detection of deltamethrin on the
chitosan-modified SPR sensor surface. This method offers
accurate and sensitive deltamethrin detection and can be adapted
to detect other analytes of interest by modifying the appropriate
antibody in the MNP conjugates.

Salmonella currently represents one of the most prevalent
foodborne bacteria, responsible for numerous illnesses,
hospitalizations, and fatalities worldwide. While various
technologies are available, SPR has emerged as an advantageous
option due to its real-time detection capability coupled with high
sensitivity and specificity. In Bhandari’s research (Bhandari et al.,
2022), a rapid and accurate methods for detecting Salmonella
typhimurium is presented, utilizing SPR biosensors combined
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with antibody-coupled MNPs amplification. The study employs two
monoclonal antibodies specific to flagellin, with one attached to
MNPs and the other immobilized on the sensor surface. A sensor
surface bearing these antibodies reacts to flagellin and MNPs. The
results demonstrate that SPR biosensors, when combined with
MNPs, can significantly improve the accuracy and sensitivity of
detecting various pathogens and biomolecules.

3.3.3 Fluorescent-based optical biosensors
Fluorescence stands as one of the most commonly employed

methods in the realm of optical biosensors, widely utilized for its
ability to detect alterations in the fluorescence properties of a
molecular recognition element when it interacts with a
target molecule.

For example, in the context of rapidly screening contaminated
food products, Xue et al. (2018) developed an innovative fluorescent
biosensor utilizing a double-layer channel with immune MNPs to
efficiently separate and concentrate target bacteria (Figure 9). The
biosensor also incorporated immune quantum dots (QDs) and a
portable optical system to quantitatively detect E. coli O157:H7 cells
in the sample. The fluorescence intensity measured by the portable
optical system facilitated the identification of the target bacteria.
Moreover, this biosensor can be adapted for the detection of various
foodborne pathogens and biological targets by modifying the
antibodies, demonstrating potential for multiplexed and high-
throughput detection.

In another study, Wang et al. (2018) designed an
environmentally friendly and sensitive OTC fluorescence sensor.
This sensor utilized carbon dots (CDs) as a fluorescent probe to
detect OTC in the presence of Fe3O4 MNPs and H2O2. Fe3O4 MNPs
acted as catalysts for peroxidase-like reactions. Additionally, the

absorption band of OTC overlapped with the excitation bands of
CDs, resulting in the quenching of CD fluorescence by OTC. The
sensor’s feasibility for OTC detection in drugs was further
confirmed, highlighting its simplicity, sensitivity, and high
selectivity. Compared to existing detection methods, this
approach offers advantages such as simplicity, cost-effectiveness,
and rapid detection, making it a practical tool for OTC detection,
food safety analysis, and clinical diagnosis.

Recently, Chen et al. (2022b) developed a fluorescence biosensor
based on magnetic Fe3O4-modified graphene oxide (MNPs@GO)
for rapid and direct diagnosis of S. aureus. The biosensor employed
aptamer-functionalized upconversion nanoparticles (UCNPs) in
combination with MNPs@GO. In the presence of S. aureus,
MNPs@GO underwent cleavage, and GO was not magnetically
separated, resulting in a decrease in upconversion fluorescence
(UCF) intensity at 547 nm from aptamer-functionalized UCNPs
to GO due to fluorescence resonance energy transfer (FRET). The
detection of S. aureus in chicken samples illustrated the potential of
this method for bacterial safety monitoring in food.

4 Concluding insights and
future prospects

This comprehensive review highlights the significant role of
MNP-derived biosensors in the field of POCT. The review explores
various biosensing technologies enabled by MNPs, including
magnetic sensing biosensors, electrochemical biosensors, and
optical biosensors, all of which demonstrate great potential for
the development of POCT devices. Optical biosensors coupled
with MNPs are particularly emphasized due to their advantages,

FIGURE 9
Schematic of the ultrasensitive fluorescent biosensor using double-layer channel with MNPs and quantum dots for rapid detection of foodborne
pathogenic bacteria.Reprinted with permission from Xue et al. (2018)
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such as low background signal, cost-effectiveness, stability, and ease
of functionalization.

Biosensors play a crucial role in manufacturing of POCT
devices, and recent research has witnessed rapid advancements in
the development of smart biosensors. MNPs offer distinct
advantages in this context, including low background signals in
biological samples, affordability, stability, and ease of
functionalization. The integration of MNPs with optical
biosensors and smartphones holds promise for the development
of portable, accessible, and digitized POCT devices that can
seamlessly integrate with medical databases.

Moreover, certain biosensors offer multiplex measurement
capabilities, enabling the extraction of valuable biological
information from small sample volumes, including whole blood.
The trend toward instrument miniaturization and portability
ensures that POCT devices can cater to diverse scenarios and
meet the specific requirements of various healthcare settings.
Although many advances have been made in the field of POCT
testing, there are still some challenges in the manufacturing of rapid
testing equipment. First and foremost, maintaining device
performance and integrating complex detection technology under
the premise of miniaturization is a key issue. Secondly, ensuring
accurate results in clinical use requires POCT equipment to have a
high degree of stability and reliability. Finally, striking a balance
between reducing device costs and improving performance is an
important challenge. Addressing these challenges necessitates
interdisciplinary cooperation, and we look forward to continued
efforts and innovation in the field of POCT equipment
manufacturing to make greater contributions to human health.

In conclusion, MNP-derived biosensors are poised to revolutionize
POCT devices. Their adaptability, sensitivity, and multifaceted
applications make them indispensable tools for enhancing diagnostic
capabilities at the POC. The integration of optical biosensors with
MNPs, along with the progress in smartphone-based platforms, paves
the way for portable, accessible, and digitally-integrated POCT devices.
As we continue to harness the potential of these biosensors, along with
the power of information storage databases and artificial intelligence
algorithms, we can look forward to advanced and personalized
healthcare solutions that will significantly enhance patient outcomes
in the future.
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