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1 Introduction

Cell and gene therapies (CGTs) are new treatment modalities with demonstrated
clinical results against a wide range of hard-to-treat diseases (Kliegman et al., 2024; Kohn
et al., 2023). They are either ex vivo treatments, obtained by manipulating cells in a
laboratory before returning them to the patient, or in vivo applications, that involve direct
injection of genetic material into the bloodstream or a target organ (Sainatham et al., 2024).
Cell and gene therapy (CGT) products are significantly different from previous generations
of biologics, such as recombinant proteins or vaccines, and have been challenging the
production capabilities, supply chain and business models of the pharmaceutical industry
(Tarnowski et al., 2017; Shah et al., 2023). With the CGT market still in its infancy, even a
decade after the first market approvals, three factors related to their manufacturing have
been limiting the broad adoption of CGT products in the clinic: 1) the highly variable
starting materials due to the personalised nature of the treatments (Heathman et al., 2016;
Cuffel et al., 2022), 2) the diversity and complexity of their production processes (Lowdell,
2024), and 3) the lack of fit-for-purpose tools supporting scalable supply at the commercial
stage (Garcia-Aponte et al., 2021). The combination of these three factors leads to limited
availability and high cost of CGTs, making it challenging to reach commercial success while
supporting broad and equitable patient access (Sainatham et al., 2024; Bashor et al., 2022).

To tackle this challenge, the authors of this article partnered in the PAT4CGT
consortium that aims to develop a miniaturised process analytical technology (PAT)
platform, tailored specifically for CGT manufacturing. Advanced PAT is critical for
process understanding in R&D and is also becoming a key tool for process monitoring
during clinical and commercial manufacturing (Clegg et al., 2020; Gargalo et al., 2020). This
trend is aligned with the concept of Industry 4.0, that aims to transform manufacturing and
production systems through the integration of advanced digital technologies (Arden et al.,
2021). Adoption of Industry 4.0 principles in CGT is a paradigm shift, introducing cutting-
edge, digital technologies, and moving away from centralised, manual and paper-led,
towards distributed, automated and knowledge-driven CGT manufacturing processes
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(Elsallab and Maus, 2023). In our opinion, digital solutions and
innovative approaches to PAT that support scalable production are
essential to deliver on the promise of these novel treatment
modalities. Thus, the goal of the PAT4CGT project is to lay the
foundation for minimally-invasive monitoring of critical process
parameters (CPPs) in CGT. To this end, we develop a standalone,
closed, automated, and miniaturised sensor technology platform for
at-line monitoring of CPPs, suited for applications in CGT
manufacturing.

2 Closed, automated and single-use
tools for cell culture and processing

We believe that three layers of innovation are necessary to
achieve the transformation towards CGT 4.0 (Figure 1). The first
and fundamental layer consists of closed, automated and single-use
tools that perform two unit operations at the core of all bioprocesses:
cell culture (Mizukami et al., 2020) and cell processing (Li et al.,
2021). These key steps are traditionally performed in bioreactors and
centrifugation systems, respectively. Single-use and closed tools have
become the standard in small- and mid-scale production of biologics
and are increasingly used in large scale processes (Langer and Rader,
2014). While there are single-use technologies implemented in
large-scale upstream processes, single-use centrifugation systems
remain hard to scale. Overall, there is a critical need for novel
approaches (Giorgioni et al., 2024) that take into consideration the
unique properties that set CGT products apart from previous
generations of biopharmaceutical products (Verbarendse et al.,
2023; Doulgkeroglou et al., 2020).

In the case of autologous, gene-edited cell therapies, innovative
solutions are needed to perform the complex, multi-step processes in
a streamlined sequence of unit operations. Replacing manual
operations with automation in closed systems (Moutsatsou et al.,

2019; Melocchi et al., 2025) has the potential to increase process
standardisation, robustness, scalability and reproducibility while
lowering labour and clean room infrastructure costs (Lopes et al.,
2018; McCoy et al., 2020; Nießing et al., 2021). There is empirical
evidence (Francis et al., 2023) that process automation (Ahmadi
et al., 2025) can substantially reduce the “hands-on” operator time
required for their manufacturing of CAR T-cell therapies (Lock
et al., 2022). Similarly, higher transduction and lower variability
between batches were obtained for the production of a haemopoietic
stem cell therapy using a closed, semi-automated approach, when
compared to the standard manual process (Papanikolaou et al.,
2019). Novel closed and automated solutions enabling end-to-end
manufacturing of autologous cell therapies will be necessary to
transform the field and enable point of care production. While
modular approaches are being implemented, we believe bringing all
unit operations into a single device, and thus removing transfer of
cells between tools, will lead to higher process yields and product
quality. Solutions supporting ex vivo cell manipulations across a
range of volumes and cell numbers will also be instrumental in
unlocking the full potential of these personalised treatments.
Furthermore, scalability to a full patient dose within the same
device has the potential to significantly reduce the costs and time
currently invested in technology transfer during the transition from
pre-clinical to commercial stage.

In the case of gene therapy, the cryopreservation and thawing of
the master cell bank is a critical first step in the manufacturing
process. Advanced methods that allow closed handling of cell banks
use either the (high cell density) cell bag-based approach or a
microfluidic-based system. Immortalised cell lines (e.g., HEK-
derived cells) are already characterised and automated cell
culture technologies exist for viral vector manufacturing (Song
et al., 2024). However, the industry is still lacking fully
automated workflows covering all steps, from cell expansion,
virus production and purification up to the final formulation

FIGURE 1
PAT4CGT’s hierarchy of CGT 4.0.
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(Destro et al., 2024). The traditional tools currently used to perform
these unit operations, such as flatware flask for cell culture or
ultracentrifugation for virus purification, are unsatisfactory as
they not only hinder scalability but also lack the possibility of
continuous data acquisition.

3 Miniaturised sensors for process
monitoring

The middle layer of innovation towards CGT 4.0 is composed of
sensor solutions that can measure CPPs in real-time, providing vital
information about the process status. Monitoring capabilities are
critical to capture data into a record that is used in process
development or required for batch documentation but also to
provide the necessary inputs for process control (Herwig et al.,
2020). The information about CPPs facilitates decision making
through early detection of deviations and out of specification
(OOS) events. This can enable timely intervention to improve the
manufacturing success rate, as well as minimisation of losses
associated with batch failure. To achieve this, a variety of offline,
at-line and inline tools exist but their integration into CGT processes
remains questionable (Gargalo et al., 2020). There are currently two
concurring PAT approaches: (i) measuring a sample of the process
with a traditionally offline, high-precision method (e.g., HPLC-MS)
but automating the sampling process, or (ii) relying on an in situ
method (e.g., spectroscopy) that often has an indirect measurement
principle and requires extensive data analysis but can be applied in a
closed system without the risk of contamination.

In our opinion, sensor arrays for the monitoring of traditional
biologics’ production–often limited to temperature, pH, dissolved
oxygen and CO2 – are insufficient to characterise the status of a
complex CGT production batch because tracking of cell metabolism
is required for process development (Nikita et al., 2023; Chen et al.,
2024; Kimura et al., 2019; Román et al., 2018). While relying on
historical process data to design a medium supplementation
strategy, the absence of continuous–or at least
frequent–monitoring of cell metabolism limits process flexibility
to adjust media components when important changes occur,
hindering productivity or product quality. Inline spectroscopic
sensors, such as infrared, Raman and dielectric spectroscopy,
offer capabilities to monitor, nutrients, metabolites (Christie
et al., 2024; Costa et al., 2024; Marienberg et al., 2024; Abu-Absi
et al., 2011) or cell count (Sripada et al., 2024; Bergin et al., 2022).
However, these methods are influenced by non-specific
(background) variations (Sripada et al., 2024). Moreover, data
interpretation, validation and software integration into process
control, as well as the physical integration of a probe into
innovative, small-scale manufacturing systems of CGTs are
challenging (Sripada et al., 2024).

The limitations due to background signals with the above-
mentioned methods can be overcome by the use of a specific
recognition element, such as an antibody-based or enzymatic
biosensor (Fedi et al., 2022; Moser et al., 2002). These, however,
are at-line methods that require a representative sample. The
sampling technique must be tailored to the unique requirements
of CGT production, mainly to single-use applications, across a wide
range of process scales. Sterile sampling opens the possibility for

further downstream processing and offline analytics. In general, the
combination of automated, in situ collection of samples from a
manufacturing platform in a closed, single-use environment with a
highly precise, specific method has the potential to lower the risk of
contamination associated with manual sampling and provide
continuous/frequent measurements. This will play an important
role in increasing the availability of data for subsequent analysis.

4 Digital twin for process knowledge
integration and control

This leads us to the top layer of CGT 4.0, which is a data
analytics solution allowing for the transformation of the
information, collected by the analytical tools, into actionable
knowledge, to efficiently manage the process lifecycle. In our
opinion, a mathematical model of the manufacturing process,
also known as a “digital twin”, is an essential tool for knowledge
integration, with the aim of enabling predictive control of the critical
quality attributes (CQAs) by adjusting the CPPs (Canzoneri et al.,
2021). Historically, experimental data is used for mechanistic
modelling approaches (e.g., material balance of substrates and
metabolites) to describe microbial systems (Muloiwa et al., 2020).
These methods have been successfully adapted to more complex
cases, such as Chinese hamster ovary (CHO) cells (González-
Hernández and Perré, 2024; Park et al., 2021). The mechanistic
assumptions are not universal but the different modelling workflows
can be transferred between cell types (Wang et al., 2024). However,
their imminent translation to CGT processes is limited by the
generally low process understanding of CGTs (Hort et al., 2022;
Canova et al., 2023; Triantafyllou et al., 2024). Therefore, the
prerequisite of developing accurate predictive models is to clearly
define, then capture the time-resolved values of the CPPs and CQAs
of CGT processes (Johanna et al., 2023), for which automated, in situ
analytical solutions can play a central role.

In our view, purely data-driven, neural network methods could
be used to develop models of CGT processes (Yatipanthalawa and
Gras, 2024; Emerson et al., 2020). For the generation of the large
amounts of data that are necessary to train such models, novel,
automated cell culturing tools could resolve the bottleneck of current
production capacities. Another potential solution to the limited
availability of data is to apply more sophisticated approaches and
algorithms, such as hybrid modelling. Hybrid modelling combines
mechanistic representations with data-driven methods
(Schweidtmann et al., 2024). For instance, the long-short term
memory (Ramos et al., 2024) and physics informed approaches
(Yang et al., 2024), as well as the reinforced learning-based methods
(Mowbray et al., 2023). However, the missing connection between
the variability in the starting material (e.g., variability in cell
phenotype between patients) and the process outcome, in the
case of autologous cell therapies, poses an extra challenge. While
classical mechanistic models can potentially describe the effect of
nutrients and metabolites on cell growth, completely novel
mechanistic representations are needed to describe cytotoxicity
and similar efficacy CQAs for other CGTs. All things considered,
hybrid modelling will be the approach that, in our opinion, will
eventually prevail in the field of CGT, as its ability to incorporate
simpler process knowledge, unconventional process parameters and
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mechanistic descriptions of efficacy CQAs allows users to achieve
the desired prescriptive process control, as a key element of CGT 4.0.

Naturally, as with every novel technique, an acceptable solution
to validate these models, depending on the model’s importance for
the process, has to be found (BioPhorum, 2021). Active discussions
in the filed indicate that more time is needed to establish a universal
validation approach for good manufacturing practice (GMP)
compliance (O’Connor et al., 2024; European Medicines Agency
EMA, 2024). However, in our view, the definition of suitable
regulation is a technical question that can be addressed through
collaboration of all parties concerned.

5 Conclusion

We conclude that innovation across three layers is key to enable
robust and scalable manufacturing of CGT products: closed and
automated tools, robust and frequent process measurements and
data analytics will enable the development and execution of well-
characterised and adaptive production methods. The integration of
these three layers into cohesive systems requires a multidisciplinary
approach combining a profound understanding of the underlying
biology as well as engineering skills to identify relationships between
CPPs and CQAs and compile all process knowledge in a digital twin.
Considering the complexity of the problem at hand, we wish to
highlight the important role of innovation management and
collaboration between experts from very diverse fields. Product
engineering and design, cell biology and bioprocesses, sensors
development, data modelling and material sciences, as well as end
users and regulators of the technologies all need to come together to
guide the industry towards the adoption of meaningful Industry
4.0 concepts applicable to CGT products, in order to provide
novel therapeutic options to a vast number of patients.
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