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Significant effort is required to recruit and validate patients for research studies.
Researchers are typically limited to patients that they have a physical touchpoint with
(e.g., patients at VUMC). This physical access limitation reduces the research attention
that patients with rare diseases with little geographic concentration and patients with
disadvantaged background in rural areas receive. This paper explores the use of mobile
computing and blockchain technology to provide validation of research studies and their
data usage, advertisement of research studies, collection of research data, and sharing
of data across studies. The paper presents key challenges of using blockchains and
mobile computing to solve these issues, competing architectural approaches, and the
benefits/trade-offs of each approach.

Keywords: patient-centered, data, data sharing, interoperability, blockchain, distributed ledger technology,
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INTRODUCTION

A critical component of healthcare research is finding and recruiting participants in research studies
and ensuring that researchers have sufficient data to make decisions regarding patient qualification
to participate in a study. For example, simple information, such as drug allergies to or a specific
health condition in a patient’s medical record that may exclude them from a study, is essential to
making recruitment decisions. If a single piece of important information is missing, it can lead
researchers to make inappropriate or delayed decisions regarding participant selection.

As a consequence of the need for access to detailed patient information, patient recruitment
typically begins in clinical settings, such as hospitals, where researchers have direct access to detailed
medical record information. For example, researchers may work with a specific clinic within a
medical center and educate providers about their study and the types of patients that they are
looking for as participants. The clinic will have detailed medical record information and a face-
to-face touchpoint with patients to facilitate recruitment of patients that meet the participation
eligibility criteria of the study.

An emerging architectural model that is gaining interest is putting patients at the center of the
stewardship of their medical data (Kahn et al., 2009). Patients already have the right to view and

Frontiers in Blockchain | www.frontiersin.org 1 July 2020 | Volume 3 | Article 32

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org/journals/blockchain#editorial-board
https://www.frontiersin.org/journals/blockchain#editorial-board
https://doi.org/10.3389/fbloc.2020.00032
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fbloc.2020.00032
http://crossmark.crossref.org/dialog/?doi=10.3389/fbloc.2020.00032&domain=pdf&date_stamp=2020-07-31
https://www.frontiersin.org/articles/10.3389/fbloc.2020.00032/full
http://loop.frontiersin.org/people/737470/overview
http://loop.frontiersin.org/people/788163/overview
http://loop.frontiersin.org/people/788201/overview
http://loop.frontiersin.org/people/788193/overview
http://loop.frontiersin.org/people/895870/overview
http://loop.frontiersin.org/people/885439/overview
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org/
https://www.frontiersin.org/journals/blockchain#articles


fbloc-03-00032 July 29, 2020 Time: 17:37 # 2

Zhang et al. Patient-Centered Stewardship Model for Research

move their data between providers, so it seems a natural fit that
they should have mechanisms to see and move the electronic
copies of their medical data, rather than only printed copies.
With a patient-centered stewardship model, patients always have
direct access to their own data from all providers they have
visited and can delegate access at any time. This architecture is
fundamentally different from the current model (Beard et al.,
2012) where patients do not have direct access to the totality of
their data and must individually request portions of the data from
each provider, assemble the necessary portfolio, and then deliver
the combined pieces to another provider.

An early manifestation of this patient-centered stewardship
model is the ability for Apple’s HealthKit (Apple, 2020) to import
medical records from Epic (EPIC, 2020), which is one of the
most widely used electronic medical record systems in the US,
into a user’s mobile device. HealthKit directly imports data using
the FHIR standard (Bender and Sartipi, 2013) into a patient’s
iOS mobile device. Once on a patient’s mobile device, a patient
can choose to share their health records with additional apps on
the device, which may in turn deliver the data to other medical
providers or researchers.

A key question that arises in this new patient-centered data
stewardship model is if there are opportunities to expand how
patients are recruited into research studies. In particular, given
that patients now have direct control over electronic copies of
their medical records and the ability to share this access with
apps on their devices, can researchers recruit patients directly
through those apps? With this model, researchers would produce
an app that can read medical record data directly from a
patient’s HealthKit records and determine if a patient potentially
meets the eligibility criteria for a study. If a patient matches a
research study, they could be notified of the match and given
the option to directly communicate with researchers conducting
the study to determine if they can participate. Moreover, they
could directly transmit needed medical record information from
HealthKit to the researchers to further assist their participant
selection decision.

If successful, this patient-centered model could help facilitate
research study recruitment in terms of recruiting cost, data
management cost, and research time beyond the typical settings,
such as clinics, that have access to the needed medical records
to perform the preliminary stage of filtering to match patients
to research studies. There are several published studies that
analyze the effectiveness of recruitment for medical research,
such as (Lovato et al., 1997; Gul and Ali, 2010), and they
each focused on different research purposes, which created
a wide variance of the cost for recruitment stage. Generally,
computerized support systems would help save significant
recruiting cost compared to traditional clinic-based approaches
(Kaushal et al., 2003). In addition, computerized support systems
have considerable potential for reducing the timeline and increase
efficiency of data management process of medical research
studies (Garg et al., 2005).

Another trend that is impacting patient care is the rise in
production of non-traditional health-related data, such as records
of self-reported meals, step counts from fitness trackers, and
momentary assessments of mood or pain from patients. This

data, which is typically not part of the medical record today, is
increasingly demonstrating value to researchers in understanding
diagnostic and disease management processes. For example, meal
logs can aid researchers in understanding how effectively patients
are self-managing chronic conditions, such as diabetes.

Whereas traditional medical records are directly captured
through the provider in the electronic medical record system,
this newer exercise tracker and other non-traditional data is
typically captured through mobile devices, IoT devices in the
home (e.g., wifi scales), and through online services (e.g., social
networks). The data collection mechanisms span a vast array of
apps, devices, and services, few of which are trusted or certified
by any healthcare entities.

Now, with the new patient-centered data stewardship model,
this non-traditional data is accessible side-by-side within
HealthKit with traditional medical record data. This combining
of both types of data in a single location offers the potential
for supporting many types of innovative research, such as
research on patient reported outcomes or large-scale studies of
lifestyle on health.

A second interesting question related to research studies and
this new patient-centered data stewardship model is if the current
research data sharing and reuse model can be expanded to both
incorporate this non-traditional data and put patients in control
of how the data is shared with other researchers. With the current
research data ownership model, patients typically do not have
the ability to easily access and share the research data from
them with other researchers. The lack of control of their data
limits the impact that patient’s research data can have on other
research studies and keeps researchers, rather than patients, in
control of the data.

Since patients now have access to both their traditional health
records and non-traditional health-related data on the same
device, patients can potentially join research studies with little or
no face-to-face interaction with researchers. In the new model,
patients would feed their medical records and non-traditional
data to researchers through the HealthKit conduit. Although
detailed clinical studies requiring high-fidelity, close physician
monitoring of health, and administration of new medications
or interventions may not be possible, studies that focus on the
impact of non-traditional data on health or vice-versa could be
feasible without direct contact with the participant.

Moreover, if participants use HealthKit to capture and provide
their medical record and non-traditional health data with
researchers, it is feasible that they could simultaneously share
this data with multiple research studies or redistribute previously
captured data to new research studies that could benefit from it.
There are certainly many studies where access to the details of
how the data was collected, such as how lab tests were performed,
would render this type of model ineffective. However, we posit
that there are many studies, such as observational studies that
research how diet affects a person’s blood sugar level or how sleep
affects one’s mood, where this model is not only feasible but offers
unique new research opportunities.

In this paper, we explore key research challenges to realizing
this vision, although we fully acknowledge the presence of
many other types of challenges, such as challenges associated
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with specific blockchain implementations. Through our detailed
analysis of the domain-specific research challenges, we have
found that Distributed Ledger Technology possesses attributes
that make it a promising solution to realizing this new model
for research study recruitment and sharing of research data
across studies. After careful analysis of the research challenges
and promising attributes of distributed ledgers, we propose an
initial open architecture with a detailed set of domain-specific
requirements for study participant recruitment and data sharing
in the emerging patient-centered data stewardship model.

The remainder of this paper is organized as follows.
Section “Motivating Healthcare Research Example” provides
a motivating healthcare research example to demonstrate the
need for and trends toward a patient-centric data stewardship
model. Section “Challenges in Recruitment for Clinical Research”
presents key challenges in clinical research recruitment today.
Section “ A Distributed Ledger Architecture for Research
Participant Recruitment and Research Data Sharing” proposes
a decentralized architecture based on Distributed Ledger
Technology for facilitating data sharing in the research
participant recruitment process. Section “Related Work”
discusses related research on platforms for improving the
recruitment process for research studies and work that leverages
distributed ledger technology to felicitate healthcare data sharing.
Section “ Concluding Remarks” presents concluding remarks
and summarizes our key lessons learned.

MOTIVATING HEALTHCARE RESEARCH
EXAMPLE

As a motivating example for the exploration, we use an example
of the management of a serious chronic condition that most
commonly manifests in adolescent patients, namely, Type 1
Diabetes Mellitus (T1DM). T1DM is an autoimmune disease
where the pancreas produces little or no insulin, which is
critical to help the human body manage blood sugar levels. The
treatment of this condition relies on patients to perform self-
management tasks, such as self-measurement of blood glucose
and self-administration of insulin, to avoid life-threatening
complications (Borchers et al., 2010).

Despite physiological traits like blood glucose levels and
carbohydrates intake that are commonly used as clinical
indicators of how T1DM is controlled, recent studies
(Mulvaney et al., 2011) have shown that psychosocial behavior
in adolescent patients with T1DM can significantly affect
the adherence to diabetes regimen in this population. As
a result, much more diverse data, such as fatigue level,
mood, location, and social context, can be collected to
observe the behavior or further analyzed to provide timely
intervention to poor self-management behavior (Zhang
et al., 2018b). These data can easily be collected in or
near real-time using Internet of Things (IoT) devices
like smartphones, Bluetooth-powered glucose meters, and
environmental sensors. They can complement traditional
electronic health records (EHR) to provide a more
comprehensive view of patient health status by including

potentially influential variables from outside clinical settings
(Zhang et al., 2018c).

Unlike EHR systems that have served healthcare for
decades, emerging IoT-based systems that record health-related
activities (such as self-observed behavior data or sensor-recorded
environmental triggers) have not yet been rigorously tested
and certified to integrate with high-fidelity data like provider-
documented EHRs. There is a lot of distrust toward mobile
app/IoT providers from physicians and certified EHR system
vendors, causing delays in the data integration process. In the
case of adolescents with T1DM, patients often have to maintain
a journal that logs their daily diabetes management routine.
The journal may locate separately from, for instance, an app
that monitors daily psychosocial/behavioral traits for the same
patient. It is highly likely that neither the journal nor the app
data would be linked to the patient’s health records, which
can create potential problems, such as inconsistencies in the
medical history or misinformation, particularly when that patient
changes provider.

Current healthcare systems are known to be provider-
centric as forced by vendor-locked systems. These systems
operate and only enable cross-system communications upon
the establishment of trust relationships between vendors and
providers. In the modern society where a lot of healthcare efforts
are gradually becoming decentralized thanks to IoT technologies,
the centralization model that is trust-dependent will become less
effective and create more overhead for patients to manage care
(Zhang, 2018).

CHALLENGES IN RECRUITMENT FOR
CLINICAL RESEARCH

Despite the importance of clinical research and continuous
efforts to increase clinical research participation, many challenges
exist in the recruitment process and are multi-faceted, creating
barriers for researchers to complete their studies. This section
discusses four such challenges, including recruiting costs,
participant discovery of research studies, data reuse, and data
ownership distribution.

Recruiting Costs
Medical research is a long-term investment. Depending on
the scope of the research, the timeline will vary. DiMasi and
Grabowski estimated the average length of time from the start of
clinical testing to marketing is 90.3 months in the pharmaceutical
sector and 97.7 months for the biotechnology sector (DiMasi
and Grabowski, 2007). Lengthy timelines directly impact the cost
of capital for the medical projects and increase the financial
burden for researchers and investors because it is considered as
opportunity costs associated with foregone investments over the
researching period.

The recruitment process alone accounts, on average, for nearly
30% of total clinical trial time (around 30 months) (Reuters,
2012). During this process, resources required to recruit and
enroll participants must be sustained, including but not limited
to recruitment and coordinating staff, equipment, facilities,
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advertisements, etc., all of which contribute to significant
recruiting costs. Recruiting a large enough pool of participants to
validate the statistical result of medical research has always been a
difficult task for healthcare researchers. More than 81% of clinical
trials are delayed because researchers cannot recruit enough
participants for the studies (Nasser et al., 2011). In particular,
when analyzing 374 cases at Oregon Health & Science University,
31% of clinical research studies enrolled 0–1 subject before being
terminated, which creates a waste of over $1 million per year
(Kitterman et al., 2011).

More recently, however, computerized support systems have
proven to be advantageous in recruiting participants on a large
scale at a lower cost. A study involving healthy volunteers among
different recruiting methods has shown that costs per enrolled
subject were lower for the EHR patient portal ($113) than letters
($559) or phone calls ($435) (Samuels et al., 2017). In addition,
another study in Australia tested the effect of leveraging a
technical platform (social media) in healthcare recruiting process.
The results showed that the technical platform was more cost-
effective, especially in the earlier stages of the studies (the cost to
obtain a screened respondent: AUD$22.73 vs AUD$29.35; cost
to obtain an eligible respondent: AUD$37.56 vs AUD$44.77)
(Frandsen et al., 2016). These analyses show that integrating
technology that can accelerate the recruitment process of medical
research, which would in turn save the recruiting costs and total
costs of the studies tremendously.

Participant Discovery of Research
Studies
Recruitment of patients with a physical touchpoint leads to an
institution-centric advertising model. Because clinical studies are
controlled by separated institutions, participants need to put in
considerable effort to find the studies that match their health
status and relate to a medical condition they wish to be involved
in. Popular resources include the website of National Institutes of
Health (NIH) (National Institutes of Health, 2020), third-party
“search engine” for proprietary market research (CenterWatch,
2020), and other tools that are not specifically designed for
clinical research recruitment (e.g., Amazon Mechanical Turk;
Buhrmester et al., 2016).

Most of these resources are spread across multiple information
channels aiming to improve the publicity of research studies,
but the distributed information may become scattered and
outdated or cause confusion to potential research volunteers.
Furthermore, the eligibility criteria to participate in a study can
contain complex clinical terminologies that are hard to interpret
by participants without advanced clinical knowledge. It is also
impractical for volunteers to reach out to clinical experts for every
trial they are interested in due to the large number of ongoing
trials. As a result, potential volunteers may be discouraged to
inquire about or participate in research studies.

Data Reuse Challenges
Reusing and aggregating clinical data have been proven effective
for facilitating the discovery of new knowledge and the processes
of healthcare (Kreuzthaler et al., 2015; Chen and Butte, 2016).

Recognizing these benefits, some governmental organizations
including NIH (Majumder et al., 2017) and the National Science
Foundation (NSF) (National Science Foundation, 2010) have
started to support data sharing and openness in clinical research.
In contrast, data sharing is not a popular practice as it should
be in reality. There are many concerns related but not limited
to the ownership of reused data, the quality of the data, and
legal compliance. As the cost of recruiting patient and acquiring
the data is high, researchers usually prioritize clinical workflow
support, legal compliance, and their research purposes over the
quality of the data for reuse. Documenting how data is acquired
and transformed, storing data in a universal format, and finding
accessible repositories to share the data are very time-consuming.

According to a study on biomedical data sharing (Federer
et al., 2015), research subjects’ privacy is the most common
reason why researchers are reluctant to share data. Other factors
include publication competition, unnecessary data/manuscript
audit and misuse/misinterpretation of the data. In addition, there
is currently no proper mechanism to accredit researchers who
contribute or share the data. In some cases, these researchers
will either be included as a co-author on a publication, get
recognition in the acknowledgment section of the publication, or
be cited in the bibliography. Some researchers may not receive
any acknowledgment for sharing their data at all.

Another data sharing concern is the loss of information and
data context. Compared to the enormous number of variables
present in clinical research, especially on the metadata level,
data warehouses store only a fraction of the total data collected.
Moreover, acquiring the core dataset alone may not be sufficient
for other researchers to understand and reuse the data effectively.
Although current EHR systems are designed for ease of use by
researchers, many data fields still exist in unstructured format
that hinder effective data sharing, and there has not been a
highly reliable approach to explore this data. At the same time,
inconsistency in data standards and formats in structured data
also prevent researchers from sharing and learning from other
data (Richesson and Krischer, 2007).

For researchers who do participate in data sharing, they are
required to obtain consent from enrolled subjects for all studies.
In this case, researchers may choose to request additional consent
to sharing data. In practice, however, this is hard to implement
as researchers are not able to foresee the purpose and results of
secondary analysis that may come up much later than the time
consent is obtained. In contrast to researchers’ legal compliance,
patients and volunteers are much more open to data sharing.
According to a study, 93% of patients were very or somewhat
likely to allow their own data to be shared with university
scientists, and 82% were very or somewhat likely to share with
scientists in for-profit companies (Mello et al., 2018).

Distributing Control Over Data
Ownership
According to health information policies and regulations,
patients possess the ownership of their health data and should
be requested for consent when their data is used for secondary
analysis. In current practice, patients may provide consent by
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physically signing a paper form or electronically signing a
document online. Electronic consent forms can be used to more
efficiently identify the original patient providing the consent if
the forms are associated with a patient in the database. Paper-
based consent forms, on the other hand, require much more
effort to store (e.g., scanning and upload an electronic copy of
the physical forms and manually entering data into the system)
and may be lost or illegible along the process, making re-consent
more difficult to establish (Taichman et al., 2016).

It is therefore important to create a platform that values
privacy and is able to easily trace back to the appropriate patient
to re-consent, which may further encourage sharing and reuse
of research data. It is also critical to ensure that data is shared
and reused responsibly. Mechanisms like peer review or patient
review of proposals for reusing research data can protect the
subjects and the original researchers who acquired the data. With
a careful design, it is possible to incorporate these desired features
into the data sharing platform to allow a more flexible and direct
way to obtain consent for data sharing.

A DISTRIBUTED LEDGER
ARCHITECTURE FOR RESEARCH
PARTICIPANT RECRUITMENT AND
RESEARCH DATA SHARING

How do we leverage the potential trend toward patient-centric
stewardship of medical data to improve research matching,
control of research data, and incorporation of non-traditional
data sources accessible to mobile devices? We present an
architecture that publishes or redirects research studies into a
public distributed ledger that is used by researchers and research
participants for finding mutual matches. The goal of this Ledger
for research studies is to have a virtually centralized location for
hosting and discovering research studies that is accessible from
mobile apps and reduces recruitment costs. The expectation is
that marketing and other costs to engage patients with the Ledger
would be amortized across the thousands of studies published
there and help address Challenges 3.1 and 3.2.

A second component of the approach is that individual
users would download the catalog of studies and match against
them directly on their mobile devices. This model would
facilitate scaling up matching by not requiring researchers to
already have a clinical relationship with the user and still
be able to match against clinical data. Further, the patient
can prospectively discover and match against studies privately,
helping to address Challenge 3.2.

A final key component of the approach is that patients directly
discover studies and disseminate their data to these studies.
Through this model, patients control dissemination of their data,
which allow them to send their data to as many studies as they
wish in a self-direct manner and flat structure, enabling greater
potential research data reuse. For example, a patient can provide
the same set of data to ten studies that desire it without relying
on the first researcher that they provide the data to share it with
the other nine studies. The decision of how data, owned by the

participant, is subsequently distributed is up to the participant
and not the researcher that receives the data. Further, later studies
that publish requests for the same data as a prior study have
the potential to be matched against the same set of original
participants from an earlier study and receive the original data
if the participants self-provide consent.

The remainder of this section provides an overview of the key
attributes of distributed ledgers and then provides an architecture
for exploiting properties of distributed ledgers to design these
components. The section covers both the benefits and trade-offs
of the architecture.

Distributed Ledger Technology Overview
Distributed Ledger Technology (DLT) as implemented with a
Blockchain data structure was first considered by Haber and
Stornetta in 1991 within their landmark paper, “How to Time-
Stamp a Digital Document,” as an approach consisting of a
chained data structure and a node-based distribution network
(Haber and Stornetta, 1990). Faced with a future where an
overwhelming majority of media would become digitized, they
considered the ease with which creation and modification dates
could be tampered with. As a result, a proposal was made to
develop a data structure whereby a “...chain of time-stamps. . .”
(Haber and Stornetta, 1990) consisting of the utilization of
cryptographically strong hash functions would be utilized along
with a consensus-based mechanism for verification within a
trustless environment. This “chain” served as a starting point for
the most popular data structure implementation of the Ledger
called Blockchain. Along with foundational principles in peer-to-
peer distribution, this also provided a framework for what was
to come in 2008 when an as-yet-unidentified individual known
by the name Satoshi Nakamoto distributed what would become
Blockchain’s most popular implementation in the form of the
paper entitled, “Bitcoin: A Peer-to-Peer Electronic Cash System”
(Nakamoto, 2008). At its heart, DLT consists of two primary
components: a blockchain data structure and a peer-to-peer
network. In order to more fully understand these components,
we will break down each in turn providing more relevant
details along the way.

Within DLT, the blockchain data structure serves to represent
the Ledger. As an illustrating example, Alice records a piece of
data containing her name and other personal information to a
text document and saves the file afterward. She would like to
ensure that the information in this file is not altered by anyone
with proof. Given the ease with which a digital file can be copied
and modified, how might Alice certify in some provable way
that her file is the original file owned by her? To expand on this
scenario, another person Bob may want to perform this same task
but with his name and information stored in the file. How can
both versions of the document be protected against tampering
and proven that they represent two distinct states entered at
different points in time? This is where a blockchain data structure
is useful for the purposes of creating a tamper-resistant Ledger.

Blockchain consists of n nodes that are linked together in
a cryptographically protected manner. During the formation of
the chain, each node consists of data provided by some client
application (such as a name or other personal data) and a
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cryptographic hash of the data in the node that precedes it (except
for the case of the root node, where no data precedes it). The hash
algorithm, also called “the workhorses of modern cryptography,”
(Schneier, 2004) is fundamental to this technology. Hashing
algorithms have several key traits, including an input that can
be of an arbitrary size, a fixed-size output space, and efficiency
(Narayanan et al., 2016) with respect to computation.

Together, these properties use the information stored in the
Ledger (and whatever other data might be relevant at the time
of hashing – such as a timestamp) to produce a long string of
letter and number combinations that represents a snapshot of
that data that is computationally infeasible to reverse and also
proves mathematically that the data is unaltered. If the same long
string representation is embedded into the next link in the chain
(along with the important source data), by hashing those bits
together, a cryptographically irreversible bond can be produced
from one record to another.

Within DLT, the distributed nature is commonly implemented
through a peer-to-peer networking structure. More specifically,
the blockchain data structure described above that serves to
form the Ledger is distributed among p number of peers for the
purpose of independent validation of the data in the blockchain
in order to establish mathematically provable trust within an
otherwise trustless environment.

Given the often-times decentralized nature of the distribution
network, node identities are largely anonymous. As a result, there
is a challenge in establishing trust with an anonymous party
whose transactions within the Ledger look identical no matter
if they are a bad or good actor. Trust is an important factor
within any network whereby verifiable truth must be established
that a specified bit of data has been recorded into a Ledger and
has not been tampered with. As the blockchain-based Ledger
has been distributed among some number of peer nodes, each
individual peer holds the same exact version of that Ledger. How
to establish trust within this anonymous space? What prevents
bad-actors from colluding to tamper with the data in the Ledger
and still certifying its original veracity? Why is it important to
distribute the Ledger in the first place? The answer to these
questions lies within a specific activity that typically occurs within
a decentralized distribution network; namely, consensus.

Consensus mechanisms are designed to achieve agreement
with respect to the veracity as it pertains to a particular activity
within a system. This has been identified as “a fundamental
problem of fault-tolerant distributed computing” (Fischer et al.,
1985) – to achieve reliability in distributed systems, protocols
are needed that enable the system as a whole to continue to
function despite the failure of a limited number of components.
For a Distributed Ledger, the reliability of the system is directly
related to the trust within that system. The failure in the system
directly relates to bad actors whose primary goal is to undermine
that trust in return for personal gain. In order to achieve trust
through consensus, several algorithms have been designed for
this purpose including Proof of Work (Nakamoto, 2008), Proof
of Stake (Buterin, 2013), and Practical Byzantine Fault Tolerance
(Castro and Liskov, 1999). Each algorithm achieves consensus
through different mechanisms, which have both positive and
negative attributes to them (Zhang et al., 2019a), leaving the

choice of which algorithm to use to the architects of the system
and their stated goals.

DLT allows a user to record data in an immutable manner
through the use of a blockchain data structure while also
obtaining verification of that fact through the use of decentralized
and distributed consensus algorithms. As a result of these
two broad properties, this technology presents a compelling
architecture with respect to maintaining robust transactional
integrity for our solution described herein.

A DLT-Based Architecture for Research
Participant Recruitment and Research
Data Sharing
Figure 1 shows an architecture for a patient-centric stewardship
model of research study matching and clinical data sharing. The
goals of this architecture are to: (1) allow patients to perform
research study matching using their health data on their local
devices, (2) create immutable public descriptions of research
studies and the data they consume, (3) provide patients with
the ability to directly send their health data from clinical and
non-traditional data sources (e.g., apps) to researchers, and
(4) allow patients to control and acknowledge the sharing of
their research data.

The key emerging change in the healthcare market that makes
this architecture feasible is the move toward patient-centric
stewardship of data on their mobile devices. As shown in Step
1 of Figure 1, patients can directly import their health data from
a provider onto their mobile phone. Apple devices provide the
HealthKit API and access to Epic EHRs via FHIR.

The rest of the architecture shown in Figure 1 focuses on
enabling devices to discover research studies and find researchers
in need of their data. The core idea is that patients have the
ultimate control of where their data goes and when it may
be reused in other research studies. The distributed ledger
component of the architecture facilities the discovery of research
studies by creating a public record of all studies and a precise
description of the data consumed by each study. In order to
gain access to research participant health data, researchers must
publish the description of their study (Step 2) into the Ledger
where it can be discovered by patient devices (Steps 3 and 4).
Based on the data description, participants choose from the lists
of studies that they potentially match or that would benefit from
data that they have already provided to a research study in the
past to share data with (Step 5).

Distributed Ledgers and Research
Participant Privacy
Using a public distributed ledger for an application that facilitates
both the recruitment of research participants, as well as the
sharing of research data offers a number of advantages. Those
advantages can be grouped into three distinct categories: data
security, transaction control, and reliability. When contemplating
data security for a research participant use case, it is important
to note that in a public Ledger, the records of all transactions
are public and immutable. That is not to say that the underlying
medical data is public, but simply that the descriptions recording
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FIGURE 1 | An architecture for enabling patient-centric stewardship of research data using a distributed ledger.

the access of data are public. Once a blockchain operation occurs
and the transaction is recorded, that record is immutable and
will propagate to all the peer nodes in the decentralized network.
A study published into the blockchain cannot be retracted and
will provide a permanent clear record of the data it consumed.
If a research study is completed, however, it will be flagged as
completed and will not be used for participant matching.

One architectural possibility would be to have research
participants directly record study enrollment directly in the
blockchain. An individual who agreed to participate in a
research study would have a permanent record of any and
every study that accessed the participant’s data. To identify
a participant in a privacy-preserving manner, one approach
would be storing encrypted identifying metadata to distinguish
participants. Likewise, a study would be able to see what studies
a participant has joined. For research studies, however, having a
public record of participation is problematic because it violates
privacy rules regarding research participation. To overcome this
challenge, the architecture shown in Figure 1 leverages the
distributed ledger only for advertising studies and recording
the data that those studies consume. As shown in Step 2 of
Figure 1, researchers publish a description of the study into the
Ledger, but participation in studies is handled completely outside
of the blockchain.

With patients stewarding their own medical data, they have
the freedom to determine whether to participate in each research
study. Within each study, a patient who is willing to participate
would also be able to decide exactly which data to share
with a particular study. This gives patients complete control

over the use of their medical data. One approach would be
to use the blockchain to facilitate the transfer of the data
itself, but this is problematic for the same reason as recording
participation in the blockchain – it would inevitably violate
research participant privacy.

In the architecture shown in Figure 1, all joining of studies and
sending of data is performed outside of the blockchain between
the participant and researcher. Step 5 directly sends data to a
research data management platform, such as REDCap (Harris
et al., 2009). In other work, we have relied on direct submission of
data from participants’ devices to REDCap. The key problem that
this architecture overcomes is finding participants and solving the
technical challenges of getting their clinical data into REDCap
from their provider. Further, this architecture allows submission
of data from IoT or other sources accessible to the device (e.g.,
Bluetooth Glucometers, Wifi Scales, etc.).

Although a participant may match a study based on an
analysis done on the patient’s device, researchers may still have
other criteria that are difficult or impossible to publish into
the blockchain for matching. During the direct communication
between the participant and the researcher, the researcher
may choose not to use the participant’s data. In these cases,
the data collected from the participant would need to be
discarded by the researcher. A downside of the architecture
is that there is no way to enforce destruction of participant
data – although this is also the case in current practice. The
architecture still relies on institutional controls, such as policies
and Institutional Review Boards (Lincoln and Tierney, 2004), to
ensure researchers act ethically.
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The nature of blockchain networks provides a third important
aspect: reliability. Participants and study providers must be able
to trust that the chain of published research studies is valid
and will not disappear. Since blockchains are a network of
independent nodes, there is not a single point of failure, nor is
one node able to control the entire network. Before transactions
are recorded, they must be validated according to the consensus
mechanism for that network. Once a transaction is validated, it
is recorded and propagated to the individual nodes such that
the loss of one or more nodes, or control of one or more
nodes will not impact the validity of the transaction records on
the entire network.

Research Study Descriptions and
Matching Criteria
All research studies added to the blockchain include a request for
participants who have a particular set of medical characteristics.
Patients are notified of the availability of the study by their
device and can choose to validate their medical data against
the requested characteristics. If validation is successful, patients
can choose to submit the validation (along with additional
participation data) to the study to initiate their participation,
as shown in Step 5 of Figure 1. The study provider would
see a transaction indicating a successful match, along with
the participation data necessary to include the patient in the
study and validate the match. This chain of transactions could
also include the ability for participants to monetize the use of
their data, or generally for their participation, if such were a
requirement. All these transactions take place directly between
the participant’s device and the researcher using a standard
platform, such as REDCap.

In order to expedite the matching process, studies are defined
by three sets of characteristics that may be matched against:
boolean conditions (ex: asthma, hypertension), enumerated
characteristics (ex: hair color, relationship status), and ranged
characteristics (ex: desired age range, desired weight range, how
long a condition has been diagnosed). These characteristics
are provided by researchers conducting the studies. These
simplifications allow for primitive boolean tests to decide
whether the criteria for a study match the healthcare data
provided by a given patient. In order for a patient to qualify for
a given study, they must have a complete (100%) satisfaction of
study criteria via a simple iterative key-value boolean loop.

Because each study adheres to the same language of matching
criteria, relationships can be formed between the studies.
A key benefit of the matching language is that it facilitates
condensing the matching rules across multiple research studies
into a single network of rules using the Rete algorithm (Forgy,
1989). The Rete algorithm is designed to take in a knowledge
base of facts (e.g., the participants’ clinical and IoT data)
and efficiently determine which rules from a set should fire
(e.g., which research studies match). Each rule is defined by
a set of matching conditions and an action. In the proposed
architecture, the conditions are the research study matching
criteria and the action is proposing to the user a possible
research study is matched. The algorithm shares conditions

between rules in a directed acyclic graph so that conditions
are only evaluated once regardless of how many rules include
the condition. For example, the condition of the participant
having blood pressure above a threshold would be evaluated
once, regardless of how many research studies relied on the same
matching condition.

The entire body of published studies can be used to collect
matching conditions and build an acyclic matching graph using
Rete. A graph analyzes the necessary conditions of one study in
conjunction with the sufficient conditions of another, allowing
for the elimination of more complex study matching should a
patient’s data deem them unqualified for a simpler study with
a subset of the matching criteria. For example, if a patient fails
to qualify for Study A, which requires participants to be aged
30–40, then the graph will immediately eliminate Study B which
requires participants aged 33–37 with hypertension. In this way,
consideration of a simple study can cascade the elimination
of countless nodes/studies in the graph, drastically improving
performance on patient-study matching.

The drawback of the dependency graph is the time required
to generate the graph. A few considerations mitigate this cost.
First, the graph need only be generated on the server, thus each
mobile device does not have individual time expensed for the
graph. This generation of the graph server-side is captured in
Step 4 of Figure 1. Second, the proposed generation of the
dependency graph is to trigger a new server-side build of the
graph once daily (optimally during non-peak usage hours) to
update the graph with new studies added to the blockchain
and completed studies marked as no longer recruiting. As
such, the dependency graph method best optimizes average-
user performance– and very clearly increases scalability of
the matching algorithm. The dependency graph need only
be built once, and then can be shared amongst all mobile
device sessions.

Mediating Mobile Device Blockchain
Access
Although there is significant discussion on enabling patient data
sovereignty using blockchains, very few of these discussions
address a major fundamental problem – access to the blockchain.
Interacting with a blockchain requires the setup of a node in
the distributed ledger, which can be a complicated endeavor.
For example, most Bitcoin (Nakamoto, 2008) users rely on a
third-party wallet service (Antonopoulos, 2014) to hold their
cryptocurrency, run the required distributed ledger node, and
perform trades on their behalf. Despite the appearance of
complete decentralization and control by the user, the user is
actually dependent on the wallet service for access and is not
completely in control.

A similar problem arises in using a blockchain to publish
research studies. Blockchains are difficult to access from a mobile
device without an intermediate service, equivalent to a wallet
service for Bitcoin. Directly accessing and validating transactions
on a blockchain is both time and energy consuming, which makes
downloading the entire Ledger and validating it on a mobile
device problematic.
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The architecture shown in Figure 1 handles this access issue
by introducing a Study Aggregator as shown between Steps 3 and
4. The study aggregator manages access to the distributed ledger
and watches for the publication of new studies into the Ledger.
When new studies are published, it validates and aggregates them
into a comprehensive catalog of available studies.

A further function of the study aggregator is to use the
Rete algorithm to build the acyclic research study matching
graph described previously. Both interacting with the blockchain
and constructing this acyclic graph are potentially expensive
operations that are isolated on the server-side aggregator,
where power consumption and processing power are much less
problematic. Furthermore, aggregation and graph construction
costs can be paid once and amortized across all mobile device
accesses rather than paid on each individual device.

The downside of this approach is that it introduces a potential
central point of failure and control in the system. However,
there are two key reasons that this is not a significant concern.
First, any number of study aggregators can be run independently
by arbitrary organizations. There is no need for a single study
aggregator in the system. Each research institution can run
their own study aggregator and provide aggregation services to
research participants’ mobile devices.

Second, the failure of an aggregator only temporarily cuts
off access to the study catalog for the mobile devices currently
relying on that specific aggregator. A mobile device can use
multiple aggregators for redundant access or consensus. Even if
one aggregator fails, a participant can discover and use other
aggregators. Since the aggregator only produces a derived copy
of the research matching graph, the original research study data
is still immutably and reliably stored in the distributed ledger
despite aggregator failures.

Scalability and Privacy Trade-Offs for
On-Device Matching
An additional consideration of the study aggregator is how
it impacts trust, scalability, and privacy (Zhang et al., 2017).
Any time that trust in the aggregator is reduced, it improves
privacy at the expensive of scalability. The critical privacy and
scalability tuning of the system is done in how trust relationships
are established with study aggregators and how much work is
offloaded to the aggregator.

The proposed architecture does not dictate how trust is
established in a particular study aggregator. Our belief is that
research institutions already manage the establishment of trust
with research participants and are likely the best conduit
to establish these trust relationships. For example, research
institutions could create a trust aggregator and advertise its
address on their existing websites or through face-to-face
interactions with clinicians. Alternatively, non-profits organized
around specific interests, such as diseases (e.g., American Cancer
Society), could operate and publish aggregators.

Mobile devices rely on the acyclic matching graphs produced
by the study aggregators. There is an opportunity to improve
scalability and performance on the mobile device by pruning
the acyclic graph at the aggregator to reduce the data transfer

to the mobile device and the amount of work matching against
the graph. Any pruning of the graph at the aggregator reduces
the workload on the mobile device, which will be the limiting
factor in the scalability of the system if the entire matching
graph for every published study needs to be transferred to
each mobile device.

To improve scalability, mobile devices can either: (1) send
a subset of their data to an aggregator to perform intelligent
pruning or (2) subscribe to aggregators that publish graphs
pruned to a specific set of interests. For example, a device can
send a limited set of less-sensitive and semi-anonymous data,
such as age and weight, to the server and receive a pruned
subset of the graph that has potentially viable studies that
can be determined with further matching on the device. The
benefit of this approach is that matching can be more easily
scaled. The downside is that the approach inherently reduces the
overall privacy of the system by requiring some set of data from
the mobile device.

An alternative approach to improve scalability is to subscribe
to an aggregator that publishes a pruned graph that only contains
studies relevant to a specific interest. For example, an aggregator
might only publish studies relevant to a specific disease. This
approach also has a privacy trade-off in that subscription to the
aggregator implies interest in a disease or set of diseases, which
may have privacy implications (e.g., interest in cancer implies a
cancer diagnosis).

In either approach, it is expected that once a match is made,
the mobile device will begin direct communication with the study
organization to verify the match. As part of this process, an
important secondary verification will be performed, which is that
the mobile device will download a description of the matching
criteria directly from the research organization to ensure that the
matching graph from the aggregator was accurate. If there is any
discrepancy between the matching logic for the study published
by the aggregator or the research study site, which would indicate
tampering by one of the two entities, the mobile device will
discard the match and not continue. This secondary matching is
not full-proof and does indicate possible benefits to use a different
aggregator than the organization operating a given study.

We performed an initial analysis of the scalability issues
regarding research study matching on participants’ devices vs.
on the server in terms of time and data transfer. The key
scalability limitation that we found for on-device matching is
shown in Figure 2. As the number of studies grows, the amount
of data that has to be transmitted to the mobile device also
grows. The analysis was conducted by randomly generating
matching graphs representing varying numbers of studies and
calculating their total size in kilobytes. We developed a compact
representation of the graphs – although it is certainly possible
to improve efficiency – and measured the overall amount of
data that would need to be transmitted to the mobile device.
As shown in the figure, the overall size of the matching graph
is proportional to the number of research studies, which are
expected to continually grow over time. With our test graph
representation, 20,000 studies required transmitting roughly 48
megabytes to a client. Real-world studies may have more overlap
in the matching conditions and there may be much more efficient
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FIGURE 2 | Matching criteria graph Size vs. total studies.

representations that could lead to smaller graph sizes. This size,
however, is similar in size to an average app download on
a mobile device.

Figure 2 also shows the significant scalability improvement
that can be achieved by sending data to the server and performing
matching there. The bars labeled “Server” show the total data
transfer required if the mobile device completely trusts the
aggregator to perform matching on its behalf and sends data
needed for matching to the server. As shown in the results, there
are multiple orders of magnitude of overhead added when the
mobile device does not trust the aggregator to perform matching
vs. when it does.

The potential to have aggregators publish a pruned graph
also illustrates a potential security issue. The mobile devices
rely on the aggregator to publish an accurate graph of the
studies in the blockchain. If an aggregator lies, they have the
potential to perform a number of attacks from their trusted
position. One potential way to overcome this issue is to use
cryptographic signing of studies so that mobile devices can
verify the authenticity of the study before beginning a direct
interaction with a research due to a possible match. However,
like any approach that relies on public key infrastructure, key
distribution and trust is a significant issue. Indubitably, a set of
trusted roots will be needed to provide signing chains that can
be used to prove that a specific research study originated with
a specific institution and researcher. The precise architecture of
this distribution model is left to future work but is expected
to look similar to how SSL certificates are issued for websites
(Ellison et al., 1999).

Although the architecture has focused on scalability regarding
matching, a secondary scalability concern is the metadata
regarding research studies. Each research study includes data on

the organization running the study, the matching criteria, the
data collected by the study, and the purpose of the study. This
data is not accounted for in Figure 2 and could be substantial.
There are several architectural approaches to handling the
scalability issues surrounding metadata that each have their own
privacy-scalability trade-offs.

Our approach to handling metadata is to publish a non-
blockchain address for retrieving the metadata directly from
the organization hosting the study. For example, an academic
institution could host web pages for each study with the metadata
describing the study and include the URL for the metadata in
the study description published to the blockchain. This approach
eliminates the need for the aggregator to publish the catalog of
metadata and reduces the data transfer to the mobile device.
The aggregator only publishes the URL to retrieve the metadata
and a signed hash of the study metadata that it read from the
blockchain. The mobile device would compare the signed hash to
the hash that it calculates for the metadata after retrieving it from
the provided URL. Again, a key distribution mechanism would
be needed and is not covered in the current work.

Functional Requirements of Proposed
Model
The proposed model offers an innovative framework that
leverages distributed ledgers to facilitate the matching of patients
to research studies by aggregating relevant healthcare data from
certified EHRs that are episodic and mobile/tracking devices that
are continuous. To summarize, key functional requirements of
this model include the following aspects that are aligned with
requirements that are specific to the healthcare/clinical research
domain:
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1. Preserving patient privacy: despite the use of distributed
ledgers that inevitably expose some information in a
distributed and shared manner, the Ledgers only serve as
a conduit that enables the data exchanges between the
involved parties, namely, the researchers coordinating a
clinical study and the patients interested in participating
in the trial. The transactions of the original health records
are privacy-protected using tools, such as REDCap, that are
HIPAA compliant, which is a crucial requirement of any
healthcare application that involves patient data including
any data exchanged via distributed ledgers (Zhang et al.,
2017). Additionally, the use of cryptographic hashing on-
chain assures access to data via REDCap is only granted to
the intended researcher recipient.

2. Reliability of retrieved data: in order for a research study to
be carried out successfully, obtaining reliable data whose
owners must be properly identified is an indispensable
part of the study (Davis et al., 1999). In traditional
studies that involve face-to-face interactions between the
participant and researcher, identifying the participant is a
considerably easier task – the participant simply presents
a photo identification and a set of personally identifiable
information that matches the medical profile. However, in
settings described in this paper, where in-person visits are
not a requirement to participate in a study, verification of
the identity and, in turn, the reliability of the participant
data requires substantial proof. By virtue of the traceability
and tamper-proof nature of distributed ledgers used by
the proposed model, both identity and reliability of
contributed data are easily verifiable through audit trails.
If necessary, any data later on found to be unreliable
or disqualified for the study can also be traced back to
the original owner by the researcher in order to properly
exclude the data and/or the participant from the study.

3. Data collection with minimal effort from participants:
one of the key barriers of clinical trial recruitment
are the frequently asked medical questions that are
difficult for interested participants to understand (Cantrell
and Lupinacci, 2007). Many studies already face the
challenge of unable to meet a significant cohort size,
and having this requirement from patients who may
not be familiar with medical terminologies further turns
volunteers away from participation. With the proposed
model of algorithmically match patients to trials only
using data available through patients’ mobile devices,
patients are no longer required to understand what clinical
measurements because our model enables the processing of
rules pre-defined by researchers without involving patients
themselves. Furthermore, patients can also be matched
to multiple studies based on the data they are willing to
provide without having to fill out multiple questionnaires
with repeated questions. By lowering the barrier to provide
data for research, participants will have an easier access to
more studies and, similarly, researchers to volunteers.

4. Scalability for on-device matching: mobile devices
inevitably suffer from limited space and computing power,
which makes it hard for on-device matching of studies

that require significant computation. Distributed ledger
technology also faces scalability issues when serving
healthcare applications due to the nature of the large
population involved (Zhang et al., 2017). Our model
proposes two options for enabling scalability on such a
restrictive setting by offloading the heavyweight tasks to an
aggregator service. These options do not overload either
the mobile device or the underlying distributed ledgers
used for data exchanges and thus provide a certain degree
of scalability from the patient matching aspect.

5. Providing a more comprehensive data collection from
patients upon request: patient-generated data have played
an increasingly important role in clinical trials because
such data is collected over time and hence captures
more information about a person’s health history (Howie
et al., 2014). Although medical records are important in
assessing a patient’s overall conditions, patient-generated
data, such as fitness, weight, or sleep data, contribute
to a comprehensive picture that can provide invaluable
insight to research studies. Our proposed model leverages
both EHR and patient-generated data that are available on
mobile devices to identify as many matches as possible. The
model also allows patients to freely choose which research
study their data may be shared with, and only when a
patient chooses to let a study or researcher access their data
on-device, it will then be delivered to the recipient.

RELATED WORK

This section presents prior research on the architectures and
platforms designed to improve research study recruitment and
summarizes recent work on using DLT and related technologies
to enable data sharing in the healthcare space.

Research Participant Recruitment
To date, there has been a number of efforts on providing patients,
volunteers, and researchers with resources and information
on clinical studies covering a large number of conditions
and diseases. ClinicalTrials.gov (Zarin et al., 2011), a web-
based, centralized clinical trial repository, is one of the most
popular platforms where researchers register their trials publicly
so that participants can easily access the study information.
It is the largest clinical trial registry in the U.S. with over
300,000 trials reported. It does not contain all clinical studies,
however, because some studies are not required to be registered.
ResearchMatch.org (Harris et al., 2012) is another web-based,
centralized platform for matching volunteers with actively
recruiting trials and therefore maintains a subset of trials from
ClinicalTrials.gov. ResearchMatch.org has a large number of
volunteer users with their self-reported information, such as
conditions and medications, that is used to provide basic trial
recommendations based on a trial’s primary conditions targeted.
Besana et al. (2010) proposed a domain-specific semantic
ontology to represent data from patient health records and to
evaluate patients’ eligibility to clinical trials. Another increasingly
popular strategy to improve recruitment is the use of clinical
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trial alert tools that automatically apply eligibility criteria to
EHRs in order to identify potential participants proactively
(Heinemann et al., 2011).

DLT-Based Healthcare Data Sharing
Frameworks
Due to the increasing popularity of DLT given its unique
properties, many healthcare data sharing frameworks based on
distributed ledgers have been introduced in literature (Zhang
et al., 2018a). For example, the MedRec system (Azaria et al.,
2016) was proposed as a blockchain implementation of a
healthcare data warehouse that facilitates clinical data sharing.
The FHIRChain framework (Zhang et al., 2018d) was designed
to enable data sharing between various healthcare data sources
using the FHIR protocol and incorporated a number of key
technical requirements of an interoperable healthcare service.
Peterson et al. (2016) presented a healthcare blockchain with
a single centralized source of trust for sharing patient data,
introducing “Proof of Interoperability” based on conformance to
the FHIR protocol as a means to ensure network consensus. More
recently, Xia et al. (2017) described a blockchain-based system
called “MeDShare” for enabling medical data sharing among
cloud service providers. OpTrak, a DLT-based architecture
used for exchanging and tracking opioid prescriptions is also
proposed in Zhang et al. (2019b). Although these frameworks
utilize distributed ledgers to provide data exchanges between
different healthcare systems, they do not directly address the
requirements specific to clinical studies and thus do not meet the
functional requirements of our proposed model. Another study
by Benchoufi and Ravaud (2017) described a smart-contract
based system to collect participant consent for a clinical trial,
but does not match participants to trials they may be eligible
for. A framework proposed by Theodouli et al. aims to provide
a patient-centric model that allows data sharing in clinical trials
but does not include methodologies that algorithmically provide
patients with trials they are eligible for based on their specified
data to share (Theodouli et al., 2018). To the best of our
knowledge, there has not been a published study that addresses
all the functional requirements proposed by our model specific to
the clinical trial matching domain.

CONCLUDING REMARKS

Given the fundamental importance of capturing a complete
picture of a patient’s healthcare history, why do researchers
and medical institutions not have a universal system to share
the needed research data? Currently, healthcare information is
generally captured using electronic medical records by each
individual provider. However, a variety of factors, ranging from
data format incompatibility, differing approaches to labs, and
challenges in identifying patients has led to a model where
healthcare data does not flow freely between all providers.

Overcoming the challenges of healthcare data exchange is
going to require allowing patients to easily control and move
their data between providers and to get their non-traditional
data from apps and other sources into their medical record.

However, moving to a patient-centered medical data stewardship
model faces immense challenges if all of the data stewardship
falls solely on the medical institutions, ranging from the existing
issues with data formats and labs, to additional barriers to
how all patients, not just the most technically sophisticated,
can durably store and authorize access to their data in a
secure way (Zhang and Boulos, 2020). The underlying healthcare
networks are inherently decentralized, so there is also a challenge
of figuring out how to move to provide a patient-centered
model without a central authority to mediate exchange and
mandate decisions.

Doctors also face the daunting challenge of trying to diagnose
patients from a combination of symptoms and medical history.
A patient’s medical record provides essential clues to a provider
that help, both to diagnose patients more accurately and also
help eliminate possibilities and often associated diagnostics or
procedures that may expose patients to additional risk. Whenever
medical information is missing, the impact can be longer, less
accurate, and riskier for diagnostic processes.

This paper explores the conflicting forces that make achieving
a patient-centered stewardship hard and investigates how the
emerging capabilities of decentralized ledgers may help to
alleviate some of these conflicts. A key goal of the work
is to understand where DLT can serve a role in a patient-
centered model, what problems it solves, what new problems it
introduces, and what problems still remain unaddressed. Further,
through the investigation, the paper analyzes distributed ledger
architectural options and how they resolve conflicting forces at
different levels.

The final component of the paper is a prototype architecture
for using distributed ledgers to facilitate a patient-centered
data stewardship model. The architecture draws insights from
the detailed exploration and architectural trade-offs analysis to
prescribe a set of proposed standards for using DLT in this
domain. Extending upon this work, we will explore a more
detailed architecture with a proof-of-concept implementation
that embeds the design considerations as discussed in this paper
in future work. Additionally, we recognize the critical nature of
performing quantitative analyses of the architecture to facilitate
the implementation of blockchain-based solutions, so we will also
provide those analyses in future work.
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