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Hyperparameters are pivotal for machine learning models. The success of efficient
calibration, often surpasses the results obtained by devising new approaches.
Traditionally, human intervention is required to tune the models, however, this obtuse
outlook restricts the proficiency and competence. Automating this crucial characteristic
of learning sustainably, proffers a significant boost in performance and cost optimization.
Blockchain technology has revolutionized industries utilizing its Proof-of-Work algorithms
for consensus. This complicated solution generates a lot of useless computations across
the nodes attached to the network and thus, fritters away a huge amount of precious
energy. In this paper, we propose to exploit these inane computations for training deep
learning models instead of calculating purposeless hash values, thus, suggesting a
new consensus schema. This work distinguishes itself from other related works by
capitalizing on the parallel processing prospects it generates for hyperparameter tuning
of complex deep learning models. We address this aspect through the framework of
Bayesian optimization which is an effective methodology for the global optimization of
functions with expensive evaluations. We call our work, Proof of Deep Learning with
Hyperparameter Optimization (PoDLwHO).

Keywords: blockchain, hyperparameter tuning, proof of work, deep learning, sustainability, bayesian optimization

INTRODUCTION

The accelerating ubiquity of machine learning has radically altered the way technology caters to
human needs (LeCun et al., 2015). Deep learning networks have steered their way into human
lives, complementing their capabilities, in the form of voice assistants (Hoy, 2018), targeted
advertisements (Perlich et al., 2014), recommendation services (Linden et al., 2003) and life crucial
applications like cancer prognosis (Kourou et al., 2015). However, the operational performance
of these composite structures is still swayed by the parametric configurations set manually before
initiating their training phase. The distinction between a substandard setting and a favorable
hyperparameter calibration can be contrasted to an unsustainable design and a model with
cutting-edge efficiency (Pinto et al., 2009; Kotthoff et al., 2017).

Numerous endeavors have been undertaken to optimize hyperparameters like racing algorithms
(Maron and Moore, 1994), gradient search (Bengio, 2000) and random search (Bergstra
and Bengio, 2012), each ameliorating the performance and operational efficiency. Bayesian
optimization (BO), a sophisticated global optimization algorithm, has exhibited several interesting
characteristics rendering it suitable for automated exploration in the myriad of hyperparameter
choices. It has outperformed the traditional methods and is considereda huge step toward
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automating machine learning (Snoek et al., 2012; Feurer et al.,
2015). However, the BO based approach suffers from the issue of
“cold start,” necessitating an exploration from scratch for every
new problem flung to it (Swersky et al., 2013). It operates by
sequentially generating samples, evaluating the expensive black
box function over them and building up its appropriation using
the induced history. Thus, the conventional process involves a lot
of ensuant computations and time. Few parallel alterations have
been proposed which run multiple evaluations asynchronously
(Ginsbourger et al., 2011; Chevalier and Ginsbourger, 2013;
González et al., 2016), thereby, significantly decreasing the
processing time. PoDLwHO aims to leverage on the parallel
prospects of this algorithm by imputing the results of parallel
runs in the experiment using a blockchain network. Thus, after
every block generation run on the network, the subsequent
sample generation phase will utilize the results obtained parallelly
across the nodes, ergo surveying a large space in short time.

The last decade has witnessed emergence of a substantial
number of blockchains (For more details regarding blockchain
see Section Blockchain in Appendix). The concept of peer-to-
peer distributed ledger and double spending was popularized
by Satoshi Nakamoto through his revolutionary paper on
Bitcoin (Nakamoto, 2008). These blockchains are based on the
postulations of setting up an immutable digital system which
would dismantle the orthodox record maintenance architecture
of the current financial and industrial sectors and democratize
it, thereby, empowering the users across the globe with total
control and transparency over their transactions and records.
The certitude of blockchain’s acceptance is justified by observing
the rapid rise in the number of transactions being performed
over them and the value of cryptocurrencies accompanying
them (Beck, 2018). However, the scale of energy consumed
purposelessly for all this to happen is certainly a caveat (O’Dwyer
and Malone, 2014; Giungato et al., 2017). The conventional
democratic approach of blockchain consensus demands the
participating nodes to solve a cryptographic and mathematical
puzzle, like, unearthing a hash with certain length of zeroes,
in case of Bitcoin (Nakamoto, 2008). This phenomenon comes
under the umbrella of proof-of-work (PoW) scheme.

We call our work, Proof of Deep Learning with
Hyperparameter Optimization (PoDLwHO). PoDLwHO
aims to incorporate hyperparameter optimization using BO with
the core democratic architecture of PoW scheme. Consequently,
the purposeless hash computations will instead be used to train
and tune the deep learning model parameters. The participating
nodes in blockchain will no longer compete with each other to
solve the puzzle and lay claim to mine the block, rather, they will
be contending with each other for yielding better performing
models. Theminer of a block will be the node which reaches some
set threshold accuracy earliest. For a provided architecture and
dataset, the nodes will be tuning and training that architecture,
competing as well as assisting each other (due to parallel Bayesian
evaluation approach described in Hyperparameter Optimization

Abbreviations: PoDLwHO, Proof of Deep Learning with Hyperparameter
Optimization (Proposed work); DL, Deep Learning; AI, Artificial Intelligence; BO,
Bayesian optimization; PoW, Proof-of-Work.

Using Bayesian Constructs and Optimization Algorithms) for
generating superior set of hyperparameters. There are two major
contributions of this paper:

1) Modifying the PoW scheme to distribute and aggregate
the BO evaluations over the nodes participating in
blockchain network.

2) Introducing the concept of reward as a substitute of minting
fresh currency.

The major challenge involved in designing such an architecture
is ensuring the democratic behavior and security of monetary as
well as data transactions, so that adversaries cannot introduce
invalid models and fool the nodes into performing inessential
labor. Also, the network should be secure so that the identity
of a node is not impersonated just like in a normal blockchain
network (Lin and Liao, 2017).

Section Related Works reflects on existing literature related
to hyperparameter tuning and blockchain architectures. In
Section Method, the proposed method is described, followed
by analysis and comparison with some prominent algorithms
in Section Analysis and Comparison, experiment in Section
Experimental Setup, Technology and Code and results obtained
in Section Experiment and Results. Section Discussion discusses
the limitations and viable resolutions succeeded by future
prospects in Section Future Prospects.

RELATED WORKS

Hyperparameter tuning is a crucial and challenging aspect of
machine learning (Bergstra et al., 2011). It is evident from recent
studies that calibrating the deep learning models has sprung
the outcome statistics more than scouting new strategy (Pinto
et al., 2009; Kotthoff et al., 2017). Several optimization techniques
have been explored by researchers like racing algorithms (Maron
and Moore, 1994), grid search (Larochelle et al., 2007), random
search (Bergstra and Bengio, 2012) and gradient search (Bengio,
2000). Bayesian optimization (Mockus et al., 1978) is widely
used in hyperparameter tuning (Snoek et al., 2012; Feurer
et al., 2015; Kotthoff et al., 2017; Jin et al., 2019), substantially
improving the parameter search (Jones et al., 1998; Brochu
et al., 2010), surpassing the conventional semi-manual routine
as well as assisting in assessing the hyperparameter importance
(Hoos and Leyton-Brown, 2014). It employs gaussian process
(Williams and Rasmussen, 2006) to model the underlying black-
box function and also exercises a surrogate acquisition function
to determine the next sampling point. However, the major hurdle
with BO is the issue of “cold-start” requiring fresh initiation and
generation of new samples for every problem it is given (Swersky
et al., 2013). There have been attempts to resolve this concern
(Ginsbourger et al., 2011; Janusevskis et al., 2012; Swersky
et al., 2013; Kandasamy et al., 2018). Some variations have
been proposed which run multiple evaluations asynchronously
(Ginsbourger et al., 2011; Chevalier and Ginsbourger, 2013;
González et al., 2016), thereby, significantly reducing the
processing time. PoDLwHO uses the asynchronous evaluation
of black-box function followed by subsequent aggregation of the
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computed results across the distributed network for efficiently
appropriating the next sample points.

Blockchains have numerous computation and parallel
processing prospects. Proof-of-work was first introduced in
Bitcoin (Nakamoto, 2008) and is currently employed in a lot of
crypto blockchains like Namecoin, Mazacoin, etc. PoW offers the
supremacy of being fully decentralized, avoids any double-spend
attack but also has the caveat of huge, practically purposeless,
resource consumption. Primecoin (King, 2013), Gridcoin1,
Proof of Useful Work for Orthogonal vectors problem (Ball
et al., 2017) incentivize participants for performing scientific
analysis, however, the general public is still far from receiving a
visible benefit from it. In Permacoin (Miller et al., 2014), Proof
of Retrievability, is proposed requiring clients to invest their
physical resources as well as computations, however, the several
restrictions imposed, render it unsuitable.

Many researchers have attempted to integrate the concept
of artificial intelligence and blockchain. Singularity Net2 aims
to create a decentralized, synergic commercial launchpad
integrating AI and blockchain. Deep Brain Chain3 provides a
platform wherein several nodes ranging from individuals to
big cloud vendors can dedicate physical systems for training
AI models reducing the cost for accessing such equipment.
However, these propositions are more involved in integrating
smart contracts and machine learning, establishing a new
commercial infrastructure and thus, do not address the core
problem at hand. Proofware (Dong et al., 2019) promotes
a crowd-based computing system allowing developers to
build their decentralized applications (dApps) and their own
consensus protocols by providing an effective and transparent
financial system, building an elastic and autonomous large-scale
computing system. However, their aim is to solicit developers
with independent consensus protocols and create a interoperable
seamless financial system.

Numerous implementations and strategies have been
proposed for consensus (Bach et al., 2018). Peercoin (King
and Nadal, 2012), introduces proof-of-stake, a new consensus
method where the miners put up their coins at stake instead of
solving some puzzle, thus, saving on electricity consumption
and also reduces the risk of vertical centralization. However,
there are several restrictions attached to it. It doesn’t allow the
supply-distribution control exercised in real world for market
and inflation regulation. Also, there is a risk of double payment
arising due to double fork. Most importantly, proof-of-stake
is more aligned toward making the rich richer, as the protocol
appraises the forger’s holdings and stake.

PoDLwHO offers novelty in a way that while it has
the advantages offered by the PoW schema, the repurposed
consensus algorithm also advances the prospect of training deep
learning models in a quick and economic manner, therefore,
capitalizing its biggest shortcoming. Coin.AI (Baldominos and
Saez, 2019) presented a similar theoretical hypothesis premised

1https://gridcoin.us/assets/img/whitepaper.pdf.
2https://public.singularitynet.io/whitepaper.pdf.
3https://www.deepbrainchain.org/assets/pdf/DeepBrainChainWhitepaper_
en.pdf.

on generating complete model architectures from scratch by
following a context-free grammar. Since the multitude of
architecture hyperspace consists of only a fractional number of
architectures feasible for a data set, this leads to several unwise
structures. Their concept of choosing problem by voting within
community is also inconvenient for a large network and can
create clique of users with similar interests who won’t allow any
other problem domain to get voted in. They have mentioned
a few alternatives for these approaches due to their limitation.
PoDLwHO only aims to optimize the hyperparameters for a
specific architecture and not generate a structure from scratch,
which is a feasible problem and has several prior researches
as described before (Chenli et al., 2019) worked on a similar
concept of reutilizing the blockchain PoW. However, the
hyperparameters used by the model trainers are random, which
leads to redundancy and sacrifice of exploration performed by
other miners. Also, their concept of full nodes, introduces a
disparity among the new nodes to determine a suitable role and
maintain their economic advantage.

METHOD

Blockchain network proposed in PoDLwHO is analogous to
conventional systems. There are however, certain alterations
concerning the functioning and runnability.

Main Entities and Their Function
The nodes in blockchain network are categorized as Requestor,
Miner. Requestor is a semi-honest adversary who outsources
the DL model and its accompanying dataset. Requestor can
be researchers, scholars or small enterprises who want to train
their models. The requestor attaches a reward for successful
training of the model architecture provided by them. We
assume that the Requestor is impartial in terms of providing
hosted data set to all the miners. We also surmise that the
requestor will not introduce a problem to deliberately obstruct
the normal operations of blockchain and that their objective
is to obtain appropriate model for their data. Miners are
the participatory nodes which receive the model architecture
and dataset, spawn the hyperparameter constructs, and train
the model. Each of the miner is an accessory in training of
each other’s model, as the hyperparameters evaluated by the
miners, during a block generation phase, are used collectively
by each miner to appropriate their next sampling point (See
Hyperparameter Optimization Using Bayesian Constructs and
Optimization Algorithms). This routine allows traversal of the
myriad of parameter space in short time, asynchronously.

Block Generation and Consensus
Validation
The transaction block is the foundation of distributed ledger
which validates the transactions performed over the network
and thus, emplaces the entire financial system. The transactions
validated by the miners are selected from the Transaction pool
(See Section Transaction Pool in Appendix) consisting of the
transactions performed by the blockchain users which haven’t
been added to the blockchain yet. This is similar to the concept
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introduced in Bitcoin (Nakamoto, 2008). The transaction block
generation phase, which will be referred as block generation
phase subsequently, in the PoDLwHO, commences when a
requestor lodges a deep learning architecture and corresponding
data set for training, along with the allotted reward and threshold
accuracy (See Figure 1). The previous information coupled with
identification information of requestor is known as a Data
transaction (See Section Data Transaction in Appendix for
further details). The dataset is hosted by the requestor and only
its URL link is published, therefore, reducing the network load
from hosting such large files. Threshold accuracy is the minimal
desired result preferred by the requestor. Data transaction
also holds the current Bayesian statistics which are pairs of
hyperparameters and associated results, as well as the details of
the current best model and its trainer. In our experiment, we are
only comparing the accuracy of the models over the test data set
to determine the current best model, i.e., the model with highest
accuracy is best model at that timeframe. The data transaction is

first validated using the digital signatures of the requestor before
getting accepted into the system by nodes. Using web sockets, it
is broadcasted to all the other nodes. Elliptic curves are used for
begetting the digital signatures and their verification.

In case, processing of a data transaction from some other
requestor is already underway, the current one will be pushed
to the Data transaction pool (See Section Data Transaction
Pool in Appendix for further details) and will subsequently be
introduced to the network after the transactions prior to it have
underwent their execution.

The transaction block is generated after a stipulated time
frame which can be adjusted according to the network statistics,
just like the dynamic length of zeroes for hash calculation in
Bitcoin (Nakamoto, 2008). A data transaction can last multiple
block generation phases as explained in Threshold not reached
by any model. A data transaction consummates only if after some
generation phases, the threshold accuracy is achieved by some
model or if the data transaction reaches the preset expiration age.

FIGURE 1 | Flow of proposed activities.
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Hyperparameter Optimization Using Bayesian
Constructs and Optimization Algorithms
Since the requestor only provides architecture and accompanying
dataset, every node has the liberty to choose the hyperparameters
on their own. In our experiment we are considering only learning
rate for optimization.

Initially, when the requestor introduces the training dataset,
the miners are unaware of the hyperparameters to be selected
and their analogous performance. Theminers thus, assay random
hyperparameters within the acceptable domain range and churn
up models, calculating their accuracy and loss results (Described
as Phase 1 in Figure 1). These results are validated and updated
in the data transaction. The updates are broadcasted to every
other network node. Consequently, due to the large number
of participating miners, a large parameter space will have been
explored in an arbitrary fashion.When the stipulated time strikes,
block generation phase ends. Now, the requestor may or may
not accept the best model depending on the threshold it had set
up. However, the miner of current best model mines the block
without any reward. This way the blockchain propagates even if
the data transaction never got completed. The process proceeds
as follows depending on the whether the threshold was reached
or not.

Threshold not reached by any model
Instead of disregarding the models other than the current
best, the key-value pair of the hyperparameters used and
corresponding accuracies achieved are stored, in a Bayesian
optimization construct mempool. These will garner a large
number of Bayesian constructs consisting of the evaluated
samples. Now, using these samples, the miners apply BO and
determine the next suitable set of hyperparameters that should be
exercised in order to beget a better model, during the subsequent
block generation phase (Described as Phase 2 in Figure 1).
The acquisition function would require a trade-off between
exploitation and exploration so that we are not always crowding
a local maximum. This way the valid models (as defined in
Warranting Validity of Models) generated by miners, unable to
beat the current best model, assist in discovering the potential
superior set of hyperparameters which may furnish an even
better model.

Since, a single data transaction can span across multiple
block generation cycles, the miners get an opportunity after
every block generation to retrieve pairs of hyperparameters
and corresponding accuracies from all the other miners in the
networks and determine their next parameters. This helps in
performing the BO asynchronously, diluting the time otherwise
required for sequential execution.

However, this suffers from a limitation that a given set
of hyperparameters are trained for only a very small amount
of time. To counter this, instead of beginning afresh after
every block generation phase, miners train upon their previous
local models. Therefore, the weights realized by the model due
to the successive training over the previous block generation
phases, are stimulated for the new block generation phase using
the newly enumerated hyperparameters. The model keeps on
amending locally over a series of varying hyperparameters till

consummation of data transaction. It may seem counterintuitive
that a particular hyperparameter set is only utilized for training
over a single block generation phase, which is a very short
training period. It may yield optimal results if permitted several
training passes, which is not the scenario here. However, due to
the tradeoff between exploration and exploitation, this particular
parameter set may reappear after some block generation phases
and if it is consistent in enhancing the model’s accuracy, the
BO will be biased toward selecting its neighborhood, thereby,
supporting the original claim.

Threshold reached by some model
The requester keeps inspecting the current best model statistics
on cessation of every block generation phase. If a model reaches
the desired threshold, the data transaction consummates with
the assigned bounty rewarded to this model trainer and the
block being mined by it (Described as Termination Phase in
Figure 1). Requestor saves the architecture weights to their local
system and thus, concludes the data transaction initiated by
them. This terminated data transaction is popped out of the
data transaction mempool and the subsequent data transaction
is lined up for execution.

It may be reasonable to consider that the miner with
better equipment will achieve a better model accuracy and
consequently, always mine the block, rendering the nodes with
subpar equipment fruitless. However, it is rational to assess that
minersmight not be successful in reaching the threshold accuracy
at their first attempt, thereby, providing all the other nodes with
the fruits of their exercise in form of hyperparameters used
and corresponding results achieved. This adds to the parameter
hyperspace reduction for all the participating nodes and allows
them to seek a more favorable hyperparameter for their next
execution cycle. Therefore, a node with budget hardware can
use BO for undertaking training with calculated hyperparameters
which puts up a better performance than a node with expensive
gear but inferior hyperparameter. BO in PoDLwHO has a little
random noise factor integrated in it which facilitates the miners
to explore a neighborhood and not throng at a single point.
A favorable hyperparameter calibration will lead to superior
results (Pinto et al., 2009; Kotthoff et al., 2017) which can be
achieved by any miner and the effect of substandard equipment
will be reduced. Nevertheless, it will be irrational to ignore the
performance advantages accompanying superior equipment.

Summary of Block Generation Activities
PoDLwHO inherits the block acceptance and generation
policy similar to Bitcoin (Nakamoto, 2008), but substitutes
the hash calculation with model training and introduces
further refinement of hyperparameters to advance the
operational accuracy.

Figure 1 demonstrates the flow of activities proposed. When
the requestor submits the data set and architecture, all the
nodes download them and begin the block generation phases.
After every phase, the requestor checks whether the current best
model has reached the set threshold limit or not. In case the
threshold is reached, the data transaction ends there and the
reward is awarded with the winner mining the block. The next
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TABLE 1 | Theoretical overview of various algorithms used for hyperparameter tuning: Advantages and Challenges.

Algorithm Underlying process Brief overview Parallel prospects Challenges Sustainability

Manual search Intuition and experience. Trivial and basic method.
Utilizes the intuition and
experience of experts.

Generated
hyperparameters can be
tested parallelly. across
many processors.

Difficulty in reproducing
results.
Experience and intuition
play a very crucial role.

Explicit resource
consumption for tuning.

Grid search Iterative computation and
evaluation over a fixed
domain range.

Simple to implement.
Using computational loops,
range of domains is evaluated
removing the manual labor of
experts involved.

Parallelization is trivial. Suffers from the curse of
dimensionality.
Takes a very long time
to process.

Explicit resource
consumption for tuning.

Random search (Bergstra
and Bengio, 2012)

Random hyperparameter
sampling and evaluation
from domain.

Utilizes the fact that function
of interest is often more
sensitive to certain
dimensions, therefore,
randomly samples the domain
space in order to get optimum
hyperparameters.
No manual labor involved.

Easy to execute
independent parallel runs,
however, redundant
repeated execution
possible.

The sampled points are
independent and random;
thus, no statistical
advantage of using the
points already processed
in determining the next
batch.

Explicit resource
consumption for tuning.

Sequential model based
optimization (SMBO)
(Snoek et al., 2012)

Surrogate model like GP
and Acquisition functions
like EI, MPI, UCB.

Heuristic approach is used to
determine the next best set of
points, thereby, leading to
optimum results in a
constrained and generative
manner.

No parallel execution
prospects.

The sequential process is
time consuming and
doesn’t utilize the
modern-day parallel
processing prospects.

Explicit resource
consumption for tuning.

Parallel evaluation of
bayesian optimization

Surrogate model like GP
and acquisition functions
like EI, MPI, UCB.

The SMBO is performed
parallelly by utilizing the
multi-processor prospects for
evaluating different points,
parallelly distributing several
steps involved.

Explicit execution of the
parallel processors.
Synchronizing wait for
each processor to
complete their set of
execution before
proceeding to the next
evaluation cycle.

Explicit Execution and
difficult synchronization of
processors before
proceeding to the next
cycle of evaluation and
discovery.

Explicit resource
consumption for tuning.

q-EI Kriging metamodel
(Ginsbourger et al., 2010,
2011)

Kriging believer, constant
liar, gaussian process,
monte carlo simulations.

Offers the parallel prospects
of kriging, computational
intelligence by using monte
Carlo simulations.
Using statistical algorithms,
the sequential evaluations are
reduced and expected values
are employed.

Kriging is highly suitable
for parallelization.

Maximizing q-EI becomes
unaffordable as
dimensions and number
of points increases.
Simulation is performed
using monte carlo to
resemble to expected
results. Therefore, is not
much accurate as
compared to SMBO.

Explicit resource
consumption for tuning.

Auto-WEKA (Thornton
et al., 2013)

Tree structured parzen
estimator and sequential
model-based algorithm
configuration.

Solves combined algorithm
selection and hyperparameter
optimization by BO
techniques that iteratively
build models of the
algorithm/hyperparameter
landscape and leverage these
models to identify new points
in the space that deserve
investigation.

Parallelization is only used
in executing parallel
independent runs with
random seed values and
selecting the results with
the lowest cross-validation
error.

Parallelization is
incorporated only to
perform independent
runs. The process itself is
not distributed parallelly.

Explicit resource
consumption for tuning.

Collaborative
hyperparameter tuning
(Bardenet et al., 2013)

For surrogate model - GP
and Acquisition functions
like EI, MPI, UCB;
Transfer
Learning technique

Exploits the ability of
experienced practitioners at
tuning by generalizing across
similar learning problems.
Knowledge from previous
experiments is incorporated
for new problems.
A combination of
surrogate-based ranking and
optimization techniques is
used for surrogate-based
collaborative tuning.
BO is used with the
surrogate function.

No explicit information
regarding parallelization is
presented.

The evaluation metrics
may not be comparable
across different problems
and datasets.
A comprehensive
database of problems is
necessary.
Feature construction is
needed to define
correlations
between parameters.

Explicit resource
consumption for tuning.

(Continued)
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TABLE 1 | Continued

Algorithm Underlying process Brief overview Parallel prospects Challenges Sustainability

Scalable bayesian
optimization using deep
neural networks (Snoek
et al., 2015)

Uses neural networks to
learn an adaptive set of
basis functions for
bayesian linear regression,
deep networks for global
optimization.

The GP traditionally used in
BO is replaced with a model
that not only scales linear
fashion, but also retains most
of the GP’s desirable
properties such as flexibility
and well-calibrated
uncertainty.
Scales linearly in the number
of observations, and cubically
in the basis function
dimensionality.
Marginalizes over the possible
outcomes of running
experiments, thus, a set of
fantasy outcomes is
generated for each running
experiment which is then
used to augment the
existing dataset.

Offers high degree of
Parallelization.

Need to train a neural
network for performing
hyperparameter tuning.
Performance is
competitive with existing
state-of-the-art
approaches for BO.

Explicit resource
consumption for tuning.

The parallel knowledge
gradient method for batch
bayesian optimization
(q-KG) (Wu and Frazier,
2016)

For surrogate model - GP
and for Acquisition
function - KG.

q-KG consistently finds better
function values than other
parallel BO algorithms, such
as parallel EI, batch UCB and
parallel UCB with exploration.
q-KG provides especially
large value when function
evaluations are noisy.

Offers high degree of
Parallelization.

Computing q-KG and its
gradient is very expensive.

KG policy is more like a
greedier approach. KG
policy relies on the
posterior distribution of
the model for a guideline,
in a sense, trusting and
believing the model.

Explicit resource
consumption for tuning.

PoDLwHO (Proposed
Work)

For surrogate model - GP
and for acquisition
function - EI; blockchain

Repurposes the
inconsequential computation
cycles involved in the
conventional proof-of-work
schema of blockchain,
thereby, utilizing the parallel
prospects offered for not only
tuning but also training the
model architectures.

Offers high degree of
Parallelization.

The BO algorithm used is
rudimentary without
exploiting the statistical
modifications proposed by
several researchers.
Though, the robustness of
architecture allows
incorporation of any
algorithm.

The architecture used
is a sustainable
surrogate to the
otherwise, computation
hungry consensus
schema of blockchain.
Provides viable
utilization of electricity
and computation
resources.
The process of
blockchain consensus
as well as
hyperparameter tuning
along with model
training is
accomplished, all
through the same
resource usage.

GP, Gaussian Process; EI, Expected Improvement; MPI, Maximum Probability of Improvement; UCB, Upper Confidence Bound; BO, Bayesian Optimization; KG, Knowledge Gradient.

data transaction is now put in process. However, if the threshold
is not reached, the node with the current best model mines the
block and the next block generation phase begins. Apart from
the first block generation phase, where the hyperparameters are
randomly sampled, all the other phases involve BO to determine
the hyperparameters for training the model.

Warranting Validity of Models
The miners can try to deceive the networks by submitting
models with exaggerated accuracies, therefore, any model must
be validated before considering it either for best accuracy or

even for adding it to Bayesian constructs mempool. The received
model validation is transpired by downloading the model and
performing a forward pass to match the claim. The dataset is
already available with every miner. Forward passes are speedy
and wouldn’t consume a lot of clock time. Only if the accuracy
asserts, the model is acknowledged.

Ensuring Authentic Inputs and Outputs
The authenticity of data transaction and its input data set is
verified by using the signature of the requestor. The affirmation of
trained model is also done in a similar way. Nodes always verify
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FIGURE 2 | Prominent approaches of hyperparameter tuning grouped using logical similarities and characteristics.

the model claims before accepting it (as described in Warranting
Validity of Models). Every node saves their trained model locally
and also hosts it via an accessible URL. They broadcast their
trained model throughout the blockchain network along with the
URL to access it, the hyperparameters used and their accuracy
claim. Since the testing data set is the same for all miners
in a block generation phase, the verifying nodes only need to
download the model, they reuse the testing data set. Thus, any
receiving node first downloads that model, compiles it using the
hyperparameters and verifies the claim. Elliptic curves are used
to beget digital signatures for each node as well as to authenticate
the legitimacy of any transaction performed.

Setting Reward by the Requestor
The requesters don’t have any advantage in colluding with
the miners as they want the model that is optimal for their
cause. However, miners have a certain profit attached if they
are successfully able to connive with the requestor and retrieve
the dataset in advance. If the miners are rewarded only by
the blockchain system, then it may be profitable for them to
apportion this reward with the requestor, access the dataset ahead
of others, ergo get more time for drilling their model which
should furnish superior results. However, in our proposition, the
requestor is required to pay the reward attached to the model

training and not the blockchain system. This corroborates a
fair competition eliminating any collaboration between requestor
and miner. It also dispenses with the requirement of minting
a new cryptocurrency, permitting the network to simply use
conventional currency as the medium of exchange in supporting
the digital payments.

The rewards set up by the Requestor may be uneconomic for
processing and thus, certain regulation is required for deciding
the reward attached to a given data set.

Mining a New Block
The miner with the current best model mines the transaction
block in a block generation phase. However, the data transaction
currently in process may not conclude as a threshold accuracy
is to be achieved by some model before committing the data
transaction. Thus, the mining process sustains with the ongoing
data transaction till its termination. The miner doesn’t gain any
incentive by mining this block. The only way miner can profit is
by fostering a model which achieves the threshold accuracy set
by the requestor. The limitation attached to this compensation
strategy is discussed in Section Discussion and a viable alternate
is also discussed.

The verification and linking of transaction blocks in the
blockchain using hash of previous block, is performed in the
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TABLE 2 | Comparison of various hyperparameter tuning algorithms over presence and absence of important characteristics.

Algorithm/process Heuristic approach for
determining hyperparameters

Requirement of intuition
and experience

Parallel work
distribution

Sustainability of
resource utilization

Manual search × X × ×
Grid search × × X ×
Random search (Bergstra and Bengio,
2012)

× × X ×

Sequential model based optimization
(Snoek et al., 2012)

X × × ×

Parallel evaluation of bayesian optimization X × X ×
q-EI Kriging metamodel (Ginsbourger
et al., 2010, 2011)

X × X ×

Auto-WEKA (Thornton et al., 2013) X × × ×
Collaborative hyperparameter tuning
(Bardenet et al., 2013)

X × – ×

Scalable bayesian optimization using deep
neural networks (Snoek et al., 2015)

X × X ×

The parallel knowledge gradient method
for batch bayesian optimization (q-KG)
(Wu and Frazier, 2016)

X × X ×

PoDLwHO (proposed work) X × X X

similar manner as described in Bitcoin (Nakamoto, 2008).
However, the hash in PoDLwHO doesn’t follow the PoW
schema of Bitcoin with specific difficulty of prefix zeroes in
hash generation, instead the hash is the SHA-256 hash of the
block without any random nonce introduced. Instead, this block
has the hyperparameters used, accuracy achieved by the miner
(the trainer) of the corresponding data transaction in the block
generation phase. Also, the transactions validated in a block
are selected based on their time of arrival, and for current
experiment, they do not entail any transaction fee associated with
mining and validating them.

Security Threat Model
The blockchain technology has exhibited remarkable applications
but it has also garnered unwanted attention of attackers and
hackers raising concerns regarding the security and vulnerability
(Li et al., 2017; Feng et al., 2019). The blockchain described
under current scheme is also susceptible to 51% Attack, Double
spending and private key security vulnerability (Li et al., 2017)
and our experiment assumes the participating nodes to be honest
and lawful preventing such attacks.

The requestor in PoDLwHO is vulnerable to a Distributed
denial of service attack (DDoS) as all the miners are requesting
and acquiring their data from the single requestor entity. We
thus, assume the requestor to be capable of servicing all the
requests without any prejudice or intended delay and function
properly throughout the its operations. PoDLwHO is also
exposed to the threat of code injection, since the data transactions
exchanged between the nodes is followed by code execution for
the purpose of model training and parameter evaluation. Suitable
filters over the data exchanges are required to be implemented in
order to prevent code injection.

ANALYSIS AND COMPARISON

Table 1 describes a brief overview of a few prominent algorithms
proposed for performing hyperparameter tuning along with the
advantages and challenges accompanying them. The algorithms
have been stated in an order of priority to the concept of
tuning models, building up on the fundamentals and enhancing
them. Figure 2 groups these algorithms using the similarities
in their underlying characteristics and presents a broad outline
of their resemblance and divergence. From the initial intuition
and experience-based approach, the exercise of tuning, gradually
moves toward a heuristic approach, automating the procedure
and incorporating several statistical methods to assist in the
task completion.

Table 2 sketches a contrast among these algorithms over
certain parameters. Heuristic approach of determining
hyperparameters refers to the automated and statistical
approach of exploring the myriad of hyperparameter space and
narrowing down to a few optimal samples, thereby, reducing the
time involved in process. Since it is difficult even for experts to
generate optimal hyperparameters, the Requirement of Intuition
and Experience plays an important role in the practicability
and adoption of approaches. Distributing the process parallelly
not only helps in reducing the overall wall clock time but also
provides justice to the modern-day arsenal of cheap and efficient
parallel processors. Sustainability of resources is of utmost
importance as the need for viable and environment friendly
technology has amassed widespread attention due to the recent
climatic changes leading to global warming and natural disasters.

It can be clearly observed from Table 2 that other than
PoDLwHO, no other process offers a foundation of sustainability
with the advantages associated with statistical improvements.
PoDLwHO essentially integrates the process of Parallel
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evaluation of Bayesian optimization into the consensus schema
of Blockchain and removes the challenge of synchronization
by capitalizing on the block generation phases (as described in
Block Generation and Consensus Validation) for achieving the
same, and at the same time produces a viable and sustainable
alternative. q-EI Kriging Metamodel (Ginsbourger et al., 2010,
2011) has the advantage of Kriging computation intelligence
but the employment of Monte Carlo simulation renders it less
accurate than the employed BO approach. Scalable Bayesian
Optimization Using Deep Neural Networks (Snoek et al., 2015)
requires training of a neural network for the process, which is a
difficult task itself. The Parallel Knowledge Gradient Method for
Batch Bayesian Optimization (q-KG) (Wu and Frazier, 2016) has
good performance but the advantages of Expected Improvement
over Knowledge gradient outweigh its precedence4.

The comparison of characteristics among these algorithms
as described in Table 2 is only theoretical because wall clock
comparison of experiments, and comparing PoDLwHO over
BO benchmarks such as HPOLib package (Eggensperger et al.,
2013) is unjustifiable as the novelty of PoDLwHO lies in the
parallel architecture proposed which alters the PoW consensus
mechanism of blockchain and not the rudimentary BO method
used for Tuning. The robustness of architecture allows alteration
to this optimization method, allowing ease in replacing it with
more suitable surrogates. The future work would be directed
toward finding a better optimization algorithm suitable to
architecture operations.

EXPERIMENTAL SETUP, TECHNOLOGY,
AND CODE

The experiment for setting up the blockchain and corresponding
implementation of the PoDLwHOmechanism was performed on
a laptop with Intel R⃝ Core(

TM) i5-6200U CPU @ 2.30GHz × 4, 8
Gb RAM running on Ubuntu 18, a popular Linux distribution.
The entire blockchain is custom built from scratch in NodeJS5, a
popular open-source JavaScript runtime and python. The deep
learning models were implemented using TensorFlow6, a very
popular open-source machine learning library.

The code for the hypothesis proposed can be requested from
the authors and will be provided on their discretion.

EXPERIMENT AND RESULTS

Data Set and Model Used
MNIST handwritten digit images data set (LeCun and Cortes,
1998) was used as the training and testing data set. A basic
CNN was used as the architecture consisting of Conv2d, flatten,
dense, dropout and dense layers. The current hyperparameter
optimization is only targeting learning rate with its domains
set as (0,0.001). Also, the epochs are fixed at 7 for each
training phase.

4https://sigopt.com/blog/expected-improvement-vs-knowledge-gradient/.
5https://nodejs.org/en/.
6https://www.tensorflow.org/.

Analysis
Figure 3 shows the accuracy achieved by the model over the
different learning rates which were proposed using the BO
approach across the different nodes. It can be seen that the sample
generated by BO is more concentrated around the learning rate
of 0.001 from the figure.

Figures 4, 5 show the learning rate and accuracy achieved
by the models across the span of 10 block generations for
Node 1. It can be seen clearly that while the accuracy may not
increase after every block generation, the BO algorithm sample
the different prospective points that it deems fit. Figure 3 shows
that during the early stage when it tried sampling around 0.001
and later explored to 0.00078, on receiving an average response
as compared to previous results, it pivots the sampling back
to 0.001 as it had received the current best accuracy from that
neighborhood. However, later during the block generation 9
stage, we can see that its samples around the learning rate of
0.0006 implying that it doesn’t remain biased by what is current
best neighborhood of sample points.

Figure 6, shows the current best accuracy as perceived by
the requestor across the 10 generations of experiment. It can be

FIGURE 3 | Accuracy corresponding to learning rate samples.

FIGURE 4 | Learning rate of the model for Node 1 for 10 block generations.
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visually comprehended that the accuracy seems to increase after
a few block generations phases.

Figure 7 shows the various domain points sampled across the
block generation phases in the experimental run.

Thus, we can conclude that over the course of our experiment,
we found that the accuracy of the best model received so far has
improved after a period of 2-3 block generations. Also, another
thing to note is that the sample points for hyperparameters
set are not biased toward a local neighborhood, rather, the BO
ensures a careful balance of exploration and exploitation. It is
also worth considering that for a large of number of nodes several
different set of hyperparameters will be under process in a block
generation stage, not all nodes will have sampled on the same set
of hyperparameters.

DISCUSSION

A given set of hyperparameters is trained for a fixed time
frame, thus, it may steer the training toward a biased result.
The hyperparameters processed later have the ascendancy of the
model being already subjected to various training phases before.

FIGURE 5 | Accuracy corresponding to the model of Node 1 for 10 block
generations.

FIGURE 6 | Current best model accuracy across the block generations.

This can catalyze the hyperparameters sampled at later stage
to exhibit superior findings. Even though the trade-off betwixt
exploration and exploitation should account for this, yet there are
some odds of bias crawling in.

Cumulating and processing all the Bayesian optimization
constructs puts a heavy toll on the blockchain, therefore,
the need to selectively transmit a certain proportion of these
constructs to the next training phase arises. The selection must
be conducted meticulously, preserving the tradeoff between
exploration and exploitation. The requestor is presumed to
be semi-honest, guaranteed to provide the incentive it had
proffered. We can organize a smart-contract based system to
circumvent this assumption. As mentioned in Setting Reward
by the Requestor, certain regulation is required before requestor
decides rewards for the data set as it may be uneconomical
for the miners to process. Another interesting characteristic
of the reward is that it is processed to the node whose
model beats the threshold. However, this snubs the fact that,
generation of such model undergoes a few block generation
phases where different models may have been better. A
suitable reward schema can be formulated where the bounty is
administered across the blocks generated before consummation
of the data transaction. The miners with the best models in
each of these phases should be apportioned suitably from the
given incentive.

An important aspect of PoW scheme is that the consensus
schema should render a problem which is difficult to solve but
quick to validate and verify. In PoDLwHO, the forward pass of
deep learning model involved in the verification of claims by
miner takes a few moments depending on the complexity of
model and the size of data to be processed. Even though the
data required for validation is already downloaded and available
for evaluation, the forward pass takes time for performing
computations and is not as swift as the hash validation involved
in Bitcoin (Nakamoto, 2008). Thus, future work coordinated
toward solving this issue is essential.

Even though, the blockchain is designed to minimize
unwanted attacks and fraudsters, it is still susceptible to the
assumptions as described in Security Threat Model and here. A
robust model should work to evade such assumptions.

FUTURE PROSPECTS

While the training data is only downloaded once and reused,
it institutes the requester as a performance bottleneck during
the initiation phase of any data transaction, as, every miner is
soliciting access to the dataset. We can contemplate a contrasting
approach like, mini batch gradient descent, where instead of
the entire data set, the requestor publishes only a limited set of
random training and testing data after every phase. This unlocks
a huge opportunity to study the incorporation of BO and mini-
batch gradient descent. This way, miners procure a new training
set every time and likelihood of performance improvement
augments substantially.

Related works on asynchronous Bayesian optimization
(Ginsbourger et al., 2011; González et al., 2016; Wang et al.,
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FIGURE 7 | Various samples for Node 1 across the block generations.

2016) can also be incorporated to further improve the processing
and optimization.

CONCLUSION

We presented a novel proof-of-work consensus mechanism,
Proof of Deep Learning with Hyperparameter Optimization,
PoDLwHO, which assists in hyperparameter tuning of deep
learning models. It not only repurposes the inconsequential
computation cycles involved in the conventional proof-of-work
schema, but also, furnishes the latitude of parallel processing
prospects accompanying it. PoDLwHO institutes a mechanism
where the participating nodes train deep learning models as their
proof-of-work, ergo they compete with each other to yieldmodels
with superior performance. Concurrently, the proposed models
are persistently refined by performing hyperparameter tuning
using the approach of Bayesian optimization. By asynchronously
evaluating the myriad of hyperparameter space, numerous
parameter sets can be evaluated parallelly in a short time, saving

sequential computation steps and simultaneously, allowing the
multitude of nodes to compete and assist each other.

These deep learning architectures can be solicited by
academia, researchers and budding startups that desire affordable
training for their projects. Toll of training machine learning
models ranges from expensive end, where the pricey equipment
is purchased, to, comparatively low yet still costly, cloud rental
stage. From prototyping stage to pilot phase, and subsequent
maintenance and retrain cycles, the rising expense discourages
people from assessing their postulates. PoDLwHO aims to parry
such exorbitant costs by surrogating as a low-cost alternative.
The economic benefit emerges as the computations which
were otherwise generating impractical hash, like in Bitcoin,
are now vindicated by training the compute extensive deep
learning models. We also outlined the prospects of introducing a
blockchain without minting a new cryptocurrency. Interestingly,
it is also anticipated that the motivation of increasing
accompanying rewards will encourage users to innovate and
come up with new and compelling approaches for training the
models in a better and efficient way, igniting more research in
this domain.
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