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Sex as a biological variable has been recognized for decades to be a critical aspect
of the drug development process, as differences in drug pharmacology and
toxicity in female versus male subjects can drive the success or failure of new
therapeutics. These concepts in development of traditional drug systems have
only recently begun to be applied for advancing nanomedicine systems that are
designed for drug delivery or imaging in the central nervous system (CNS). This
review provides a comprehensive overview of the current state of two fields of
research - nanomedicine and acute brain injury—centering on sex as a biological
variable. We highlight areas of each field that provide foundational understanding
of sex as a biological variable in nanomedicine, brain development, immune
response, and pathophysiology of traumatic brain injury and stroke. We describe
current knowledge on female versus male physiology as well as a growing
number of empirical reports that directly address sex as a biological variable in
these contexts. In sum, the data make clear two key observations. First, the
manner in which sex affects nanomedicine distribution, toxicity, or efficacy is
important, complex, and depends on the specific nanoparticle system under
considerations; second, although field knowledge is accumulating to enable us to
understand sex as a biological variable in the fields of nanomedicine and acute
brain injury, there are critical gaps in knowledge that will need to be addressed.
We anticipate that understanding sex as a biological variable in the development
of nanomedicine systems to treat acute CNS injury will be an important
determinant of their success.
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1 Introduction

The consideration of sex as a biological variable was mandated by the National
Institutes of Health (NIH) in 2015 (National Institutes of Health, 2015), recognizing
that health and disease processes can vary across the sexes. These differences likely impact
individual variations in diagnostics, etiology, prevention, and response to health, disease,
and associated therapeutic treatments. Molecular differences between the sexes are
increasingly recognized to hold implications for regulation of drug pathways, with
evidence that there are marked sex and gender differences in drug efficacy and adverse
events; yet, even as of 2020, the majority of drugs lack sex-dependent dosing
recommendations (Zucker and Prendergast, 2020; Karlsson Lind et al., 2023). Thus,
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although evidence is accumulating that sex is a recognized variable
influencing efficacy and outcome of traditional drug therapies, much
remains unknown about how biological sex impacts development of
pharmacotherapies, including the important aspect of nanoparticle
systems. We focus our discussion primarily on nanoparticles,
defined here as sub-micron colloidal systems. This definition
includes synthetic or naturally derived particles with diameter
less than 1,000 nm that are suspended within a fluid medium.
Biologics, cells, antibody-drug conjugates, and injectable
biomaterials are excluded from our analysis.

Several recent reviews have covered this topic from a broad
perspective (Serpooshan et al., 2018; Hajipour et al., 2021; Sharifi
et al., 2021; Poley et al., 2022). Here, we will focus on highlighting sex
differences in both nanomedicine and acute brain injury whereby
the intersection of these two areas impacts therapeutic development.
We note that for the purposes of this review “sex” refers to the
biological construct, rather than the social construct of “gender.”
Our review is structured to address the foundations of sex
differences, central nervous system (CNS) barriers in health and
disease, and the interplay between the CNS and the immune system.
From this foundation, we will then describe what is known in the
field regarding sex differences in nanoparticle delivery to the CNS,
focusing on specific examples in acute brain injury. Finally, we will
highlight key observations and gaps in the field which should
motivate future work.

2 Absorption, distribution, metabolism,
and excretion (ADME)

Biological sex is a factor that is well-understood to influence the
absorption, distribution, metabolism, and excretion (ADME) of a
variety of bioactive agents, including small molecules, protein
therapeutics, and oligonucleotides (Farkouh et al., 2020). These
differences can be highly clinically significant and are
increasingly essential considerations in the drug development
process (Tannenbaum et al., 2019). For example, between
1997 and 2000, 8 of the 10 drug withdrawals that occurred in the
US market occurred due to greater risks of adverse events in women
compared to men (Soldin and Mattison, 2009). Sex differences can
originate as a function of behavior (for example, differences in
dietary or activity patterns, injury or disease context, likelihood of
seeking care, clinician responsiveness, or patient compliance), or
they may be a result of underlying biological differences between
females and males (for example, differences in organ or tissue
physiology, cellular behaviors, gene expression, or organizational
and activational effects of gonadal hormones). The interplay
between sex, behavior, and biology is often complex. In one
example, female patients undergoing treatment for hypertension
were observed to be less compliant than male patients, suggesting
that behavioral interventions were merited to optimize therapy;
however, accumulating evidence from deeper analyses suggests that
innate biological differences in response to this specific drug therapy
drove differential responses to therapy as well (Consolazio et al.,
2022). The impact of failing to consider sex differences in ADME is
multifaceted, potentially involving unexpected toxicity or poorly
optimized dosing paradigms, which leads to insufficient efficacy as
well as putatively unnecessary adverse events (Madla et al., 2021).

Thus, sex is an increasingly important factor understood to
influence ADME to drive therapeutic development
considerations. Here, we will overview the major principles of
ADME and consider how these concepts may be extended for
development of sex-optimized nanomedicines.

2.1 Physiological basis for sex differences
in ADME

ADME refers to the process by which a molecule enters, moves
through, and is ultimately cleared from the body (Figure 1). Absorption is
the process by which an administered compound reaches the
bloodstream. For drugs that are dosed intravenously (IV), agents will
rapidly partition within the vascular compartment, which is a
heterogeneous medium composed of fluid, proteins, lipids, platelets,
and cells; sex-dependent interaction of drugs with these components
is known to impact clinical pharmacokinetics and subsequent toxicity or
efficacy (Routledge et al., 1981). For drugs that are dosed orally,
absorption is initiated in the gastrointestinal tract, where sex
differences in pH, enzyme secretion, gastric volume, and gut transit
time have been shown to alter the uptake of bioactive agents into
circulation (Stillhart et al., 2020). The microbiome also exhibits
significant and well-studied sex differences, which have been proposed
to impact the gut-brain axis leading to sex differences in disease
phenotype and drug ADME (Jašarević et al., 2016; Hokanson et al.,
2023). For intranasal dosing, drugs first encounter the nasal passageways
and mucosal barriers, for which mucous pH, secretion, and clearance
have been shown to be sex-dependent (England et al., 1999; Hallschmid,
2021; Luberti et al., 2021; Marjan, 2023). Additional sex differences have
been observed for drug ADME through ocular (Nakamura et al., 2005),
intravascular (Kunio et al., 2018), and subcutaneous (Sloan, 2000) dosing
paradigms; physiological considerations for these parenteral routes of
administration are reviewed elsewhere (Donovan, 2005).

Once a drug has been absorbed into systemic circulation, it will
face similar physiological barriers within the vascular compartment,
and it is from this source that therapeutic agents will distribute to
peripheral tissues as well as the CNS. Drug distribution may depend
on a multitude of factors that are sex-dependent, including the
physicochemical features of the drug governing its interaction with
blood components, which limits or enhances bioavailability and
passive movement into tissue, or indirect impacts on physiological
processes that subsequently alter distribution on the basis of sex
(Figure 2). In addition to the sex-differences in the binding of drugs
to plasma proteins that have been noted in the field (Soldin and
Mattison, 2009), there are well appreciated sex differences in blood
volume, chemistry, and physiology, as well as for organ-specific
vascular features (Boese et al., 2017). Males typically have higher
blood volume and cardiac output, as well as lower rates of immune
activation, compared to females. Males also possess lower quantities
and distinct patterns of fat deposition on the body compared to
females, which yields varying distribution patterns in female versus
male subjects (Blaak, 2001; Karastergiou et al., 2012). These
differences extend to other organ systems; for example, males
also have a higher glomerular filtration rate in the kidneys
(McDonough et al., 2023), exhibit profound differences in lung
physiology (Townsend et al., 2012), and demonstrate well-
appreciated metabolic and physiological differences in the liver

Frontiers in Biomaterials Science frontiersin.org02

Simmons et al. 10.3389/fbiom.2024.1348165

https://www.frontiersin.org/journals/biomaterials-science
https://www.frontiersin.org
https://doi.org/10.3389/fbiom.2024.1348165


FIGURE 1
Schematic overview of Absorption, Deposition, Metabolism, and Excretion (ADME) processes. (A) Following administration, drugs enter the vascular
compartment (absorption), distribute throughout various organs and tissues (deposition), experience biotransformation (metabolism), and ultimately
clear from the body (excretion). (B)Circulating levels of drug reflect these competing processes of ADME, with absorption primarily defining the initial rise
in plasma concentration and various deposition, metabolism, and excretion processes (elimination) defining the curve’s decay. Achieving
therapeutic levels of drugwhile avoiding toxicity is the primary driver of drug efficacy. (C) The time course of plasma pharmacokinetics will depend heavily
on route of administration.

FIGURE 2
A variety of underlying physiological parameters depend on sex. Physiological parameters are described for healthy, adult populations. Percent
difference was calculated by the following formula: (male-female)/female. Sources and raw data for each value are provided in Supplementary Material.
Abbreviations: cerebral blood flow [CBF].
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(Maggi, 2022). With respect to CNS tissues, there are known
differences in blood-brain barrier (BBB) integrity and physiology
as a function of sex that would be expected to influence
nanomedicine delivery. This includes established differences in
shear stress responses from brain endothelial cells as well as
more subtle possible alterations to transendothelial electrical
resistance (TEER) in in vitro models and drug-specific
metabolism at the BBB (Weber and Clyne, 2021). Sex differences
that are specific to the central nervous system will be discussed in
greater detail in the sections that follow.

Once within a physiological environment, all therapeutic agents are
subject to metabolism, a process or series of processes that can either
enhance or inhibit activity of the compound. A significant portion of
drug metabolism is driven by enzymes that are expressed in the liver
and involve the cytochrome P450 (CYP) family of enzymes, although
metabolism is a complex process that can occur in and involve multiple
organ systems and enzyme classes. Differences in enzyme expression
play a critical role in determining drug clearance from circulation,
degradation within tissue compartments, and subsequent toxicity of
systemically administered therapeutics. Metabolic processes are well-
understood to be sex-dependent and are a primary consideration in
therapeutic development for traditional drugs (Waxman andHolloway,
2009). In the case of nanoparticle-based drug delivery systems,
nanoparticle distribution to organ systems is primarily driven by the
properties of the nanoparticles; drug metabolism itself is outside of the
scope of this review, and so we direct the reader to other abundant
resources on this topic (Valodara and Johar, 2019).

Excretion is a key process governing the fate of both drugs and
nanoparticles in the body, with the liver and kidneys being primary
routes through which substances exit the body. Nanoparticles also clear
from circulation via the reticuloendothelial/mononuclear phagocytic
systems (RES and MPS, respectively), which ultimately leads to
clearance and/or deposition of nanoparticle systems in lymph nodes
and spleen (Tang et al., 2019). Some evidence suggests that the MPS
exhibits sex differences (Varghese et al., 2022), although other works
suggest there is not a sex difference (Wang et al., 2021). Thismechanism
of elimination is particularly important for CNS delivery, considering
that rapid depletion of vascular concentration will all but prevent CNS
delivery. Engineering nanoparticles to avoid the phagocytosis by
circulating immune cells is thus an approach of focused interest in
nanoparticle development (Wen et al., 2023).

3 Sex differences in the brain

It is evident that biological sex influences all aspects of drug
delivery, including how the drug interacts with the body and how the
body reacts to the drug. Keeping these critical sex differences in
ADME in mind, we now highlight sex differences in the brain and
discuss how these differences may impact nanomedicine delivery to
the brain in the context of acute injury.

3.1 Sex determination and its effects on
the brain

The phenotypic expression of sex differences is due to the effects
of gonadal hormones at organizational (permanent) and activational

(transient) levels, as well as the impact of sex chromosomes (Koebele
and Bimonte-Nelson, 2015; Arnold, 2022). Recent advancements
have led to the understanding that there are gene agents on both the
X and Y chromosomes that are related to mammalian sexual
differentiation, in turn driving sex differences in circulating
hormone levels yielding sex differences in the brain. In early
embryogenesis, the Sex-determining Region Y (Sry) gene on the
Y chromosome, also known as the testis-determining gene, directs
the bipotential gonadal ridge to differentiate into testes and inhibits
ovarian development (Cabrera Zapata et al., 2022). Ovarian
differentiation in XX individuals is due in part to X-linked genes,
although the specific identification of these agents and their resultant
functions are as-yet unclear (Arnold, 2022; Cabrera Zapata et al.,
2022); deciphering these factors are critical for future directions of
research. Sex chromosomes drive gonadal hormone expression, and
while detailed discussion of hormonal impacts and trajectories on
sex differences in the brain is beyond the scope of this review, it is
important to note that gonadal steroids, including estrogens,
progesterone, testosterone, dihydrotestosterone, and
androstenedione, are among the key players that drive these
differences (for further review and discussion see: (Koebele and
Bimonte-Nelson, 2015; 2017). Notably, effects of these hormones on
the brain and its functions, during development and beyond into old
age, are both individual and interactive with organizational sex
hormone actions setting up tissues to “activate” in a particular
fashion when exposed to sex hormones at a later time.

3.2 Cerebrovasculature function

Sex differences have been observed for cardiac, vascular, and
cerebrovascular physiology, and these differences could impact
delivery of either drugs or nanomedicine to the CNS.
Considering the cardiovascular system, females typically have
smaller diameter blood vessels, reduced total blood volume, a
higher heart rate, lower blood pressure, and a net lower cardiac
output than males (Zaid et al., 2023). Recent literature has
highlighted that differences in fluid physiology may yield distinct
shear stress and vascular reactivity in females versus males (Pabbidi
et al., 2018; James and Allen, 2021), which could be a particularly
important factor influencing the interaction of circulating colloids
with brain endothelial cells. Females have previously been reported
to have higher cerebral blood flow compared to males, which may be
largely affected by sex steroid hormones (Robison et al., 2019).
Expression of sex steroid hormone receptors are established in
cerebral microvasculature. Estradiol binding to its receptor on
endothelial cells has previously been implicated in the
maintenance of the vascular system (Cho et al., 1999; Lösel and
Wehling, 2003; SenthilKumar et al., 2023). For example, in vitro
studies have revealed estradiol binding to endothelial cell receptors
activates endothelial nitric oxide synthase, which leads to elevated
nitric oxide levels and changes in paracellular permeability (Cho
et al., 1999). Additionally, the role of androgens in angiogenesis,
reactivity, integrity, and inflammation have previously been
described (Abi-Ghanem et al., 2020). For instance, Atallah and
others show chronic testosterone depletion via castration of 8-
week-old male mice leads to increased cerebrovascular
permeability, which was evident by multiple tracers and
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decreased expression of proteins that provide structural integrity
(Atallah et al., 2017). They also show testosterone depletion induces
increased expression of pro-inflammatory cytokines (IL-1B, TNF-a)
and glial cell activation markers (IBA-1, GFAP), indicating
increased inflammatory responses. Notably, they found
testosterone supplementation after 5 weeks restores
cerebrovascular integrity and results in no significant differences
in inflammatory state between castrated and intact males.
Furthermore, multiple lines of evidence support sex differences in
cardiovascular health and sex-dependent risk of cardiovascular
disease (CVD), which can be attributed to steroid hormone
profiles (SenthilKumar et al., 2023). For example, prior to
menopause, females exhibit a lower risk for developing CVD
compared to males. However, alterations in sex-steriod hormone
profiles associated with menopause lead to increased risk of CVD in
females as compared to males.

3.3 Blood-brain barrier (BBB)

3.3.1 Healthy BBB physiology
The BBB is composed of brain endothelial cells that create a

continuous, non-fenestrated microvascular network in the central
nervous system (CNS) (Cho et al., 1999). A detailed review of the
structure and function of the BBB was recently given by Zhang et al.
(Zhang et al., 2022). In short, tight junctions, adherens junctions,
and gap junctions between endothelial cells control the movement of
ions, molecules, and cells from the blood to the brain parenchyma
(Hawkins et al., 2006). Tight junctions are created by homotypic and
heterotypic interactions between transmembrane proteins including
claudins, occludins, and junction adhesion molecules (JAMs), that
connect to the actin cytoskeleton via cytoplasmic scaffold proteins of
the membrane-associated guanylate kinase (MAGUK) family (Yuan
et al., 2020; Hashimoto et al., 2023; Sugiyama et al., 2023).
Conversely, adherens junctions are formed by members of the
cadherin protein family and are linked to the actin cytoskeleton
by catenins (Weis and Nelson, 2006). A thin sheet of basement
membrane (BM) composed of glycosaminoglycans, proteoglycans,
and glycoproteins surrounds the endothelial barrier and provides
structural support to the neurovascular network (Tewari et al.,
2022). The composition of the brain extracellular matrix (ECM)
changes with age and disease, which has effects on the integrity of
the BBB (Thomsen et al., 2017); ECM composition as well as
biomechanical properties have been reported to vary by sex
(Batzdorf et al., 2022). Surrounding the BM are pericytes,
astrocytes, and microglia that secrete ECM molecules and other
signals to influence the BBB (Bisht et al., 2021; Kisler et a., 2021; Gao
et al., 2023). Together, these glial cells offer homeostasis and
structural support to the BBB, and any deviation can result in
disease (Tewari et al., 2022). Pericytes reside within the BM and
communicate with endothelial cells and astrocytes through the
secretion of signals (Armulik et al., 2010; Wu et al., 2023).
Astrocytes extend end foot processes into the BM, where they
play major roles in the clearance of waste, regulating BBB
permeability, and modulating synaptic transmission (Abbott
et al., 2006; Tewari et al., 2022; Wu et al., 2023). Microglia are
the brain’s resident immune cells that are responsible for innate and
adaptive immune responses. These glial cells, along with the

endothelium and local neurons, are termed the neurovascular
unit (Zlokovic, 2008; Sato et al., 2022).

Sex-related differences in the behavior of glial cells in non-
disease states have previously been reported. An in-depth review
conducted by Lenz and McCarthy describes the various roles
microglia play in brain development, including regulation of
neural stem cell populations, synaptogenesis, and sexual
determination (Lenz and McCarthy, 2015). Microglia in multiple
regions of the developing rodent brain show sex differences in
colonization, gene expression, and cytokine secretion (Schwarz
et al., 2012). Sex differences in microglia phenotypes also extend
into adulthood in animal models and are retained independently
from the in vivo steroid hormone profile (Villa et al., 2018; Doran
et al., 2019). These observed differences in phenotype establish that
male and female microglia behave distinctly. Additional studies are
needed to determine the extent that sex-related differences in
microglia phenotypes impact the BBB. Similarly, sex steroid
hormones influence astrocyte function and morphology. Studies
have shown that estradiol is implicated in the expansion of astrocyte
processes and regulation of intracellular ion concentration (Acaz-
Fonseca et al., 2014). Importantly, this may have profound sex-
dependent effects on the communication between astrocytes and
other cells of the BBB, which is yet to be explored. Further research is
required to elucidate sex-dependent function of the neurovascular
unit under normal physiological conditions.

3.3.2 Injured BBB physiology
The permeability of the BBB is tightly regulated by glial cells,

which work together to sense the environment and produce signals
to alter the flow of materials from the blood to the brain tissue. In the
context of disease or injury, the normal signaling between glial cells
and the brain endothelium is disrupted, resulting in a dysfunctional
BBB (Xing et al., 2012). Microglia become activated when surface
receptors come in contact with damage-associated molecular
patterns (DAMPs) or pathogen-associated molecular patterns
(PAMPs), which leads to the activation of pro-inflammatory
machinery and induced activation of surrounding microglia
(Lawrence et al., 2023). Activated microglia phagocytose cellular
debris caused by the injury or disease, leading to the release of signals
such as tumor necrosis factor-α (TNF-α) that act on local astrocytes.
The subsequent change in gene expression and phenotype of
astrocytes in response to the local environment is termed reactive
astrogliosis. Reactive astrocytes promote pro-inflammatory
conditions by secreting complement components and chemokines
that attract circulating peripheral immune cells (Liddelow and
Barres, 2017). These disease processes exacerbate oxidative stress
and BBB dysfunction through the generation of pro-inflammatory
signals, free radicals, and matrix metalloproteinases (MMPs) (Zhao
et al., 2022). Secretion of pro-inflammatory cytokines, such as IL-1B
and TNF-α, degrade tight junction proteins via multiple signaling
pathways. Overproduction of free radicals by microglia and
astrocytes, along with any inherent disease-induced free radical
accumulation, leads to cellular damage and further disruption of
the BBB. In parallel, the secretion of MMPs intensifies BBB
breakdown through the direct digestion of tight junction and
adherens junction proteins. In summary, the pathophysiology of
the injured BBB is complex and involves all glial subtypes. Adding to
this complexity, previous literature has illuminated sex-related and
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hormone-related differences in glial cell response to pathological
conditions. A recent study of female primary cortical astrocytes
reveals estradiol and 5ɑ-androstane-3β,17β-diol (a
dihydrotestosterone metabolite) may offer protection against
cytotoxic challenge with iodoacetic acid (Kim et al., 2023, p. 3).
The authors speculate that the protective effects may result from
steroid induced inhibition of connexin 43 gap junction opening.
Specifically, this channel is important for cellular signaling and
changes in channel permeability have been associated with disease
states. Estradiol has also previously been implicated in pathways
involved in pericyte attachment and migration in response to
inflammatory stimuli (Kurmann et al., 2021). Kurmann and
others show estradiol treatment prevents cultured human brain
vascular pericyte migration through estrogen receptors ER-ɑ and
ER-β signaling. Furthermore, their transcriptomics analysis reveals
that estradiol treatment induces changes in expression of transcripts
associated with cell migration under inflammatory conditions. Since
astrocytes and pericytes are involved in maintaining BBB integrity,
these findings suggest a critical role of hormone-mediated
protection in the context of brain injury. Additionally, previous
studies reveal ex vivo cultures of male neonatal rat microglia
stimulated with lipopolysaccharide (LPS) have increased pro-
inflammatory responses compared to female cultures (Loram
et al., 2012). This leads into the next section, which discusses
how biological sex plays a role in peripheral immune responses
to brain injury.

4 Peripheral immune response to acute
brain injury

Acute brain injury leads to peripheral immune responses, which
are initiated by the infiltration of peripheral immune cells into the
parenchyma and transport of DAMPs and PAMPs to draining
lymph nodes. Here, we review the process of peripheral immune
activation, how biological sex influences immune responses and
emerging sex differences in innate immune cells involved in
CNS injury.

4.1 Peripheral immune cell signaling

The important players in peripheral immune responses
originate from multipotent hematopoietic stem cells that
undergo differentiation to become common myeloid
progenitor or common lymphoid progenitor cells (Kondo
et al., 1997; Akashi et al., 2000). Common myeloid progenitors
give rise to innate immune cells, including granulocytes,
monocytes, macrophages, and dendritic cells. Conversely,
common lymphoid progenitors differentiate into adaptive
immune cells including T cells, B cells, and NK cells. These
peripheral immune cells use signals from other cells as a road
map to reach the brain when injury or disease occurs. An in-
depth review conducted by Besedovsky and Rey discussed how
neural mediators, such as neurotransmitters, act on immune cells
to induce a variety of responses (Besedovsky and Rey, 1996).
They also examined the effects that immune-derived products
have on the cells of the CNS, including neurons and astrocytes.

Another important group of signals that are involved in this
neuro-immune axis are chemokines, which are small proteins
that initiate peripheral immune cell migration and maturation
(Rostène et al., 2007). Together, neural mediators, immune-
derived products, and chemokines provide a means of
communication for these systems that aids in maintaining
homeostasis, preventing disease, and healing injury.

4.2 Immune activation through dura and
glymphatic system

The brain was once considered an immune privileged organ,
however, more recent studies highlight the presence of resident
immune cells within various compartments of the CNS (Buckley
and McGavern, 2022; González-Hernández and Mukouyama,
2023). One major site for CNS immune surveillance is the
dura mater, a collagenous membrane forming the outermost
layer of the meninges. The dura mater contains fenestrated
blood vessels, allowing for the trafficking of peripheral
immune cells and other materials. Under inflammatory
conditions, peripheral immune cells travel from the dura to
the meninges via chemokines, which facilitates their access to
the parenchyma. Importantly, the newly named glymphatic
system provides means of waste removal and small molecule
exchange between cerebral spinal fluid (CSF) and interstitial fluid
(ISF) that ultimately drains to peripheral lymphatics (Iliff et al.,
2012). Astrocytic aquaporin-4 (AQP4) channels enable this
movement of CSF into the parenchyma, as well as removal of
ISF from the parenchyma. Analogous to the peripheral lymphatic
system, the glymphatic system provides means of travel for
DAMPs from the CNS to peripheral immune organs such as
the spleen and lymph nodes. This results in the activation of
peripheral immune cells that initiate systemic immune responses.

4.3 Sex differences influence
immune responses

Differences in sex steroid hormone profiles and genetics play
roles in sex-specific immune responses. Innate and adaptive
immune cells express a variety of hormone receptors including
estrogen, progesterone, and androgen receptors. Sex hormones
have a variety of implications in immune cell development and
function. Generally, estrogens have been reported to promote
enhanced humoral immunity, while androgens promote
immunosuppression and immunomodulatory effects (Sciarra
et al., 2023). Thus, differences in sex-steroid hormone profiles
between males and females may have an impact on immune
responses. Additionally, sex differences in immune responses
have previously been linked to genetics. The human X
chromosome encodes a variety of genes related to immune
regulation including transcription factors, cytokine receptors, toll-
like receptors (TLRs) (Klein and Flanagan, 2016). Some of these
genes can escape X inactivation and show increased expression in
females compared to males. In the next section we focus on
emerging evidence of sex differences in innate immune cells and
how it may impact acute brain injury.
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4.4 Sex differences in innate inflammation

The innate immune system is rapidly activated and plays a
crucial role in neuroinflammation after acute brain injury. Previous
studies have revealed neutrophils and monocytes are two key innate
immune cells involved in the response to brain injury (Jin et al.,
2012). These cells play multiple roles in the immune response
including debriding tissue, producing signaling molecules, and
acting as a bridge between the innate (tissue resident) and
adaptive (peripheral) immune systems (Mantovani et al., 2011;
Hazeldine et al., 2014).

4.4.1 Neutrophils
Neutrophils are one of the first peripheral immune cells to reach

the CNS and may persist chronically after injury (Alam et al., 2020;
Mohamud Yusuf et al., 2022). Despite their initial avail, neutrophils
are implicated in pathogenic processes associated with chronic
neuroinflammation, such as hyperpermeability of the BBB,
edema, and reactive oxygen species (ROS) metabolism (Liu et al.,
2018). Notably, recent studies have revealed sex differences in
neutrophil activation, function, and apoptosis. A multi-omic
analysis of mouse neutrophils revealed sex differences in
chromatin architecture, with male cells exhibiting increased
chromatin compaction compared to female cells (Lu et al., 2021).
Chromatin architecture is an important aspect of neutrophil biology
due to its involvement in neutrophil extracellular traps (NETs), and
the observed sex differences in chromatin architecture may
contribute to sex-specific neutrophil responses and gene
expression. Another study of isolated human neutrophils revealed
that cells obtained from male subjects exhibit higher expression of
genes associated with immature phenotypes compared to female
cells (Gupta et al., 2020). Neutrophils isolated from healthy females
show increased activation, as evident by female-specific gene set
enrichment of pathways related to type I interferon signaling and
stimulation in the absence of stimulus. It was also noted that male
neutrophils treated with estradiol show similar mitochondrial
metabolism compared to untreated female neutrophils, which
suggests that differences in steroid hormone profile, rather than
X chromosome dosage, lead to sex-specific neutrophil phenotypes.
To test this hypothesis, researchers analyzed neutrophil type I
interferon signaling/stimulated genes in males with Klinefelter
syndrome (XXY) and prepubescent volunteers. Female (XX)
neutrophils consistently exhibited higher expression of type I
interferon signaling/stimulated genes compared to XY and XXY
males, and no significant statistical differences in expression
between the XY males and XXY males. Additionally, there were
no significant differences in the maturation profile or expression of
type I interferon signaling/stimulated genes of prepubescent male
and female neutrophils. Together these findings suggest that sex
steroid hormones contribute to determining female-specific
neutrophil physiology in healthy individuals. There are also
reports of sex-specific neutrophil responses to pro-inflammatory
signals. For example, Pace and others demonstrated that neutrophils
isolated from human male subjects exhibit increased production of
prostaglandin-E2 (PGE2) upon stimulation with lipopolysaccharide
compared to those isolated from female subjects (Pace et al., 2017).
PGE2 is a bioactive molecule involved in homeostatic and
inflammatory processes. The authors hypothesize this may be

due to sex differences observed in COX2 expression, as this is
the key enzyme involved in prostaglandin biosynthesis.
Ultimately, these findings show there are sex differences in
neutrophil biology, and additional research is needed to
understand the extent of these effects. Given that neutrophils
play a crucial role in inflammation after brain injury, sex
differences in neutrophil function may contribute to the sex
differences in CNS pathology.

4.4.2 Monocytes and macrophages
Monocytes, like neutrophils, infiltrate the CNS rapidly in the

event of an injury in response to chemoattractants (Jin et al., 2012;
Alam et al., 2020). Once monocytes have entered the brain tissue
they mature into tissue resident macrophages and begin to perform
effector functions including production of inflammatory mediators
and phagocytosis of cellular debris (Yang et al., 2014; Alam et al.,
2020). Recent studies have revealed hormone-related and sex-
related differences in macrophage development and
characteristics. Consiglio and others show androgen receptor
signaling plays a role in monocyte development in male mice
(Consiglio and Gollnick, 2020). They found that deletion of
androgen receptors in myeloid cells leads to reduced numbers of
mature monocytes and increased numbers of macrophages in bone
marrow compared to controls, suggesting androgen receptor
signaling increases monocyte development. Additionally, a study
of isolated peritoneal macrophages from young and middle-aged
rats revealed young females exhibit an increased percentage of
macrophages that express activation markers toll-like receptor 4
(TLR4) and major histocompatibility complex II (MHCII)
compared to young males (Ćuruvija et al., 2017). It was also
reported that when stimulated with lipopolysaccharide (LPS),
isolated macrophages from young female rats produced higher
levels of interleukin 6 (IL-6) and interleukin 1β (IL-1β)
compared to young male macrophages. These findings highlight
the impact of sex and age on macrophage phenotypes and response
to inflammatory stimuli in animal models. Future studies should
focus on elucidating sex-related and hormone-related macrophage
responses to better understand the roles they may play in CNS
injury. The next section will review reported sex differences in
traumatic brain injury (TBI) and stroke.

5 Sex differences in acute CNS injury

5.1 Traumatic brain injury (TBI)

5.1.1 Epidemiology
As one of the leading causes of injury-related death and

disability, TBI, affects between 50 and 60 million people globally
each year (Maas et al., 2022). The global economic burden of the
disease is estimated to be $400 billion per year. Previous literature
reveals males have higher rates of TBI compared to women (Mikolic
et al., 2021; Centers for Disease Control and Prevention, 2021;
Centers for Disease Control and Prevention, 2022). In 2016 and
2017, males were reported to have higher rates of TBI-related
hospitalizations for all injury mechanisms including
unintentional falls, motor vehicle crashes, and assault (Centers
for Disease Control and Prevention, 2021). Additionally, males
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were reported to have more than three times higher rates of TBI-
related deaths compared to females in 2018 and 2019 (Centers for
Disease Control and Prevention, 2022). Despite previous efforts to
uncover sex differences in TBI outcomes in preclinical and clinical
studies, this topic is still widely considered to be controversial.
Remarkably, an extensive review by Gupte and others unveiled
that human studies report females predominately experience
poorer clinical outcomes than males following TBI (Gupte et al.,
2019). They found that study parameters such as study size,
stratification of TBI severity, and type of outcome measured have
an impact on the extent of sex differences reported in human studies.
Furthermore, similar trends extend to preclinical TBI models where
themechanism of injury, sample size, and type of outcomemeasured
appear to have a considerable impact on reports of sex differences.
Additional research in both preclinical and clinical domains is
needed to decipher the etiology and magnitude of sex
differences in TBI.

5.1.2 Pathophysiology
TBI is characterized by a blow, jolt, or penetration to the head

that results in the disruption of brain function, leading to complex
pathological processes. The acute injury phase is a direct result of the
initial injury, which includes damage to neurons, glia and blood
vessels. Following the acute phase is a heterogenous, secondary
injury phase that encompasses neuroinflammation, heightened
intracranial pressure, dysfunction of the BBB, and neuronal
excitotoxicity. Neuroinflammation begins with the activation of
microglia, which secrete cytokines and chemokines to attract
other immune cells such as neutrophils, monocytes, and
lymphocytes, to the injury penumbra (Simon et al., 2017). While
the initial inflammation aids in neuroregeneration and the clearance
of cellular debris, chronic inflammation in the brain can lead to
neuronal cell death and further neurodegeneration (Ziebell and
Morganti-Kossmann, 2010; Simon et al., 2017). Transport of
DAMPs to peripheral immune organs via the glymphatic system
leads to systemic immune responses. For example, preclinical
studies of TBI have revealed short-term increases in myeloid cell
differentiation in the bone marrow and chronic changes in
circulating immune cell profiles and behaviors (Ritzel et al.,
2018). Additionally, examination of the thymus has revealed
chronic disturbances in T cell maturation after TBI.

Recent preclinical studies have revealed sex differences in TBI
pathology. Our group previously assessed macromolecule
accumulation profiles in male and female mice after
experimental TBI (Bharadwaj et al., 2020). Here, horseradish
peroxidase (HRP) staining revealed females experience increased
macromolecule accumulation in the injured cortex 24 h post-
injury compared to males, suggesting sex-dependent BBB
permeability after TBI. Additionally, Schwab and others found
that female mice exhibit increased DNA damage compared to
males after repetitive mild TBI (Schwab et al., 2022). Female mice
exhibited increases in R-loops and oxidative base damage
compared to sham levels, which was not evident when
comparing sham males to injured males. However, when
markers for cellular senescence were examined, males and
females expressed comparable increases in p21 and
p16 proteins compared to their sham counterparts. The
authors stated this suggests that males might be more sensitive

to genotoxic stress compared to females, and additional research
is needed to elucidate the mechanisms that contribute to injury-
induced sex-dependent DNA damage. Furthermore, Villapol and
others also report that male mice show increased microglial
activation, macrophage infiltration, and cell death compared
to females at acute timepoints after moderate CCI (Villapol
et al., 2017). In this study biological sex and time post-injury
were reported to influence cytokine production in microglia and
macrophages up to 30 days post-injury. For example, male mice
exhibited increased TNF expression at 3 days post-injury
compared to females, whereas females exhibited increased
TNF and IL-1 expression at 4 h post-injury. Similarly, a study
conducted by Doran and others also reported male mice
exhibited increased myeloid cell infiltration at 1 day post-
injury and increased microglia count at 3 days post-injury
compared to females (Doran et al., 2019). Moreover, sex
differences have been reported in clinical studies. Wagner and
others evaluated sex differences in CSF glutamate concentration
and lactate-pyruvate ratio after severe TBI in adults ages
16–65 years (Wagner et al., 2005). Here, females had higher
lactate-pyruvate ratios, indicating females experience increased
oxidative stress after severe TBI compared to males. They also
report sex associations with 24-h glutamate concentration using
multivariate analysis, indicating sex differences in glutamate
excitotoxicity post-injury. Both findings provide evidence for
sex differences after injury that directly affect cells of the BBB.

5.2 Stroke

5.2.1 Epidemiology
Stroke affects approximately 12 million people worldwide

each year (Feigin et al., 2021). Ischemic stroke (IS) accounted for
about 60% of those cases and hemorrhagic stroke (HS)
accounted for the remaining 40%. Notably, in 2019, stroke
was the fifth leading cause of death for men and the third
leading cause of death for women (Rexrode et al., 2022).
Overall, women are considered to have a higher lifetime risk
for stroke compared to men. However, age impacts the sex-
related risk of stroke, with women having a higher incidence up
to 30 years of age and men having a higher incidence thereafter
until about age 80 (Vyas et al., 2021). There are also differences
associated with the type of stroke experienced by men and
women, with women having higher prevalence of
subarachnoid hemorrhage and men having higher prevalence
of hemorrhagic stroke (Rexrode et al., 2022). Previous studies
have revealed sex-related differences in risk factors of stroke. For
example, women diagnosed with diabetes have higher risk of
stroke compared to men with diabetes (Peters et al., 2014). Some
other factors that show sex associations include obesity,
hypertension, atrial fibrillation (Vyas et al., 2021).
Furthermore, there are female-specific risk factors for stroke
including the use of hormone contraceptives and therapies,
adverse pregnancy outcomes, and age of menopause onset.
These phenomena may be due to sex and age-dependent
alterations in circulating steroid hormone profiles and future
investigations should lay emphasis on elucidating the causes of
the sex-dependent risk of stroke.
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5.2.2 Pathophysiology
IS results from reduced blood flow that disturbs the normal

function of the brain, causing neurological deficits. The most
common causes of IS include arterial occlusion and venous
infarction. Similar to IS, HS results in reduced blood flow to the
brain caused by rupture of a cerebral artery rather than occlusion.
Ruptures can occur in the cerebrum or in the subarachnoid space
(SAS). In cases of HS, intracranial pressure rises quickly as the
hemorrhagic blood moves into the SAS, ventricles, and parenchyma
(Lauzier et al., 2023). At the core of the ischemic event and
downstream from the ruptured vessel, the decrease in blood flow
contributes to sustained ischemic conditions leading to neuronal
death and secondary injury sequelae (Arai et al., 2011). Conversely,
in the surrounding penumbra, other perfusing blood vessels provide
some reprieve, resulting in a much slower process of cell death.
However, in more severe cases, global ischemia can occur, which
causes severe oxygen deprivation to large regions of the brain
(Lauzier et al., 2023). In the absence of oxygen, neurons lose the
ability to generate ATP and extracellular glutamate quickly
accumulates causing excitotoxicity (Arai et al., 2011; Long et al.,
2023). Additionally, mitochondrial damage leads to the release of
free radicals causing oxidative stress and further damage to
surrounding cells (Tian et al., 2022). Resident microglia play dual
roles by producing pro-inflammatory cytokines and MMPs that
cause further BBB and cellular damage, while also producing growth
factors that aid in neuroprotection (Jayaraj et al., 2019). Studies of
the consequences of stroke have revealed both acute and chronic
systemic immune responses. The disruption of the blood brain
barrier after stroke allows DAMPS and cytokines to enter the
bloodstream, which leads to systemic immune responses.
Increases in blood plasma levels of pro-inflammatory cytokines
occur as early as 4 h after experimental ischemic stroke (Offner
et al., 2006; Chapman et al., 2009). Assessment of splenocytes and
circulating peripheral immune cells revealed increased secretion of
pro-inflammatory cytokines in experimental models. Post-stroke
assessments in humans have shown similar increases in peripheral
pro-inflammatory cytokine (Ferrarese et al., 1999; Landreneau et al.,
2018). Despite the initial systemic inflammatory response, the
immune response shifts towards immunosuppression, termed
stroke-induced immunosuppression (SIIS). As emerging key
contributors to SIIS, immunosuppressive neutrophils and
polymorphonuclear myeloid-derived suppressor cells (PMN-
MDSCs) are proposed to induce systemic immunosuppression
just days after stroke (Xie et al., 2023). Increases in PMN-
MDSCs are reported as early as 24 h after experimental middle
cerebral artery occlusion in mice (Kawano et al., 2019). Given that
these cells suppress T cell activation and proliferation in cancer, they
may play similar roles in immunosuppression after stroke.

Previous studies have reported sex differences in stroke
pathology, especially relating to the immune response to stroke.
Here we will highlight a few examples; however, we acknowledge
this topic has previously been reviewed in depth by others (Ahnstedt
and McCullough, 2019; Banerjee and McCullough, 2022; Liu et al.,
2022; Tariq et al., 2023). McCullough and others found sex
differences in pathways leading to cell death after middle cerebral
artery occlusion (MCAO) in mice (McCullough et al., 2005).
Specifically, cell death as a result of poly-ADP ribose polymerase
(PARP) activation and nitric oxide toxicity is mainly restricted to

males, whereas cell death for females is caspase-mediated. Another
group revealed that males exhibit increased macrophages and T cells
within the ischemic hemisphere compared to females 2 days after
MCAO (Xiong et al., 2015). Furthermore, gene expression analysis
of whole blood samples from human patients revealed females
express significantly more neutrophil specific transcripts up to
3 h following cardioembolic stroke (Stamova et al., 2014).
Additional research is needed to elucidate the underlying cellular
mechanisms that lead to sex differences in the pathological
responses to stroke, including sex differences in cells of the BBB
and infiltrating immune cells. Future studies should also aim to
determine the extent of hormonal and chromosomal influences that
impact sex specific immune responses to stroke.

6 Sex differences in nanomedicine

The study of sex differences in nanomedicine is a burgeoning
field. We are not the first to consider this topic (Hajipour et al., 2021;
Sharifi et al., 2021; Yang et al., 2021; Poley et al., 2022). Here, we will
focus on summarizing empirical observations of sex differences in
the field of nanomedicine, moving frommicroscopic to macroscopic
length scales, with a particular focus on implications for developing
nanoparticle systems in acute brain injury.

6.1 Sex differences in nanomedicine
interaction with cells and fluids

Sex differences in nanoparticle interactions with cells and
biological fluids have been observed in several in vitro contexts.
Following administration of a nanoparticle to the body, proteins that
are present in biological fluids will rapidly form a coating, or corona,
on the surface of the nanoparticle (Bashiri et al., 2023; Jiang et al.,
2023). This protein corona is a primary driver of nanoparticle
distribution and elimination, mediating both desired interactions
(such as uptake of the nanoparticle by target cells) as well as
undesired interactions (such as nanoparticle opsonization by
circulating immune cells) (Tran and Roffler, 2023). Ashkarran
and others concluded that protein corona composition was
distinct for silica nanoparticles exposed to female versus male
mouse plasma (Ashkarran et al., 2023), which may be a critical
finding for the field. However, it should be noted that their results
are reported from experiments involving plasma that was pooled
from 3 female versus 3 male mice, yielding a single sample of plasma
for each sex. Because nanoparticles were incubated with this pooled
plasma, it is difficult to ascertain whether the reported differences
could be attributed to female versus male sex or normal biological
variability. These are important early observations that merit deeper
evaluation in future work.

Data regarding how sex influences the interaction of
nanoparticles with cells is unfortunately sparse. However, what
has been described thus far suggests that how sex influences
these interactions may depend on cell type. In one example,
Serpooshan and others generated human amniotic stem cell
(hAMSC) cultures from the amniotic layer of placenta from
female and male fetuses (Serpooshan et al., 2018). Male cells
were observed to take up fewer quantum dots than female cells
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in these hAMSC cultures; interestingly, this relationship was
reversed in primary salivary fibroblast cells, where female cells
were observed to take up fewer quantum dots than male cells.
These differences in nanoparticle internalization as a function of cell
sex were directly attributed to differences in arrangement and
properties of actin filaments governing cytoskeletal
reorganization, suggesting a cell intrinsic basis. Mahmoudi and
others reported in a conference abstract that the uptake of
superparamagnetic iron oxide nanoparticles (SPIONs) was
threefold higher in female human inducible pluripotent stem cells
(hiPSCs) compared to male hiPISCs. Similar to the work
accomplished by Serpooshan, et al., these differences in
nanoparticle uptake on the basis of sex were attributed to
differences in actin structure and organization in female versus
male cells (Mahmoudi, 2021). Beyond these reports, detailed
analyses of NP interactions at the cellular level are otherwise lacking.

6.2 Sex differences in nanomedicine
biodistribution in the periphery

When a nanoparticle system is developed for the treatment of
disease, one of the most significant questions will be the extent to
which the nanoparticle agent accumulates in different organ
systems, i.e., biodistribution, since this will drive both efficacy
and toxicity (Wei et al., 2018). The biodistribution of solid metal
nanoparticles has received particular attention due to ubiquitous use
of these materials in the human environment and concerns
regarding potential long-term toxicity. Although these particular
systems are not typically intended to deliver therapeutic agents, the
studies that follow provide insight into the fundamental
mechanisms that will govern distribution of nanomedicines. Of
the metal nanoparticle family, silver nanoparticles (AgNPs) are
well-studied in terms of potential sex differences, likely due the
extensive use of AgNPs in textiles, cosmetics, and medical
applications, such as wound healing (Islam et al., 2021). Multiple
reports have observed that peripheral organ accumulation of AgNPs
is higher in female subjects compared to male subjects for bare metal
AgNPs, and this holds true for oral, IV, intraperitoneal (IP),
subcutaneous, and inhaled routes of administration (Kim et al.,
2009; Sung et al., 2009; Tariba Lovaković et al., 2021; Ćurlin et al.,
2021; Mahdieh et al., 2022; Xue et al., 2023). There is modest
evidence that steroidal hormones may drive these differences.
Lovakovic and others administered AgNPs coated either with
polyvinylpyrrodine (PVP) or the BBB-targeting ligand transferrin
(TRF) to male and female mice. Mice were either left gonadally
intact or received gonadectomy. Significant differences in AgNP
deposition were observed in the liver for intact females versus intact
males and in the lung for intact males versus gonadectomized males.
Importantly, TRF-driven targeting effects were observed for the
intact male group only, while TRF did not yield significant targeting
for female or gonadectomized subjects. Differential inflammatory
responses were observed in gonadectomized versus intact subjects,
which supports the expectation that gonadotropins may influence
distribution processes (Tariba Lovaković et al., 2021). For similar
PVP-coated AgNPs administered orally to rats, nanoparticles were
observed to accumulate to a much higher extent in female rats
compared to male rats for blood, liver, kidney, heart, stomach, and

duodenum (Ćurlin et al., 2021). In detailed work performed by
Boudreau, et al., variously sized AgNPs (10, 75, 110 nm diameter)
were observed to accumulate more effectively in female rats
compared to male rats in the gastrointestinal tract and associated
mesenteric lymph nodes (Boudreau et al., 2016). In contrast,
aptamer-loaded gold nanostars were observed to accumulate in
the spleens and liver of female mice at a five-fold lower level
than male mice (Dam et al., 2015). These contrasting reports
highlight the expectation that sex differences may be unique to
the nanoparticle system under consideration.

Sex differences in nanomedicine circulation within the vascular
compartment could be a likely explanation for sex-dependent
deposition in peripheral organs. Boudreau and others concluded
that there were no differences in the half-life of AgNPs in blood for
female versusmale subjects, however, the conclusion appears to have
been drawn from semi-quantitative analysis (Boudreau et al., 2016).
When we extracted the raw data from this report, there was modest
evidence that the half-life of AgNPs for female mice is faster than for
male mice (Supplementary Figure S1). Other studies have reported
longer circulation time and slower elimination half-life for female
versus male mice following administration of AgNPs (Xue et al.,
2023). Yet other studies have reported no difference in half-life for
female versus male mice following administration of ZnO
nanoparticles (Choi et al., 2012), although it appears that Zn was
primarily present in ionic rather than nanoparticle form in tissue,
suggesting that organ deposition in that work was not driven by the
colloidal system. Taking a broader view, traditional pharmacokinetic
characterization of nanoparticle system via ADME approaches is
critical; more detailed evaluation of the pharmacokinetic profiles of
nanoparticles in blood of female versusmale subjects, particularly in
context of gonadectomy or other hormonal manipulations, would
yield better understanding of the mechanisms driving differential
organ distribution and may also guide eventual clinical dosing
considerations.

6.3 Sex differences in the body’s response to
nanomedicine

Empirical evidence suggests that female versus male subjects
exhibit different biological and physiological responses to
nanoparticle administration. Here, we will focus on observational
studies that have reported sex differences in serum biochemistry and
complete blood counts, oxidative stress, tissue-specific toxicity, and
immune activation following parenteral administration of a
nanoparticle system.

6.3.1 Biochemistry and complete blood count
Whole blood is composed of both cellular (white blood cells, red

blood cells) and acellular (plasma, platelets) components. Evaluation
of serum biochemistry (i.e., the level of various proteins, enzymes,
and lipids) or complete blood count (CBC, i.e., cellular counts and
proportions) can yield insight into potential toxicity of therapeutic
systems. Several recent reports suggest that biochemical and CBC
responses to nanoparticle administration depend on sex (Gosselin,
Ramaiah, and Earl, 2011). Lanthanum titanate nanoparticles (LT
NPs) produced differing effects on both serum markers and CBC as
a function of biological sex, with evidence for immunosuppression
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in male mice under the same conditions in which expansion of
monocytes was observed in female mice (Akram et al., 2020). Male
mice were also observed to respond to nanoparticle administration
with increased triglyceride levels, which was not observed in females
and that may raise concerns for patients at-risk for cardiovascular
disease. Sex differences were observed for female versus male rats
after treatment with CuNPs, particularly at high doses, and these
differences were not observed in the free ion Cu (non-nanoparticle)
groups (Riaz et al., 2020). Complex and sex-dependent effects on
serum biochemistry for female versus male rats following
administration of CuNPs have been reported by other
investigators (Kim et al., 2016). Chen et al. described differences
in thymus and spleen indexes for female and male mice following
administration of PEGylated AuNPs, suggesting sex-dependent
immunological response (Zhang et al., 2013). These differences
included distinct immunological responses, as well as differences
in white blood cell, red blood cell, and platelet counts that depended
on dose as well as sex. In other work, male mice that received oral
administration of ZnO nanoparticles showed no change in serum
biochemistry, while females showed increased bilirubin compared to
their control, which could suggest sex-dependent liver toxicity
(Kuang et al., 2021). Sex-dependent physiological reactions to
nanoparticle treatment can involve direct impact on the
endocrine system; when female rats were dosed with titanium
dioxide nanoparticles, subjects exhibited transient hypoglycemia
on multiple days of observation, while the same dosing regimen
in male rats did not cause hypoglycemia (Chen et al., 2020). Sex
differences in insulin and glucagon levels likely explain these results
and could be a critical sex-dependent safety consideration for
individuals with aberrant glucose metabolism (e.g., in diabetes).
These data support an expectation that serum biochemistry and
CBC responses to nanomedicine will depend on biological sex,
which is an important consideration in toxicological evaluation
of nanoparticle systems.

6.3.2 Oxidative stress
Oxidative stress is a major focus of CNS research in acute brain

injury, being both a driver and potential therapeutic target for
disease pathology (Allen, C. L. and Bayraktutan, U., 2009;
Rodriguez-Rodriguez et al., 2014; Salim, 2017; Hakiminia et al.,
2022). Oxidative stress involves an imbalance between reactive
oxygen species (ROS) and antioxidant cellular machinery, leading
to an accumulation of ROS that yield damage to intracellular lipids,
proteins, and oligonucleotides. Increased oxidative stress has been
linked causally to chronic inflammation and neurodegenerative
processes in Alzheimer’s disease, Parkinson’s disease,
amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS)
(Pizzino et al., 2017). This mechanism of cellular and tissue damage
is increasingly implicated in the secondary injury cascades that
result from acute CNS, which is discussed in greater detail in
Section 5.1.2 of this review. Early evidence suggests that oxidative
responses to nanoparticle administration depend on sex, although
the reported relationships are complex and are not at a stage where
they can be generalized. In one study, researchers studied
biocompatibility of low- and high-dose (LD and HD,
respectively) PVP-coated AgNPs (Ćurlin et al., 2021). Females
and males displayed distinct patterns of peroxyl radical
accumulation that depended both on the particle type as well as

the organ system examined. Interestingly, female liver and kidneys
both showed a decrease in superoxide dismutase (SOD) levels for the
LD group and a return to control values in the HD group. In
contrast, levels of SOD in male rats did not show a clear pattern
between liver and kidney or between HD and LD. In separate work
utilizing a nanoparticle with specific intent of reducing catalase and
SOD, significant reduction of oxidative stress in male mice was
achieved with lower ratios of SOD1:CAT in nanoparticles, whereas
the ratio was doubled in females to achieve the same effect (Tarudji
et al., 2023). Complex antioxidant responses were observed to also
depend on sex in specific organ systems, including heart, liver, and
kidney for lanthium titanate NPs (Akram et al., 2020). Treatment
with AgNPs nanoparticles yielded significant changes in oxidative
stress markers, such as peroxyl radicals and superoxide radicals, in
male and female mouse kidneys, livers, brains and lungs. Differences
were not only observed between male and female mice, but there
were also differences based on whether the mice were intact or
gonadectomized, which highlights the important role that
gonadotropin signaling may play (Tariba Lovaković et al., 2021).
Taken in sum, these data suggest that oxidative stress responses can
be sex-specific, and that these differences should be considered for
the development of new therapeutics.

6.3.3 Inflammation and toxicity
Growing evidence suggests that sex differences play a role in

driving phenotypic, organ-level, or cellular toxicity. In one recent
and high profile example, major differences have been observed for
tolerability of the solid lipid nanoparticle COVID-19 vaccine, with
females reporting significantly higher adverse effects immediately
following inoculation and males experience higher susceptibility to
adverse cardiac events at later time points (Duijster et al., 2023); the
fact that the vaccine is reported to induce cycle irregularities in
menstruating individuals (Rahimi Mansour et al., 2023) suggests
that endocrine or gonadotropic signaling may be involved. We note
that, given the recency of these observations, sex differences in
COVID-19 vaccine tolerability is an area of active clinical
investigation that is evolving rapidly. Preclinically, sex differences
in toxicity have been studied in various formats. Sex differences were
observed for inhaled Titanium Dioxide nanoparticles (TiO2-NPs),
such that male rats exposed to TiO2-NPs exhibited a significant
increase in circulating neutrophils, while female rats were apparently
more susceptible to toxicity at the organ level (Yamano et al., 2022).
Phenotypic evidence of toxicity was evident as pulmonary dust foci
(PDF), which presented as milky white spots on the lungs and were
proposed to be agglomerations of macrophages; PDFs were seen in
females at lower NP doses compared to males, which suggests that
females may be more sensitive to the toxicities related to TiO2

inhalation. Similarly, female rats were observed to be more
susceptible to hepatic toxicity, with increased levels of biomarkers
for oxidative stress after oral administration. In contrast to these
results, a different study observed that females were less susceptible
to lung toxicity than males following exposure to ZnO-NPs (Sehsah
et al., 2022); although the initial experiments would have suggested a
simple or generalizable dependence of toxicity on sex, their deeper
analyses that examined genes regulating oxidative stress responses
and inflammation-associated chemokines revealed highly complex
regulation of individual pathways. Yang et al. demonstrated that
there were significant changes in hormone production in the female
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rats treated with copper nanoparticles (CuNPs), as well as
heightened expression of caspase proteases following parenteral
administration in females, although they did not compare these
results to male mice (Yang et al., 2017). Other research has also
shown an increase in micronucleation of immune cells, with a higher
quantity of these cells in male versus female rats across multiple
dosing groups by the oral route (Kim, Soon Yong et al., 2008). In
detailed studies performed by Han and others, amorphous silica
nanoparticles (ASiNPs) instilled intratracheally yielded the highest
level of lung damage in female rats compared to males (Han et al.,
2020). Expression of caveolin-1 and matrix metalloproteases in
females were suggested to account for these differences. In
separate studies, cytokine marker expression levels depended on
sex. Gokulan and others reported that a T-cell marker was
significantly increased in male tissues after 24 h, but the same
marker was significantly decreased in females at the same time
point and dose (Gokulan et al., 2020). Taken in sum, these data
support an expectation that toxicity of nanoparticle systems will
depend on sex, although clearly these relationships are complex and
may be unique to each nanoparticle systems.

6.4 Sex differences in nanoparticle delivery
to the injured brain

Nanoparticle delivery systems provide injectable, sustained
release options of therapeutic intervention for various diseases
and injuries. For neural applications, the largest obstacle to
consider when designing drug delivery vehicles is the BBB, which
larger sized particles (i.e., >20 nm) are typically unable to cross
(Cook et al., 2015; Medina et al., 2017). However, the breakdown of
the BBB after injury gives rise to unique opportunities to use
nanoparticle drug carriers. Drug loaded nanoparticles can be
tailored to suit a desired therapeutic target, which may include
reducing oxidative stress, protecting against cellular apoptosis, or
modulation of the immune system. While nanoparticle-based drug
delivery systems for brain injury are not currently available in the
clinic, these systems are clinically approved for the treatment of
various diseases including cancer, hemophilia, and multiple sclerosis
(Anselmo and Mitragotri, 2019; Mitchell et al., 2021). The following
paragraphs discuss the preclinical reports of sex differences in
systemic nanoparticle delivery to the injured brain.

Sex differences have been observed in the development of
treatments for TBI. Our group has previously investigated
nanoparticle accumulation profiles in male and female cerebral
cortex after experimental TBI (Bharadwaj et al., 2020).
Fluorescence microscopy confirmed greater nanoparticle
accumulation at 24 h post-injury in the female injured cortex
compared to the male injured cortex. This study also revealed sex
differences in the temporal nanoparticle accumulation profile
spanning up to 7 days after injury. Males exhibit a biphasic
accumulation pattern with greater accumulation at 3 h and 3 days
compared to 1 day after injury, however females do not share this
same temporal profile. This finding is indicative of sex-dependent
BBB dysfunction and is the focus of ongoing studies. Tarudji et al.
reports the overall contrast extravasation rate of antioxidant enzyme
loaded PLGA nanoparticles was significantly lower in female mice
than male mice at 24 h after experimental TBI (Tarudji et al., 2023).

Although these studies used the same injury model, this opposing
finding may be due to differences in injury severity parameters,
given that Bharadwaj et al. employed a 2 mm depth impact and
Tarudji et al. employed a 2.5 mm impact. Previous studies
characterizing the CCI model have shown that injury severity is
dependent on impact depth, speed and diameter, with more severe
injuries resulting from increases in these parameters (Saatman et al.,
2006; Osier and Dixon, 2016). Together, these studies show that
there are sex differences in nanoparticle delivery to the injured brain.
Further research is needed to investigate the underlying mechanisms
that cause sex-dependent pathologies seen in animal models of TBI
and how these mechanisms can be harnessed to improve therapeutic
delivery. Additionally, the type of injury model (cortical controlled
impact, fluid percussion injury, blast-induced injury) and severity of
the injury may impact the magnitude and temporal trajectory of sex
differences and should be considered carefully in future research.

Similar to TBI, the dependence of efficacy on sex has been
observed in preclinical studies for stroke. For example, Challa et al.
explored the impact of MMP-12 slicing after ischemic stroke by
delivering MMP-12 shRNA loaded nanoemulsions IV to male and
female mice at different time points post-reperfusion (Challa et al.,
2022). MMP-12 is a known player in amplifying local and systemic
immune response as well as prolonging BBB disruption. Animals
receiving the MMP-12 shRNA exhibited a significant knockdown of
MMP-12 within the ipsilateral hemisphere compared to control
plasmids and sham animal controls. When neuromotor behavior
was assessed, a sex-dependent effect was observed with MMP-12
knockdown therapy. Specifically, a higher level of therapeutic impact
for neurological motor behavior was observed inmale rats compared
to female rats (Challa et al., 2022). It should be noted that the stroke
induced motor behavior deficit was not as significant in female rats
compared to male rats (Koellhoffer and McCullough, 2013). This
phenomenon is well-documented in the preclinical stroke research
field, where it is hypothesized that circulating sex hormones may
play a role in the molecular sequelae and thus the functional deficits
that emerge. Other studies have demonstrated sex-dependent
response to small molecule or antibody therapeutics, however,
the PD/PK for nanoparticle systems in preclinical stroke models
have yet to be fully explored and characterized (Ruddy et al., 2019;
Seifert et al., 2019; Tejeda-Bayron et al., 2021). This area of research
is ripe for further assessment.

7 Conclusion/call to action

The main objective of this review was to highlight the current
knowledge of if and how sex-dependent biological variables impact
nanomedicine within the context of acute brain injury pathologies.
We can conclude from our analyses that sex is an important
consideration. We also identify critical gaps and challenges for
the field. This includes a lack of consideration of cell sex in
in vitro studies, oversimplification or failure to track estrus cycles
in experimental design, lack of balanced experimental designs
powered for detecting sex differences, and a lack of foundational
work directly evaluating nanomedicine-specific mechanisms that
may drive sex differences (for example, differences in protein corona
driving differences in circulation time).

We suggest the following call to action:
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- Train all scientists in the distinction between gender and sex as
well as the complexity of physiological factors that drive sex
differences

- Elevate field-standard expectations that published work will
consistently and directly provide rationale regarding
- Inclusion or exclusion of sex as a biological variable in all
experimental work

- Inclusion or exclusion of estrus cycle tracking in preclinical
experimental designs

- Deepen mechanistic rigor for nanomedicine development to
account difference in sex-dependent microenvironmental
factors through
- Increased attention to foundational aspects of protein
corona formation and nanoparticle distribution and
clearance as a function of sex

- Standard inclusion and description of cell sex for in vitro
experiments

- Utilizing preclinical manipulations such as hormone
replacement, gonadectomy, or transgenic or chimeric
models to better understand the mechanistic basis for sex
differences

- Develop and support team science initiates that would facilitate
the collaboration of diverse scientists and thought leaders capable
of pursuing this complex, cross-disciplinary work

We further challenge the field to consider the real-world context
for development of new nanomedicines, including addressing sex as
a biological variable in clinical populations that are atypical in their
sex identity or hormonal profiles as a result of typical aging
processes, hormone replacement therapy, intersex conditions,
non-binary gender presentation, or gender dysphoria.

Here, we address the intersection of nanomedicine and acute
brain injury in the context of biological sex. This field is poised to
yield new therapeutic approaches and mechanistic understanding
that will positively impact human health. We are encouraged by
growing recognition and incorporation of sex as a biological variable
and look forward to clinical advancements in the years to come.
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