
Blockchain based resource
governance for decentralized web
environments

Davide Basile1, Claudio Di Ciccio1, Valerio Goretti1* and
Sabrina Kirrane2

1Department of Computer Science, Sapienza University of Rome, Rome, Italy, 2Institute for Information
Systems and New Media, Vienna University of Economics and Business, Vienna, Austria

Decentralization initiatives such as Solid, Digi.me, and ActivityPub aim to give data
ownersmore control over their data and to level the playing field by enabling small
companies and individuals to gain access to data, thus stimulating innovation.
However, these initiatives typically use access control mechanisms that cannot
verify compliance with usage conditions after access has been granted to others.
In this paper, we extend the state of the art by proposing a resource governance
conceptual framework, entitled ReGov, that facilitates usage control in
decentralized web environments. We subsequently demonstrate how our
framework can be instantiated by combining blockchain and trusted execution
environments. Through blockchain technologies, we record policies expressing
the usage conditions associated with resources and monitor their compliance.
Our instantiation employs trusted execution environments to enforce said
policies, inside data consumers’ devices. We evaluate the framework
instantiation through a detailed analysis of requirments derived from a data
market motivating scenario, as well as an assessment of the security, privacy,
and affordability aspects of our proposal.

KEYWORDS

decentralization, usage control, governance, blockchain, trusted execution
environment (TEE)

1 Introduction

Since its development, the internet has steadily evolved into a ubiquitous ecosystem that
is seen by many as a public utility (Quail and Larabie, 2010). The development of centralized
web-based platforms on top of the internet has undoubtedly brought benefits from both an
economic and a social perspective. However, the web as we know it today, is dominated by a
small number of stakeholders that have a disproportionate influence on the content that the
public can produce and consume. The scale of the phenomenon has brought about the need
for legal initiatives aimed at safeguarding content producer rights (Quintais, 2020). In
parallel, technical decentralization initiatives such as Solid1, Digi.me2, and ActivityPub3 aim
to give data owners more control over their data, while at the same time providing small

OPEN ACCESS

EDITED BY

Marco Comuzzi,
Ulsan National Institute of Science and
Technology, Republic of Korea

REVIEWED BY

Petros Kavassalis,
University of the Aegean, Greece
Paulo Rupino Cunha,
University of Coimbra, Portugal

*CORRESPONDENCE

Valerio Goretti,
valerio.goretti@uniroma1.it

RECEIVED 11 January 2023
ACCEPTED 04 April 2023
PUBLISHED 09 May 2023

CITATION

Basile D, Di Ciccio C, Goretti V and
Kirrane S (2023), Blockchain based
resource governance for decentralized
web environments.
Front. Blockchain 6:1141909.
doi: 10.3389/fbloc.2023.1141909

COPYRIGHT

© 2023 Basile, Di Ciccio, Goretti and
Kirrane. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

1 https://solidproject.org/about. Accessed: Friday 24th March 2023.

2 https://digi.me/what-is-digime/. Accessed: Friday 24th March 2023.

3 https://activitypub.rocks/. Accessed: Friday 24th March 2023.

Frontiers in Blockchain frontiersin.org01

TYPE Original Research
PUBLISHED 09 May 2023
DOI 10.3389/fbloc.2023.1141909

https://www.frontiersin.org/articles/10.3389/fbloc.2023.1141909/full
https://www.frontiersin.org/articles/10.3389/fbloc.2023.1141909/full
https://www.frontiersin.org/articles/10.3389/fbloc.2023.1141909/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbloc.2023.1141909&domain=pdf&date_stamp=2023-05-09
mailto:valerio.goretti@uniroma1.it
mailto:valerio.goretti@uniroma1.it
https://doi.org/10.3389/fbloc.2023.1141909
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://solidproject.org/about
https://digi.me/what-is-digime/
https://activitypub.rocks/
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org/journals/blockchain#editorial-board
https://www.frontiersin.org/journals/blockchain#editorial-board
https://doi.org/10.3389/fbloc.2023.1141909


companies as well as individuals with access to data, which is usually
monopolized by centralized platform providers, thus stimulating
innovation. To this end, the Solid community are developing tools,
best practices, and web standards that facilitate ease of data
integration and support the development of decentralized social
applications based on Linked Data principles. In turn, Digi.me are
developing tools and technologies that enable individuals to
download their data from centralized platforms such that they
can store it in an encrypted personal data store and leverage a
variety of applications that can process this data locally on the data
owners device. These client-side applications are developed by
innovative app developers who use the Digi.me software
development kit to communicate with the encrypted personal
data stores directly. Following the same principles, ActivityPub is
a decentralized social networking protocol, published by the W3C
Social Web Working Group that offers a client-server application
programming interface (API) for adding, modifying, and removing
material as well as a federated server-server API for sending
notifications and subscribing to content. Social networks
implementing ActivityPub can be easily integrated with each
other in order to form a larger ecosystem, commonly referred to
as the Fediverse4. Some of the most popular Fediverse initiatives
include Mastodon5, PeerTube6, and PixelFed7.

In order to better cater for use case scenarios that involve data
sharing across various distributed data stores underpinning
decentralized applications, there is a need for tools and
technologies that are not only capable of working with
distributed data but are also able to manage data resources that
come with a variety of usage terms and conditions specified by data
producers. However, the vast majority of decentralized web
initiatives, which aim to provide users with a greater degree of
control over personal resources, manage data access via simple
access control mechanisms (Tran et al., 2005; Toninelli et al.,
2006; Ouaddah et al., 2016) that are not able to verify that usage
conditions are adhered to after access has been granted (Akaichi and
Kirrane, 2022b). For example, access control rules can determine if
users can retrieve data or not. However, they cannot express
conditions on the type of application that can process them, the
geographical area in which they can be treated, when the access
grant would expire, or the number of times they can be processed.

When it comes to the realization of usage control in
decentralized web environments, Trusted Execution
Environments (TEEs) and Distributed Ledger Technologies
(DLTs) could serve as fundamental enablers. Trusted execution
environments offer data and code integrity to enforce the
conditions established by decentralized data providers, directly in
consumers’ devices. DLTs can store shared policies in a distributed
ecosystem in which data usage is governed by smart contracts, while
recording an immutable log of usage operations.

To this end, in this paper we propose a resource governance
(ReGov) conceptual framework and an instantiation thereof. ReGov

combines blockchain applications and trusted execution
environments to facilitate usage control in decentralized web
environments. The work is guided by a typical decentralized web
scenario, according to which data are not stored in centralized
servers but rather in decentralized data stores controlled by users.
Throughout the paper, we refer to the component for managing the
data stored locally on every user’s device as a data node (or node for
simplicity).

In terms of contributions, we extend the state of the art by: (i)
proposing a generic resource governance conceptual framework; (ii)
demonstrating how blockchain technologies and trusted execution
environments can together be used to manage resource usage; and
(iii) assessing the effectiveness of the proposed framework via
concrete quantitative and qualitative evaluation metrics derived
from our data market motivating use case scenario.

The remainder of the paper is structured as follows: Section 2
presents the necessary background information regarding data
access and usage control, trusted execution environments,
decentralized applications, and blockchain oracles. In the same
section we also provide an overview of related work. We
introduce the motivating scenario used to guide our work in
Section 3 and our ReGov conceptual framework in Section 4.
Following on from this, we described our DLT and TEE-based
instantiation in Section 5 and the results of our quantitative and
qualitative in Section 6. Finally, we conclude and outline directions
for future work in Section 7.

2 Background and related work

This section sets the context for the work being presented,
highlighting the significance and relevance of the study. It also
gives credit to previous work in the field and identifies gaps in the
current understanding that the study aims to fill.

2.1 Background

As we leverage blockchain technologies and trusted execution
environments to manage resource usage control, in the following we
provide the necessary background information from these fields.

2.1.1 Data access and usage control
Access control is a technique used to determine who or what can

access resources in a computing environment (Sandhu and Samarati,
1994). In system infrastructures, access control is dependent upon and
coexists alongside other security services. Such technologies require the
presence of a trusted reference entity thatmediates any attempted access
to confidential resources. In order to decide who has rights to specific
resources, access control frameworks make use of authorization rules,
typically stored inside the system (Koshutanski and Massacci, 2003). A
set of rules constitutes a policy. A popular approach of implementing
access policies is through Access Control Lists (ACLs) (Grünbacher,
2003). Each protected resource has an associated ACL file, which lists
the rights each subject in the system is allowed to use to access objects.

With the evolution of the web and decentralized data
ecosystems, there is the need to move beyond managing access to
resources via authorizations (Akaichi and Kirrane, 2022b).

4 https://fediverse.party/en/fediverse/. Accessed: Friday 24th March 2023.

5 https://docs.joinmastodon.org. Accessed: Friday 24th March 2023.

6 https://peertube.uno. Accessed: Friday 24th March 2023.

7 https://pixelfed.uno/site/about. Accessed: Friday 24th March 2023.

Frontiers in Blockchain frontiersin.org02

Basile et al. 10.3389/fbloc.2023.1141909

https://fediverse.party/en/fediverse/
https://docs.joinmastodon.org
https://peertube.uno
https://pixelfed.uno/site/about
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1141909


Authorization predicates define limitations that consider the user
and resource credentials and attributes. Usage control is an
extension of access control whereby policies take into account
obligations and conditions in addition to authorizations
(Lazouski et al., 2010). Obligations are constraints that must be
fulfilled by users before, during, or after resource usage. Conditions
are environmental rules that need to be satisfied before or during
usage.

One of the most highly cited usage control models is UCONABC

(Park and Sandhu, 2004). The model represents policy rules by
defining specific rights (e.g., operations to be executed) related to
sets of subjects (e.g., users who want to perform an operation),
objects (e.g., the resource to operate), authorizations, obligations,
and conditions. Attributes are properties associated with subjects or
objects. UCONABC improves conventional access control mainly
through the following two concepts: (i) attribute mutability, namely,
the change of attributes as a consequence of usage actions, and (ii)
decision continuity, i.e., the enforcing of policies not only as a check
at access request time, but also during the subsequent resource
usage. Systems implementing usage control through the UCONABC

model require dedicated infrastructure to guarantee policy
enforcement and monitoring in order to detect misconduct and
execute compensation actions (e.g., penalties and/or right
revocations).

The literature offers several alternative approaches that could
potentially be used to represent usage control policies. For instance,
Hilty et al. (2007) propose a language named Obligation
Specification Language (OSL) intended for distributed
environments. Bonatti et al. (2020) introduce the SPECIAL usage
control policy language, which considers a policy as the intersection
of basic entities governing data, processing, purposes, location, and
storage of personal data. A comprehensive overview of existing
usage control frameworks and their respective languages is provided
by Akaichi and Kirrane (2022b) and Esteves and Rodríguez-Doncel
(2022).

The overarching goal of our work is to enable usage control in a
decentralized environment. We provide a conceptual framework
that serves as a blueprint for policy governance in a decentralized
setting.

2.1.2 Trusted execution environments
A Trusted Execution Environment (TEE) is a tamper-proof

processing environment that runs on a separation kernel (McGillion
et al., 2015). Through the combination of both software and
hardware features, it isolates the execution of code from the
operating environment. The separation kernel technique ensures
separate execution between two environments. TEEs were first
introduced by Rushby (1981) and allow multiple systems
requiring different levels of security to coexist on one platform.
Thanks to kernel separation, the system is split into several
partitions, guaranteeing strong isolation between them. TEEs
guarantee the authenticity of the code it executes, the integrity of
the runtime states, and the confidentiality of the code and data
stored in persistent memory. The content generated by the TEE is
not static, and data are updated and stored in a secure manner. Thus,
TEEs are hardened against both software and hardware attacks,
preventing the use of even backdoor security vulnerabilities (Sabt
et al., 2015). There are many providers of TEE that differ in terms of

the software system and, more specifically, the processor on which
they are executed. In this work, we make use of the Intel Software
Guard Extensions (Intel SGX)8 TEE. Intel SGX is a set of CPU-level
instructions that allow applications to create enclaves. An enclave is a
protected area of the application that guarantees the confidentiality
and integrity of the data and code within it. These guarantees are
also effective against malware with administrative privileges (Zheng
et al., 2021). The use of one or more enclaves within an application
makes it possible to reduce the potential attack surfaces of an
application. An enclave cannot be read or written to from
outside. Only the enclave itself can change its secrets,
independent of the Central Processing Unit (CPU) privileges
used. Indeed, it is not possible to access the enclave by
manipulating registers or the stack. Every call made to the
enclave needs a new instruction that performs checks aimed at
protecting the data that are only accessible through the enclave code.
The data within the enclave, in addition to being difficult to access, is
encrypted. Gaining access to the Dynamic Random Access Memory
(DRAM) modules would result in encrypted data being obtained
(Jauernig et al., 2020). The cryptographic key changes randomly
each time the system is rebooted following a shutdown or
hibernation (Costan and Devadas, 2016). An application using
Intel SGX consists of a trusted and an untrusted component. We
have seen that the trusted component is composed of one or more
enclaves. The untrusted component is the remaining part of the
application (Zhao et al., 2016). The trusted part of the application
has no possibility of interacting with any other external components
except the untrusted part. Nevertheless, the fewer interactions
between the trusted and untrusted part, the greater the security
guaranteed by the application.

Our work resorts to trusted execution environments to keep
control of resources’ utilization by enforcing the usage conditions set
by data owners.

2.1.3 Decentralized applications and blockchain
oracles

With second-generation blockchains, the technology evolved
from being primarily an e-cash distributed management system to a
distributed programming platform for decentralized applications
(DApps) (Mohanty, 2018). Ethereum first enabled the deployment
and execution of smart contracts (i.e., stateful software artifacts
exposing variables and callable methods) in the blockchain
environment through the Ethereum Virtual Machine (EVM)
(Buterin et al., 2014). The inability of smart contracts to access
data that is not stored on-chain restricts the functionality of many
application scenarios, including multi-party processes. Oracles solve
this issue (Xu et al., 2016).

Oracles act as a bridge for communication between the on-chain
and off-chain worlds. This means that DApps should also be able to
trust an oracle in the same way it trusts the blockchain. Reliability for
oracles is key (Al-Breiki et al., 2020; Mammadzada et al., 2020).
Therefore, the designation and sharing of a well-defined protocol
become fundamental for the proper functioning of the oracle’s

8 https://www.intel.co.uk/content/www/uk/en/architecture-and-
technology/software-guard-extensions.html. Accessed: Friday 24th
March 2023.

Frontiers in Blockchain frontiersin.org03

Basile et al. 10.3389/fbloc.2023.1141909

https://www.intel.co.uk/content/www/uk/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.co.uk/content/www/uk/en/architecture-and-technology/software-guard-extensions.html
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1141909


service, particularly when the oracles themselves are organized in the
form of networks for the interaction with decentralized
environments (Basile et al., 2021). As illustrated by Mühlberger
et al. (2020), oracle patterns can be described according to two
dimensions: the information direction (inbound or outbound) and
the initiator of the information exchange (pull- or push-based).
While outbound oracles send data from the blockchain to the
outside, inbound oracles inject data into the blockchain from the
outside. Pull-based oracles have the initiator as the recipient,
oppositely to push-based oracles, where the initiator is the
transmitter of the information. By combining the push-/pull-
based and inbound/outbound categories, four oracle design
patterns can be identified (Pasdar et al., 2022). A push-based
inbound oracle (push-in oracle for simplicity) is employed by an
off-chain component that sends data from the real world. The push-
based outbound (push-out) oracle is used when an on-chain
component starts the procedure and transmits data to off-chain
components. The pull-based outbound (pull-out) oracle is operated
by an off-chain component that wants to retrieve data from the
blockchain. Finally, the pull-based inbound (pull-in) oracle enables
on-chain components to retrieve information outside the
blockchain.

We leverage the blockchain’s tamper-proof infrastructure to
record usage conditions associated with resources. We represent this
information via smart contracts running in the blockchain and
communicating with off-chain processes through oracles.

2.2 Related work

Several works strive to provide more control and transparency with
respect to personal data processing by leveraging blockchain distributed
application platforms (Xu et al., 2019). For instance, Ayoade et al. (2018)
defines an access control mechanism for IoT devices that stores a hash
of the data in a blockchain infrastructure and maintains the raw
information in a secure storage platform using a TEE. In the
proposed framework, a blockchain based ledger is used in order to
develop an audit trail of data access that provides more transparency
with respect to data processing. Xiao et al. (2020) propose a system,
called PrivacyGuard, which gives data owners control over personal
data access and usage in a data market scenario.

The literature offers numerous study cases in which usage
control frameworks have been instantiated to increase the degree
of privacy and confidentiality of shared data. Neisse et al. (2011)
propose a usage control framework in which a Policy Enforcement
Point (PEP) keeps track of business operations and intercepts action
requests while taking into consideration Policy Decision Point event
subscriptions (PDP). Bai et al. (2014) addresses usage control in a
Web Of Thing environment by adapting the UCON model for
Smart Home ecosystems; Zhaofeng et al. (2020) introduce a secure
usage control scheme for Internet of things (IoT) data that is built
upon a blockchain-based trust management approach. While, Khan
et al. (2020) conceptualizes a distributed usage control model,
named DistU, for industrial blockchain frameworks with
monitoring procedures that are able to revoke permissions
automatically.

Additionally, there are several papers that propose frameworks
or architectures that combine blockchain platforms and

decentralized web initiatives such as Solid web. Ramachandran
et al. (2020) demonstrate how together Solid data stores (namely,
pods) and blockchains can be used for trustless verification with
confidentiality. Patel et al. (2019) propose a fully decentralized
protocol named DAuth that leverages asymmetric encryption in
order to implement authentication; Cai et al. (2020) introduce a
secure Solid authentication mechanism, integrating
Rivest–Shamir–Adleman (RSA) signatures into permissioned
blockchain systems. In turn, Becker et al. (2021) demonstrate
how data stored in Solid pods can be monetized by leveraging a
blockchain based payment system. Whereas, Havur et al. (2020)
discuss how solid could potentially leverage existing consent,
transparency and compliance checking approaches.

Several studies have shown that blockchain and TEEs can profitably
coexist. The state of the art proposes numerous cases where the
combination of the two technologies leads to advantages in terms of
data ownership, availability, and trust. One of these is the work of Liang
et al. (2017), that propose a patient-centric personal health data
management system with accountability and decentralization. The
architecture of the framework employs TEEs to generate a
fingerprint for each data access that are immutably maintained by a
blockchain infrastructure. Whereas, Lind et al. (2017) designed and
implemented a protocol named Teechain that integrates off-chain TEEs
for secure and scalable payment procedures, built on top of the Bitcoin
blockchain platform.

3Motivating scenario and requirements

The motivating use case scenario and the corresponding
requirements, discussed in this section, are used not only to
guide our work but also to contextualize theoretical notions
introduced in the paper.

3.1 Motivating scenario

A new decentralized data market called DecentralTrading aims
to facilitate data access across decentralized data stores. Alice and
Bob sign up for the DecentralTrading market, pay the subscription
fee, and set up their data nodes. Alice is a research biologist in the
area of marine science and is conducting studies on deep ocean
animals. Such species are difficult to identify due to the adverse
conditions of their ecosystem and the lack of good-quality images.
Bob is a professional diver with a passion for photography. He has
collected several photos from his last immersion and the most
scientifically relevant of them portrays a recently discovered
whale species named “Mesoplodon eueu” showed in Figure 1.

Bob shares his photos with the DecentralTrading market by
uploading them to his data node. Once the images are shared, they
can be retrieved by the other participants in the market. Moreover,
he wants to establish rules regarding the usage of his images. Table 1
illustrates the constraints he exerts on the data utilization, along with
the rule type they represent (inspired by the work of Akaichi and
Kirrane, 2022a). Bob makes his images available only for
applications belonging to the scientific domain (this constraint
belongs to the type of domain rules). Moreover, he sets
geographical restrictions by making the images usable only by

Frontiers in Blockchain frontiersin.org04

Basile et al. 10.3389/fbloc.2023.1141909

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1141909


devices located in European countries (geographical rule). Finally, Bob
wants his photos to be deleted after a specific number of application
accesses (access counter rule) or after a specific time interval (temporal
rule). Therefore, he sets a maximum number of 100 local accesses and
an expiry date of 20 days after the retrieval date. Bob gets remuneration
from theDecentralTradingmarket, according to the number of requests
for his resources. At any point in time, Bob can ask the
DecentralTrading market to get evidence that the rules associated
with his image are being adhered to and check if there were
attempts to use his image outside the specified rules.

Bob’s images of the Mesoplodon eueu species could be extremely
useful for Alice’s research, so she requests a specific picture of the gallery
through her DecentralTrading node. Alice’s node obtains a URL for
Bob’s node from the market and subsequently contacts Bob’s node in
order to retrieve a copy of the image, which is stored in a protected
location of her device alongside the related usage rules. Data shared in
DecentralTrading is used by Alice and Bob through a set of known
applications approved by themarket community. Alice opens the image
through an app called “ZooResearch,” which is used for the analysis of
zoological images. “ZooResearch” belongs to the set of approved
applications, and it disables some tasks for data duplication by the
operating system (OS) such as screenshots to replicate the image once it
is accessed. Since the domain of the application corresponds with the
usage constraint set by Bob and her device is located in Ireland, the
action is granted by Alice’s node. Afterwards, Alice tries to share the
image through a social network application named “Socialgram,”which
also belongs to the set of supported applications. Then, Alice’s node
denies the action since it goes against the application domain constraint
set by Bob. Alice opens the image through “ZooResearch” 99 more
times and, following the last attempt, the image is deleted from her node
since the maximum number of local accesses of 100 has been reached.
Therefore, Alice asks her DecentralTrading node to retrieve the image
from Bob’s node again. Since Alice starts working on a different
research project, she stops using the Mesoplodon eueu’s image. The
image remains stored in the protected location of Alice’s node until

20 days from the retrieval date have passed. Subsequently, Alice’s node
deletes the image from the protected location.

3.2 Requirements

The following concrete requirements are derived from our
motivating scenario. The two top level requirements, which are
inspired by the seminal work of Akaichi and Kirrane (2022b), are
subdivided into more concrete sub-requirements.

(R1) Resource utilization and policy fulfillment must be
managed by trusted entities. According to Akaichi and Kirrane
(2022b), a usage control framework must provide an enforcement
mechanism that ensures usage policies are adhered to both before
and after data are accessed. Therefore, the data market must be able
to able to handle the access control and additionally the nodes of a
decentralized environment must be equipped with a dedicated
component managing the utilization of resources owned by other nodes.

(R1.1) The trusted entity must be able to store resources
obtained from other entities. Once resources are accessed, they
must be kept in a trusted memory zone directly controlled by the
trusted entity. This requirement drastically reduces the risks of data
theft or misuse. Considering our running example, it allows Alice to
not only store Bob’s resources but also to protect them from
unauthorized access.

(R1.2) The trusted entity must support the execution of
programmable procedures that enforce constraints associated
with resource usage. Specific procedures must be designed in
order to cater for the various usage policy rules types. The trusted
entity must execute these procedures in order to enforce policies and
control resource utilization. This aspect enables the logic associated with
usage control rules, such as those defined in Table 1, to be executed
when Alice tries to use Bob’s image.

(R1.3) Resources and procedures managed by the trusted
entity must be protected against malicious manipulations. The
trusted entity must guarantee the integrity of the resources it
manages alongside the logic of the usage control procedures.
Therefore, Alice should not be able to perform actions that
directly manipulate Bob’s image or corrupt the logic of the
mechanisms that govern its use.

(R1.4) The trusted entity must be able to prove its trusted
nature to other entities in a decentralized environment. Remote
resource requests must be attributable to a trusted entity of the
decentralized environment. Therefore, prior to Bob sending his
image to Alice, it must be possible to verify that the data request
has actually been generated by Alice’s trusted node.

TABLE 1 Schematization of the usage policy associated with Bob’s “Mesoplodon.jpg” image. Every rule belongs to a rule type and consists of a subject, an action,
an object, and a constraint.

Rule components
Rule type

Subject Action Object Constraint

Domain rule market members access the resource Mesoplodon.jpg The resource can be processed only by research apps

Geographical rule market members access the resource Mesoplodon.jpg The resource can be loaded only in European countries

Temporal rule market members access the resource Mesoplodon.jpg The resource can be stored for up to 20 days

Access counter rule market members access the resource Mesoplodon.jpg The resource can be opened up to 100 times

FIGURE 1
A photographic representation of a Mesoplodon eueu (Carroll
et al., 2021). Image used under the Attribution 4.0 International (CC BY
4.0) license. Cropped from original.

Frontiers in Blockchain frontiersin.org05

Basile et al. 10.3389/fbloc.2023.1141909

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1141909


(R2) Policy compliancemust bemonitored via the entities of a
governance ecosystem. According to Akaichi and Kirrane (2022b),
usage control frameworks must incorporate a policy monitoring
component. The monitoring, performed through one or more
services, enables nodes to detect misconduct and unexpected or
unpermitted usage. This is, e.g., the mechanism thanks to which Bob
can verify that Alice has never tried to open the picture of the
Mesoplodon eueu with Socialgram.

(R2.1) The governance ecosystem must provide transparency
to all the nodes of the decentralized environment. In order to gain
the trust of the various nodes that comprise a decentralized
environment, a governance ecosystem must guarantee
transparency with respect to its data and procedures. This feature
enables Bob to verify at any time that the usage policy associated
with his image is being adhered to.

(R2.2) Data and metadata maintained by the governance
ecosystem must be tamper-resistant. Once policies and resource
metadata are sent to the governance ecosystem, their integrity must
be ensured. The inability to tamper with resources and their
metadata is crucial for the effective functioning of the governance
ecosystem. Therefore, when Bob publishes images and their
respective usage policies in the market, his node should be the
only entity capable of modifying this metadata.

(R2.3) The governance ecosystem and the entities that the
form part of the ecosystem must be aligned with the
decentralization principles. It is essential that the governance
ecosystem itself respects the decentralization principles, as
centralized solutions would establish a central authority in which
data and decisional power are accumulated. Hence, the monitoring
functionality provided by the previously mentioned market scenario
should not rely on centralized platforms and data stores. Bob’s policies
for the usage of the Mesoplodon eueu’s photo are not uploaded on, nor
verified by, any third-party service running on a specific server.

(R2.4) The entities that form part of the governance
ecosystem must be able to represent policies and verify their
observance. In order to provide monitoring functionality, entities in
the governance ecosystem should be capable of managing usage
policies. These entities should enact procedures for retrieving policy
observance information directly from nodes that consume market
resources. This feature allows Bob to obtain evidence that Alice is
using his image according to the rules stipulated in the usage policy
and to detect any misbehavior.

4 Conceptual resource governance
framework

To cater for our motivating scenario and to meet the derived
requirements, we propose a conceptual framework, named ReGov,
that enables the governance of usage policies in decentralized web
environments. ReGov generalizes the principles of data ownership
and control, which constitute the foundations of numerous
decentralized web initiatives. The ReGov framework extends
these aspects by not only controlling data access but also
supporting the continuous monitoring of compliance with usage
policies and enforcing the fulfillment of usage policy obligations.
The degree of abstraction of the ReGov framework means that it
could potentially be instantiated in numerous decentralized web
contexts.

4.1 ReGov framework entities

According to the decentralization concept, the web is a peer-to-
peer network with no central authority. In this scenario, data are no
longer collected in application servers, but rather data are managed

FIGURE 2
High-level overview of the proposed conceptual resource governance (ReGov) framework.

Frontiers in Blockchain frontiersin.org06

Basile et al. 10.3389/fbloc.2023.1141909

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1141909


by nodes that are controlled by users (i.e., data owners determine
who can access their data and in what context). Nodes communicate
directly with other nodes in order to send and retrieve resources via
the decentralized environment.

Figure 2 depicts a high-level overview diagram of the ReGov
framework. Nodes are characterized by the Data Provision,
Data Consumption, and Governance Interface

components. Governance ecosystems are responsible for indexing
web resources, facilitating node and resource discovery, and
monitoring resource usage. Thus, in our architecture, a
Governance Ecosystem is constituted by the Resource

Indexing and Policy Governance components.

4.1.1 Components of a node
A Node is a combination of hardware and software

technologies, running on user devices. As shown in Figure 3,
each Node comprises the following components.

4.1.1.1 Data provision
The Data Provision component encapsulates the

functionality that enable node owners to manage the sharing of
their resources with other nodes in the decentralized environment.
Users can interact with the Storage Manager to manually upload
their data to the Resource Storage that is encapsulated within the
Data Provision component. The upload operation also facilitates
the definition of usage rules that are collected in usage policies
associated with resources. Usage policies are represented in a
machine-readable format (e.g., SPECIAL9 and LUCON10 policy

FIGURE 3
Content of the data provision, data consumption and governance interface components.

9 https://ai.wu.ac.at/policies/policylanguage/. Accessed: Friday 24th
March 2023.

10 https://industrial-data-space.github.io/trusted-connector-
documentation/docs/usage_control/. Accessed: Friday 24th
March 2023.

Frontiers in Blockchain frontiersin.org07

Basile et al. 10.3389/fbloc.2023.1141909

https://ai.wu.ac.at/policies/policylanguage/
https://industrial-data-space.github.io/trusted-connector-documentation/docs/usage_control/
https://industrial-data-space.github.io/trusted-connector-documentation/docs/usage_control/
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1141909


languages) and stored in the Data Provision component alongside
the resources. Additionally, when a new resource is uploaded, the
Storage Manager forwards these rules and resource references to
the Governance Ecosystem. In order to deliver the stored
resources, the Data Provision component offers the logic for a
Resource Provider that is capable of processing requests that
allow other nodes to retrieve data. A data request must contain the
necessary information to perform the authentication of the sender node.
Therefore, the Resource Provider is able to authenticate resource
requests to decide whether to grant or deny access to the requested
resource based on the identity of the sender. Several web service
protocols could potentially be used to implement the functionality
offered by the Resource Provider (e.g., HTTP, FTP, Gopher).
Once data are delivered, node owners can plan sessions to monitor the
utilization of provisioned resources through the Monitoring

Scheduler, which periodically forwards monitoring requests to
the Governance Ecosystem.

Referring to our running example, Bob uses the functionality
of the Storage Manager inside the Data Provision

component to upload the images to his Node. During the
upload, he specifies the location where the images must be
stored and the rules composing the images’ Usage Policy

(i.e. the image must be deleted 20 days after the retrieval date, the
image can only be used in European countries). Therefore, these
pieces of information are delivered to the Governance

Ecosystem. The HTTP web service implementing the
Resource Provider of Bob’s Node enables him to make
his resource available to the other participants of the
DecentralTrading market. The web service authenticates the
requests for his images to determine whether the sender has
the rights to access the resource. Finally, Bob can schedule
monitoring sessions through the Monitoring Scheduler,
in order to get evidence of the usage of his images by other nodes.

4.1.1.2 Data consumption
The Data Consumption component groups the

functionalities that enable nodes to retrieve and use data in the
network. Data Consumption is built upon both hardware and
software techniques that ensure the protection of sensitive data
through an Isolated Environment that guarantees the
integrity and confidentiality of protected data and executable
code. The Isolated Environment contains the logic of a
Resource Retriever that creates authenticable requests for
data residing in other nodes. The Resource Retriever

supports multiple web protocols (e.g., HTTP, FTP, Gopher)
according to the implementation of the Resource Provider

inside the Data Provision component. Therefore, if the
Resource Provider is implemented as an FTP web service,
the Request Retriever must be able to generate authenticable
FTP requests. Once resources are retrieved alongside the related
usage policies, they are controlled by the Data Manager that stores
them in the Isolated Environment. To get access to a
protected resource, local applications running in the Node must
interact with the Data Manager via the Gateway, which acts as a
bridge to the processes running in the Isolated Environment.
The Gateway is similarly employed when the Resource

Retriever demands new resources from other nodes. In turn,
Enforcement Mechanisms governing data utilization are

necessary to apply the rules of the usage policies. While controlling
resources, the Data Manager cooperates with these mechanisms
enabling the rules contained in the usage policies to be enforced. Each
operation involving the protected resources is recorded in dedicated
usage logs whose administration is entrusted by the Data Manager

too. Usage logs facilitate policy monitoring procedures that employ
these registers to detect potential misconduct.

As shown in the motivating scenario, Alice uses the Data

Consumption component to get Bob’s images, which she keeps
in her own Node. During the resource retrieval process, the
Resource Retriever of Alice’s Data Consumption

component directly communicates with the Data Provision

component of Bob’s Node through the Gateway. After the
retrieval, the image and the associated policy are maintained in
the Isolated Environment and governed by the Data

Manager. Considering the geographical rule, when Alice tries to
open Bob’s image with a local application, the app interacts with the
Gateway, which in turn, creates a communication channel with the
Data Manager. The latter generates the execution of the
Enforcement Mechanism of the geographical constraint.
This mechanism consults the image’s usage policy, retrieves the
current geographical position of the Node, and decides whether to
grant the action.

4.1.1.3 Governance interface
Nodes facilitate communication with the Governance

Ecosystem via the Governance Interface. As we will see
in Section 4.2.2, messages flowing through the Governance

Interface are crucial for resource usage monitoring. Indeed,
the Governance Ecosystem can forward the interface messages
such as requests for usage logs by remotely interacting with the
Message Receiver. When a new message is received, the
Governance Interface interacts with the other components
of the Node in order to deliver the information. Similarly, the Data
Provision and Data Consumption Components make use
of the Message Sender to transmit data to the Governance

Ecosystem. In order to provide continuous communication, the
Governance Interfacemust constantly be active and listening
for new messages.

4.1.2 Components of the governance ecosystem
We extend the typical decentralized model by including the

Governance Ecosystem, illustrated in Figure 4. The
ecosystem hosts the Resource Indexing and Policy

Governance components, whose multiple instances are able
to immutably store data and metadata, execute procedures, and
communicate with all the nodes of the decentralized
environment.

4.1.2.1 Policy governance
Policy Governance components provide shared

Policy Storage in which data owners publish applicable
usage policies associated with resources. Policies are uploaded
and modified through the Policy Manager of the component.
In addition to their storage capabilities, Policy Governance

components are able to execute procedures for policy
monitoring. This function is supported by the Monitoring

Manager of the component, containing the logic to verify the

Frontiers in Blockchain frontiersin.org08

Basile et al. 10.3389/fbloc.2023.1141909

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1141909


compliance of the policies stored inside the Policy Storage.
Therefore, nodes forward monitoring requests to the
Monitoring Manager which keeps track of resource usage
and detects any illicit behavior.

4.1.2.2 Resource indexing
Policies are associated with resources through Resource

Indexing components. They contain metadata about the
resources shared in the decentralized environment (e.g.,
identifiers, web references, owner node). When data owners
upload new resources in their node, it interacts with the
Resource Indexer of these components, in order to serialize
the information of the shared data.

Referring to our running example, when Bob uploads his image to
his Node and specifies the corresponding usage rules in its policy, his
Node shares the image metadata (e.g., the HTTP reference https://
BobNode.com/images/Mesoplodon.jpg) and the usage policy with
respectively the Resource Indexing and Policy

Governance components running in the Governance

Ecosystem. After Bob has delivered his ‘Mesoplodon.jpg’ image to
Alice’s Node, he can demand the verification of the image’s utilization
to the Policy Governance component holding the image’s policy.
The Policy Governance component retrieves the usage log of the
image fromAlice’s device, by interacting with her Node. Finally, Alice’s
usage can be verified based on the content of the usage log.

4.2 Predominant ReGov framework
operations

Now that we have introduced the entities of our ReGov
framework, we detail the predominant framework operations:
data retrieval and monitoring. In the following, we simplify the

processes by distinguishing owner nodes (i.e., nodes that are
assuming the role of data providers) from data consumer nodes
(i.e., nodes that are requesting access to and using resources),
however, in practice, all nodes are dual purpose.

4.2.1 Data retrieval
The data retrieval process allows consumer nodes to retrieve a

resource from the decentralized environment. Figure 5 depicts a
diagram representing the process. In order to obtain a specific
resource, the data consumer Node generates a new request and
sends it to the owner Node. We assume the consumer Node

already has the information needed to contact the owner node
(e.g., IP address or web reference). This information can be
obtained by reading resource metadata maintained by
Resource Indexing components running in the
governance ecosystem. The process starts when the
Resource Retriever inside the Data Consumption

component of the consumer Node formats the request
specifying the resource to be accessed and additional
parameters intended for verification purposes. Subsequently,
the request leaves the Isolated Environment through the
Gateway and is received by the Resource Provider inside
the Data Provision component of the owner node (1). The
latter uses the parameters of the request to verify the identity of
the sender Node (2). At this stage, the Resource Provider

also verifies that the request has been generated in the
Isolated Environment of a Data Consumption

technology. Requests generated by alternative technologies are
rejected. Once verified, the Resource Provider decides
whether to grant access to the resource, according to the
identity of the sender Node. If access is granted, the resource
provider interacts with the Storage Manager inside the Data
Provision component in order to construct the response,

FIGURE 4
Content of policy governance and resource indexing components inside the governance ecosystem.

FIGURE 5
Visualization of the ReGov framework data retrieval process.

Frontiers in Blockchain frontiersin.org09

Basile et al. 10.3389/fbloc.2023.1141909

https://BobNode.com/images/Mesoplodon.jpg
https://BobNode.com/images/Mesoplodon.jpg
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1141909


which includes both the requested resource and its usage policy.
Finally, the Resource Retriever of the consumer Node

obtains the resource, stores it in the Isolated Environment

and registers it with the local Data Manager (3), as described in
Section 4.1.1.

4.2.2 Monitoring
The policymonitoring process is used to continuously check if usage

policies are being adhered to. In Fig. 6, we schematize the monitoring
procedure. The owner node initiates the process via a scheduled job.
Therefore the Monitoring Scheduler in the Data Provision

component employs the Message Sender of the Governance

Interface (1) to send a monitoring request, regarding a specific
resource, to a Policy Governance component running in the
Governance Ecosystem (2). Subsequently, the Policy

Governance component forwards the request to provide evidence
of utilization to each consumerNode that has a copy of the resource (3a,
3b, 3c). In the depicted monitoring routine, we assume the resource
whose usage must be monitored is held by three consumer nodes. In
each of these nodes, the monitoring request is received by the Message
Receiver of the Governance Interface that forwards, in turn,
the request to the Data Manager running in the Isolated

Environment inside the Data Consumption component (4a,
4b, 4c). The latter retrieves the usage log from the protected data
storage and employs the Message Sender of the Governance

Interface to forward the information to the Governance

Ecosystem, which in turn ensures that all the consumer node
responses are collected (5a, 5b, 5c). Finally, the evidence are returned
to the Messagereceiver (6) of the initiator Node, which delivers
the information to the Monitoring Scheduler (7).

5 Blockchain and trusted execution
environment instantiation

In this section, we describe an instantiation of the ReGov
framework. To this end, we propose a prototype implementation of
theDecentralTrading datamarket illustrated in themotivating scenario.
The implementation integrates a trusted application running in a
trusted execution environment and blockchain technologies to
address usage control needs. The code is openly available at the
following address: https://github.com/ValerioGoretti/UsageControl-
DecentralTrading.

In Figure 7, we visualize the architecture of our ReGov framework
instantiation. As shown in Section 4, the general framework assumes
nodes of the decentralized environment are characterized by separate
components dealing with Data Provision and Data

Consumption. The Data Provision functionality is
implemented in a software component we refer to as a Personal

Online Datastore. We leverage security guarantees offered by the
Intel SGX Trusted Execution Environment in order to
implement a Trusted Application containing the logic for Data
Consumption. The Governance Ecosystem is realized by
developing blockchain smart contracts that store information
and execute distributed procedures. Our implementation
involves an EVM Blockchain11 (i.e., a blockchain based on
the Ethereum Virtual Machine) which hosts the DTindexing

FIGURE 6
Visualization of the ReGov framework data monitoring routine.

11 Ethereum Virtual Machine (EVM): https://ethereum.org/en/developers/
docs/evm/. Accessed: Friday 24th March 2023.

Frontiers in Blockchain frontiersin.org10

Basile et al. 10.3389/fbloc.2023.1141909

https://github.com/ValerioGoretti/UsageControl-DecentralTrading
https://github.com/ValerioGoretti/UsageControl-DecentralTrading
https://ethereum.org/en/developers/docs/evm/
https://ethereum.org/en/developers/docs/evm/
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1141909


and DTobligations smart contracts. They fulfill the
functions of the Resource Indexing and Policy

Governance components of the general framework,
respectively. DTindexing is characterized by a unique
instance managing the resource metadata of the decentralized
environment. Instead, DTobligations is designed to be
deployed multiple times. Therefore, each Node is associated
with a specific instance of this smart contract that stores the rules
for its resources. The tasks performed by the Governance

Interface are executed by blockchain oracles that provide
a communication channel between the blockchain and the nodes
of the decentralized environment. Oracles consist of On-Chain
components, running in the EVM Blockchain, and Off-

Chain components, operating within each Node. We built
the resource retrieval process between nodes using the HTTP
communication standard. By interacting with smart contracts,
nodes exchange metadata necessary for resource indexing and
monitoring procedures.

Our implementation employs the asymmetric encryption
methodology that underlies the EVM Blockchain, in order to
provide an authentication mechanism for the environment’s nodes.
Each Node is uniquely related to a public and private key pair that is
used to sign authenticable data requests and transactions that transmit
information to the blockchain and execute smart contract functions. A
private key is a 256-bit number generated through a secure random

number generator. The corresponding public key is derived from the
private key through the Elliptic Curve Digital Signature Algorithm
(Johnson et al., 2001). The public key is connected to a unique account
address on the EVM Blockchain derived as a 160-bit segment of the
hash digest of the public key. In our setting, Nodes store their private
key in an encrypted format to increase the degree of confidentiality of
this information.

In the following, we describe the technical details of the individual
aspects of our implementation. In particular, we focus on features inherent
to resource governance (data retrieval, enforcement, and monitoring) and
avoid the implementation details related to the data market logic (e.g.,
subscription payments and remuneration mechanisms).

5.1 Usage policy instantiation

The first step of the instantiation process involves the definition of
rule types that are used to stipulate usage policies. While our approach
allows for a wide range of rules, we establish a specific subset of rules to
demonstrate the capabilities of our ReGov framework. In particular, we
propose four types of rules inspired by the work of Akaichi and Kirrane
(2022a). Each rule assumes that the target resource has already been
retrieved and stored on the consumer device. In the following, we
explain the various rule types that have already been introduced in the
motivating scenario detailed in Section 3.1.

FIGURE 7
High-level architectural overview of our ReGov framework instantiation.

Frontiers in Blockchain frontiersin.org11

Basile et al. 10.3389/fbloc.2023.1141909

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1141909


5.1.1 Temporal rules
Through a temporal rule, data owners establish the maximum

time a resource can be maintained within a consumer device. The
rule is parameterized through an integer value representing the
duration in seconds. Once the term expires, the rule stipulates that
the resource must be deleted.

5.1.2 Access counter rules
An access counter rule specifies a maximum number of local

accesses that can be executed for a specific resource, after which, the
resource must be deleted. The rule is parameterized with an integer
value that defines the maximum number of accesses.

5.1.3 Domain rules
The domain rule represents the purpose for which a resource can be

opened. It is characterized by an integer value that identifies groups of
applications that share the same domain. Known applications that are
part of the domain group can execute local access to the resource.

5.1.4 Geographical rules
A geographical constraint is a limitation on where a resource can

be used. It is indicated by an integer code that specifies the territory
in which the resource can be utilized.

5.2 Personal online data stores for data
provision

We develop the Personal Online Datastore prototype
using the Python language. Python’s support for the Web3.py
library12 enables the creation of communication protocols with
the blockchain platform acting as the Governance

Ecosystem of the decentralized environment. Our

implementation also includes a graphical user interface developed
with the Tkinter library13. As shown in Figure 8, our Personal
Online Datastore implementation is composed of three main
parts: the Application, the Web Service and the Resource
Storage. The app module contains the executable code
implementing the graphical user interface.

5.2.1 Resource storage
The resource storage contains the resources of the Personal

Online Datastore. The storage location is characterized by two
meta-files named DTconfig.json and DTobligations.json.
They contain descriptive and confidential information about the
Personal Online Datastore and its resources.
DTconfig.json includes various attributes of a Personal

Online Datastore, such as its unique identifier, its node’s
public and private keys, the web reference to access data, and a list
of the initialized resources. DTobligations.json holds rules that
apply to the resources of the storage. The user can establish a default
policy inherited by all resources in the Personal Online

Datastore, except those with specific policies. Mentioning
our running example, Bob interacts with the Personal

Online Datastore application to upload the
‘Mesoplodon.jpg’ resource in the ‘/images’ location inside the
storage. During this process, Bob can establish the rules
associated with the image. The initialization of the image
generates the metadata to be held in the DTconfig.json and
DTobligations.json metafiles.

5.2.2 Web service
The implementation of the data provision process is built upon

the HTTP web standard. Our Personal Online Datastore

prototype implements a Web Service that listens for HTTP
requests, verifies the authenticity of the sender Node, and

FIGURE 8
Schematization of the personal online datastore implementation.

12 https://web3js.readthedocs.io/en/v1.8.1/. Accessed: Friday 24th
March 2023.

13 https://docs.python.org/3/library/tk.html. Accessed: Friday 24th
March 2023.

Frontiers in Blockchain frontiersin.org12

Basile et al. 10.3389/fbloc.2023.1141909

https://web3js.readthedocs.io/en/v1.8.1/
https://docs.python.org/3/library/tk.html
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1141909


delivers the requested data through HTTP responses. This approach
enables the efficient and on-demand provision of initialized data. In
Figure 9, we summarize the main stages of the data provision process,
taking place in our Web Service implementation. The DTpod_

service Python class contains the core functionality for resource
delivery. The class extends BaseHTTPRequetsHandler that
enables the processing of GET and POST requests. Due to
confidentiality reasons, the Web Service of the Personal

Online Datastore only responds to POST Requests and
ignores GET ones. The data provision process starts with the
Parameter Extraction, which takes place when a new POST

Request is received by the Web Service. The parameters inside the
body of the POST Request are crucial for the authentication and
remote attestation procedures. In order to correctly demand a resource,
requests must specify a URL composed of the web domain name of the
service followed by the relative path of the requested resource inside
storage. In the case of the motivating scenario, to retrieve Bob’s image,
Alice’s node must generate an authenticable POST Request, whose
URL is “https://BobNode/images/Mesoplodon.jpg.”

Through remote attestation, the Web Service can verify that
the resource request has been legitimately generated by a Trusted
Application running a Intel SGX Trusted Execution

Environment of a Node. Therefore, we leverage the Intel SGX

Remote Attestation Verification to establish a trusted
communication channel between the consumer and the owner
nodes. Once the attestation procedure ends successfully, the Web

Service can be assured that the content of its response is managed
by a Data Consumption technology inside the decentralized
environment.

Sender Authentication takes place after the successful
outcome of the remote attestation verification. The logic of our
authentication mechanism is implemented through the
DTauthenticator class, whose purpose is to use the auth_

token (a message signed with the sender’s credentials) and claim
(the public key of the sender) parameters inside the POST Request

to determine the sender Node’s identity. Specifically, auth_token
refers to the URL of the resource to be accessed, encrypted with a
private key. DTauthenticator is able to extract a public key
from the auth_token parameter when the request is received. If
the extracted public key is equal to the claim parameter, the
identity of the sender Node is confirmed. At the end of the
authentication procedure, Bob’s Web Service identifies the
sender of the request as Alice’s Node.

The determined identity is subsequently evaluated by the
Web Service during the Sender Rights Evaluation to
determine whether the consumer Node can access the resource.
Because our instantiation considers the decentralized
environment related to the DecentralTrading data market
(mentioned in Section 3), this step establishes whether the
sender Node is associated with an active subscription (e.g., if
Alice has an active subscription). However, the evaluation of
alternative criteria, such as organization membership, can be
freely integrated depending on the specific use case. In all cases, it
is crucial to keep track of the consumer nodes that have accessed
the Personal Online Datastore’s resources by
establishing their identity.

Once the POST Request has passed the necessary checks, the
Response Processing takes place. Therefore, the Web

Service then interacts with the local storage to retrieve the
requested resource, which, along with the associated policy, are
inserted into the Response.

5.3 Trusted execution environment for data
consumption

The Trusted Execution Environment manages the
resources recovered within the consumer node. In Figure 10, we
propose a schematization of our Trusted Application

implementation. The trusted application consists of two
fundamental components: the Trusted Part and the
Untrusted Part. The Trusted Part comprises one or
more enclaves. The Enclave’s code is in the enclave.cpp

file. It includes all the implementations of the Enforcement

Mechanisms and a set of Protected File System

Operations to handle the resources stored in it. The
Trusted Part cannot communicate directly with the outside
world. Any pieces of information that enter or leave the Trusted
Part pass through the Untrusted Part. The Untrusted

Part’s code is in the app.cpp file. This application has
multiple Application Interfaces that are used to expose
the application to the outside world. In order to communicate, the
two parts use dedicated functions called Ecall and Ocall. ‘Ecall’
stands for Enclave Call and represents an invocation made by a
function in the Untrusted Part to the Enclave (Trusted
Part). The term ‘Ocall’ (Out Call) refers to a call from the
Enclave to the Untrusted Part.

5.3.1 Data protection
The main purpose of using the Trusted Application is to

manage and protect the data of other users obtained from the

FIGURE 9
Main stages of the ReGov data provision instantiation process.

Frontiers in Blockchain frontiersin.org13

Basile et al. 10.3389/fbloc.2023.1141909

https://BobNode/images/Mesoplodon.jpg
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1141909


market. The Retrieved Resources are stored within the
Enclave, more specifically in its Protected File System,
because in this way they are decrypted only within the processor and
only the enclave itself can access the processor in order to decrypt it.
Within the enclave, both the Resources Retrieved by the user
and the Usage Policies set by the owner are stored. Storing the
Retrieved Resource within the Trusted Part is essential
both from a data protection and a usage control perspective. In
addition, the Usage Policy chosen by the data owner must also
be saved in a secure space, as it could be tampered with by malicious
code in order to be bypassed.

5.3.1.1 Protection of usage data
When a user requests a piece of data, the request is received by the

dedicated Application Interface in the Untrusted Part,
and it is retrieved from the market. For instance, when Alice requests a
photo of a Mesoplodon eueu from Bob, an identifier is assigned to this
data before it is stored in the Enclave. The identifier associated with
the resource is used to index the retrieved resources and store them
within the trusted part. A copy of the policies set by the owner, the rules
set by Bob for the photo, is associated with it in order to store all the
necessary resource information in the enclave. More specifically, when
Alice wants to retrieve a piece of data from Bob, she interacts with the
Untrusted Part and sends a post HTTP request to Bob’s node.
Within the request parameters, the resource in which the consumer is
interested is specified, and an identifier is provided with which the
consumer gets authenticated (as described in Section 5.2.2). Finally, a
certificate provided by Intel SGX Remote Attestation is added to the
request, providing evidence that the request comes from a Trusted
Application. Once thePersonalOnline Datastore ensures
that the other party involved in the communication is trusted, it sends
the resource and policy information via an HTTP reply. Since the
Trusted Part cannot communicate with the outside world, the

response reaches the Untrusted Part who forwards it via an
Ecall to the Trusted Part. Once the resource arrives at the
Trusted Part, it stores the data sent from the Personal

Online Datastore in the Enclave using the Protected

File System Operations that allow the Enclave to manage
theProtectedFileSystem. Based on the example scenario, at this
point the photo of the Mesoplodon eueu and the related Usage

Policies set by Bob, the owner, are stored within Alice’s Enclave.

5.3.1.2 Protection of log data
To keep track of the correct use of resources, all actions performed on

them within the Trusted Part are stored in a usage log file. In
short, all actions concerning the retrieved resources are stored. The
objective is to let the data owner initiate a monitoring procedure
through an oracle, to check whether resources are used in accordance
with usage conditions. When the Untrusted Part receives a
monitoring request from the blockchain, it performs an Ecall to
request a copy of the Usage Log file stored in the Enclave and
returns it to the blockchain through an oracle to perform themonitoring.
Referring to the example, all actions performed by Alice are
recorded in a Usage Log file, and when Bob wants to check
that everyone is using their resource correctly, he starts a
monitoring procedure that aims to check all the Usage Log

files of consumers who have retrieved the Mesoplodon eueu
photos. When the Usage Log file is requested to be
monitored, before sending a copy, the Trusted Part enters
an entry to keep track of the monitoring request.

5.3.2 Implementation of the enforcement
mechanisms

In order to guarantee that data are accessed and used according
to usage policies when a resource from the Trusted Part of a
Trusted Application is requested by an external application,

FIGURE 10
Schematization of our trusted application composed of both trusted and untrusted elements.

Frontiers in Blockchain frontiersin.org14

Basile et al. 10.3389/fbloc.2023.1141909

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1141909


enforcement mechanisms must be implemented. These
mechanisms are implemented within the Enclave to ensure
they are executed within a Trusted Environment.

5.3.2.1 Receiving a request for access to a resource stored in
the trusted application

Before proceeding with the Enforcement Mechanisms, when
the external application makes a request to the Trusted

Application, the latter asks the external application to identify
itself in order to check whether the sender is who it declares to be.
More specifically, theUntrustedPart receives a request for access to
a resource via the ApplicationInterfaces and forwards it to the
Trusted Part through an Ecall by invoking the access_

protected_resource function, which verifies the identity of the
claimant. Referring to the example, when Alice uses the ‘Zooresearch’ or
‘Socialgram’ applications, they have to authenticate themselves.

5.3.2.2 Retrieval of the requested resource and its usage
policy

Once the external application has been authenticated, the
Trusted Application gathers all the necessary information
about it and accepts the request for the data that the external
application is interested in and starts checking whether it is possible
to access and use the resource. First, the access_protected_

resource function retrieves the requested data and the associated
policies, using the get_policy function, set by the owner. Then, the
access_protected_resource function invokes the different
enforcement modules, passing the retrieved policies to it, in order to
ensure that the rules are satisfied. In our implementation, four different
enforcement modules have been developed. The proposed approach is
highly flexible, thus catering for the extension of the existing rule types.
The first mechanism in the enforcement process is checking the
geographical position of the device.

5.3.2.3 Geographical rule enforcement
The enforce_geographical function is invoked and

passed the policy for the requested resource. The get_geo_

location function (Ocall) is then used to retrieve the
geographic location of the device from which the resource is
being accessed. In the end, the geographic data set by the user
and the current location are compared. If the position is correct, a
positive result is returned to the access_protected_

resource function, otherwise access is denied. Referring to the
scenario, the Trusted Application uses Alice’s location to
check if it meets the location stipulated by Bob in his usage policy.

5.3.2.4 Domain rule enforcement
The access_protected_resource function invokes the

enforce_domain function by passing it the policy of the
requested resource and information about the requesting application.
Following a comparison between the application’s domain and the
domain set by the resource owner, if the domains are equal, the
enforce_domain function returns a positive result to the
access_protected_resource function, which proceeds to
the next check. Otherwise, access to the resource is denied. Looking
at the example scenario, the domain of the application used by Alice is
checked to determine if it satisfies the usage domain set by Bob. If Alice’s
application domain is correct, a positive result is returned.

5.3.2.5 Access counter rule enforcement
The enforce_access_counter function is called by the

access_protected_resource function with the policy for the
requested resource. If the number of remaining accesses is greater than 1,
the function decrements the maximum number of remaining accesses
for that resource and returns with success to the access_

protected_resource function. If the number of remaining
accesses is equal to 1, the function removes the resource and related
policies from the Enclave before returning a positive value, as the
resource can no longer be accessed. In the motivating scenario, Bob set
100 as themaximumnumber of accesses to the resource. Each timeAlice
makes a request and logs in, themaximum number of hits left decreases.
When the counter becomes 1, Alice is allowed a last access to the
Mesoplodon eueu’s photo, and then the resource is deleted from her
Trusted Application. Then, having successfully completed all the
enforcement, the access_protected_resource function
forwards the contents of the file to the Untrusted Part, which
forwards it to the external requesting application. As already mentioned,
all actions performed on the resources in the trusted application are
saved on aUsage Log file, which keeps information and accessesmade
on the resources from when it is retrieved until it is deleted, maintaining
an overview of the use of the resource. This Usage Log file makes it
possible to prove and check that all resources have been used correctly
within the trusted application.

5.3.2.6 Temporal rule enforcement
When it comes to temporal rules, the Untrusted Part

periodically invokes the Ecall function called enforce_

temporal to verify that all resources within the trusted part
have not expired. The enforce_temporal function uses the
get_trusted_time function to retrieve the current day. It then
reads all resource policies stored within the Trusted Part and
checks whether the date set on the policy is later than the current
date. If a resource has expired, the enforce_temporal function
removes it. Each time this type of check is performed, it is written to
the Usage Log file, and all deletions are also saved.

5.4 Blockchain as a governance ecosystem

In our instantiation, we leverage blockchain smart contracts in
order to realize the Governance Ecosystem. Transparency,
distribution, and immutability are the key features that make this
technology highly suitable for our needs. The DecentralTrading
implementation leverages the EVM Blockchain platform hosting
several interconnected smart contracts. Nodes of the decentralized
environment that are equipped with confidential blockchain public
and private keys, sign authenticate transactions that generate the
execution of smart contract functions. Processes that involve data
exchange between Nodes and smart contracts are supported by
blockchain oracles.

We implemented the smart contracts using the Solidity
programming language14. The smart contracts have been

14 https://docs.soliditylang.org/en/v0.8.17/. Accessed: Friday 24th
March 2023.

Frontiers in Blockchain frontiersin.org15

Basile et al. 10.3389/fbloc.2023.1141909

https://docs.soliditylang.org/en/v0.8.17/
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1141909


deployed in a local environment powered by the Ganache tool15

which enables the execution of a local blockchain replicating the
Ethereum protocol and supporting the generation of transactions for
testing purposes. In the following, we present the implementation
details regarding the DTindexing and DTobligations smart
contracts that fulfill the functionality of the Resource Indexing

and Policy Governance components respectively.

5.4.1 DTindexing smart contract
The DTindexing smart contract caters for the initialization of

shared resources in the decentralized environment. The main goal of
this component is to keep track of the decentralized environment’s
data. Owner nodes interact with the smart contract to index their
Personal Online Datastore, sharing the necessary metadata
for data retrieval. Consumer nodes make use of the smart contract to
find references for registered resources through search functionality.
Table 2 represents the class diagram of the smart contract. The smart
contract saves the following variables in the Pod struct in order to
keep track of the information about personal online datastores:

struct Pod { int id; address owner; bytes

baseUrl; bool isActive; }

Similarly, the contract stores information about resources in a
Resource struct, which consists of the following:

struct Resource{ int id; address owner; int

podId; bytes url; bool isActive; }

The Pod and Resource structs are stored in the podList
and resourceList array variables, respectively. The contract
includes several methods for interacting with online datastores
and resources, including the ability to register new ones,
deactivate existing ones, and to search for them based on
various criteria. For example, the registerPod method
allows nodes to initialize new personal online datastores in the
network. It takes as input a web reference for the online datastore
service and the public key of the owner Node. The function
creates a new Pod struct and stores it in the podList. It also
deploys a DTobligations smart contract (discussed next in
detail), as every Personal Online Datastore is related to
one of these contracts. Finally, the function emits a NewPod

event containing the identifier and the address of the
DTobligations smart contract for the new online
datastore. In our running example, Bob’s node invokes this
function to initialize his new Personal Online

Datastore providing the web reference https://BobNode.
com/ among the arguments. The function, in turn, generates a
new Pod struct. The registerResource method works
similarly, generating a new Resource object and storing it in
the resourceList state variable. In this case, Bob’s
Personal Online Datastore employs this function to
initialize the ‘Mesoplodon.jpg’ image providing metadata such
as the https://BobNode.com/images/Mesoplodon.jpg url. The
deactivateResource and deactivatePod methods
ensure that personal online datastores and resources are no
longer accessible. Nodes submit metadata referring to new
datastores and resources by using push-in oracles, that enable

sending information to the blockchain. The smart contract also
offers various search functions that can be useful for consumer
nodes. The getPodResources method allows users to obtain
a list of Resource structs stored in a specific datastore,
identified by its integer identifier. The getResource method
accepts an integer identifier as input and returns the Resource
struct with that identifier. Referring to our use case scenario,
Alice uses getPodResources to read the image’s identifier
that is given as a parameter to getResource, thanks to which
the associated web reference is retrieved.

5.4.2 DTobligations smart contract
We use the DTobligations smart contract to model usage

policies inside the blockchain environment and execute their
monitoring. The architecture of the implementation assumes the
deployment of multiple instances of the smart contract, one for each
Personal Online Datastore in the network. Each
DTobligations smart contract is associated with a specific
Personal Online Datastore that is the only entity allowed
to establish and manage the rules associated with the stored
resources. As we showed in our motivating scenario, the
architecture of our implementation assumes the deployment of a
dedicated DTobligations instance containing the rules for Bob’s
Personal Online Datastore. In Table 3, we propose the class
diagram of the DTobligations smart contract.

The DTobligations smart contract includes four
structs, each of which, models a specific rule:
AccessCounterObligation, which restricts the number of
resource accesses on a client device; CountryObligation,
which imposes restrictions on the countries in which a
resource can be used; DomainObligation, which specifies
the purposes for which resources can be used; and
TemporalObligation, which imposes a maximum
duration for resource storage. These are stored in an
ObligationRules struct, which can apply to a specific
resource or to the entire Personal Online Datastore.
The smart contract includes functions that allow nodes to set default
rules for theirPersonal Online Datastore and related resources.
For instance, the addDefaultAccessCounterObligation and
addDefaultTemporalObligation are used to set rules that are
inherited by all the resources of the Personal Online Datastore.
Similarly, functions such as addAccessCounterObligation and
addTemporalObligation establish rules that are applied to a
specific resource of the datastore. Referring to our running example,
Bob’s Personal Online Datastore invokes the
addTemporalObligation giving as input the ‘Mesoplodon.jpg’
identifier and the integer value that describes the time duration of
20 days. The onlyOwner modifier ensures that certain functions can
only be invoked by using the blockchain credentials associated with the
smart contract’s owner. It is applied to the functions for rule
modification, which can be invoked only by the owner Node. In this
way, Bob is sure thatmodification of the rules can only be executed by his
Personal Online Datastore.

The main goal of the monitoring procedure is to retrieve evidence
from consumer nodes attesting to the utilization of resources, whose
policies are represented by the DTobligations instance. The
smart contract implements the monitorCompliance function,
solely invocable by the contract owner, to initiate the monitoring15 https://trufflesuite.com/ganache/. Accessed: Friday 24th March 2023.

Frontiers in Blockchain frontiersin.org16

Basile et al. 10.3389/fbloc.2023.1141909

https://BobNode.com/
https://BobNode.com/
https://BobNode.com/images/Mesoplodon.jpg
https://trufflesuite.com/ganache/
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1141909


procedure.When the function is used, it interacts with a pull-in oracle,
that is able to retrieve external information outside the blockchain.
Therefore, the DTobligations smart contract communicates with
the on-chain component of the oracle (i.e. smart contract named
PullInOracle) by invoking its initializeMonitoring

function. The oracle generates a new MonitoringSession

struct instance that contains information about the current state of
the session and aggregates the external responses. The same
function emits a NewMonitoring event. The emission of the
event is caught by the off-chain components of the oracle, running
in consumer nodes, that forward to the SGX Intel Trusted

Application the command to provide the usage log of the
resources involved. Once the usage log is retrieved, the
information contained within it are sent to the on-chain
component of the oracle through its _callback method.
The function aggregates the responses from consumer nodes
and updates the involved MonitoringSession instance each
time it is called. Once all the responses are collected, they are
returned to the DTobligations smart contract at the end of
the process. In our running example, the procedure is started by
Bob’s Personal Online Datastore using the
monitorCompliance function. Subsequently, Alice’s SGX

Trusted Application is contacted by the pull-in oracle
and it is asked to provide the usage log of the
‘Mesoplodon.jpg’ resource. Alice’s response contains
information such as the number of local accesses to the image
or the time from its retrieval. The evidence provided by Alice’s

SGX Trusted Application is collected, together with
evidences provided by other nodes in the network, by the
pull-in oracle. Finally, the oracle forwards the logs to Bob’s
instance of DTindexing.

6 Evaluation

We evaluate the implementation of the ReGov framework by
taking two distinct approaches. In the first part of this section we
revisit the specific requirements usage control requirements that
were derived from out motivating scenario. While, in the second
part, we examine the security, privacy, and affordability of our
implementation.

6.1 Requirement verification

In this section, we discuss how the previously established
requirements are satisfied by our ReGov instantiation,
following the methodology described in the study of Terry
Bahill and Henderson (2005). Through the discussion of the
requirements, we contextualize the use of the trusted
execution environment and the blockchain respectively in our
architecture. Both requirements are composed of several sub-
requirements that express various environmental and
technological functions.

6.1.1 (R1) Resource utilization and policy fulfillment
must be managed by trusted entities

The first requirement (R1) stipulates that resource utilization and
policy fulfillment must be managed by trusted entities. We use a
trusted execution environment in order to develop a trusted application
executable inside our nodes. We implemented it using Intel SGX, as
explained in Section 5.3. Our design and implementation choice allows
us to satisfy the following sub-requirements:

(R1.1) The trusted entity must be able to store resources obtained
from other entities. In the proposed ReGov framework
instantiation, all resources retrieved from the data market by
the untrusted part of a node are passed to the trusted part of a
node in order to store them within the enclave. For storage, we
use an Intel SGX function, called Protected File System Library,
which allows the management of files containing the resources
retrieved within the enclave. We chose to store the data in the
enclave because any information stored in it is encrypted and
decrypted solely by the enclave.

(R1.2) The trusted entity must support the execution of
programmable procedures that enforce constraints associated
with resource usage. When a resource stored within the
enclave is requested, before retrieving it, the enclave we have
implemented executes all the application procedures provided by
the resource policy, invoking the necessary enforcement
functions. The proposed enclave only allows access to the
resource if at the end of the execution of all enforcement
procedures, all of them have given a positive result. Otherwise,
the resource is not returned and access is denied. It is worth
noting that the enforcement mechanism within the trusted
application is implemented in a modular way. Although our

TABLE 2 Class diagram of the DTindexing smart contract.

DTindexing

private podsCounter: int

private resourceCounter: int

private dtSubscription: int

private podList: Pod[]

private resourceList: Resource[]

private searchByType(tp: PodType): Pod[]

<<event>> NewPod(idPod: int, obgliationAddress: address)

<<event>> NewResource(idResource: int)

<<modifier>> validPodId(id: uint, owner: address)

public getMedicalPods(idSubscription: uint): Pod[]

public getSocialPods(idSubscription: uint): Pod[]

public getFinancialPods(idSubscription: uint): Pod[]

public registerPod(newReferene: bytes, podType: PodType,
podAddress: address): int

public registerResource(podId: int, newReferene: bytes,
idSubscription: uint): int <<validPodId>>

public getPodResources(podId: int, idSubscription: int):
Resource[]

public deactivateResource(idResource: int):
Resource <<validResourceId>>

Frontiers in Blockchain frontiersin.org17

Basile et al. 10.3389/fbloc.2023.1141909

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1141909


current implementation is limited to four rule types, this feature
allows developers to easily extend our implementation with
additional rule types based on their specific needs.

(R1.3) Resources and procedures managed by the trusted
entity must be protected against malicious manipulations. In
the proposed ReGov implementation, we store resources within
the enclave, because it is secure and protected from unauthorized
access. The trusted part cannot communicate directly with the
outside world and thus avoids interacting with malicious
software. In addition, all code included and executed in the
trusted part is, in turn, trusted, as it is not possible to use
third-party libraries. The data stored within the enclave are
encrypted. Therefore, a direct attack on the memory by
malicious software would not be able to read the data.

(R1.4) The trusted entity must be able to prove its trusted
nature to other entities in a decentralized environment. When it
comes to interaction between nodes, in order to prove a node’s
trustworthiness, we use the Intel SGX remote attestation within our
trusted application. This advanced feature allows a node to gain the
trust of a remote node. The provided attestation ensures that the
node is interacting with a trusted application using an updated Intel
SGX enclave.

6.1.2 (R2) policy compliancemust bemonitored via
the entities of a governance ecosystem

The second requirement (R2) stipulates that policy compliance
must be monitored through entities running in a governance
ecosystem. In our ReGov framework, we propose the adoption of a
governance ecosystem that we instantiate on top of blockchain
technology. In the following, we show the suitability of
blockchain for this role by addressing each sub-requirement.

(R2.1) The governance ecosystem must provide transparency
to all the nodes of the decentralized environment. By allowing all
nodes to view the complete transaction history of the
blockchain technology, we are able to ensure that each
participant of the decentralized environment has equal access
to information and is able to independently verify the accuracy
and integrity of governance data. Additionally, we implement the
policy management tasks via smart contracts, the code for which
is made publicly available within the blockchain infrastructure.
This enables nodes in the decentralized environment to be aware
of the governance processes that are being executed.

(R2.2) Data and metadata maintained by the governance
ecosystem must be tamper-resistant. Our solution involves the
storage of resource metadata and usage policies in data structures
that are part of smart contracts. Through smart contracts
functions, we implement functionality that can be used to
upload and modify stored data. We leverage the
asymmetric key encryption mechanism of the blockchain
environment to verify that data modifications are performed
by authorized users. Once data and metadata of ReGov are
validated in a blockchain block, we rely on the cryptographic
structure underlying the blockchain to guarantee the integrity of
published smart contracts and the information contained
therein.

(R2.3) The governance ecosystem and the entities that the
form part of the ecosystem must be aligned with the
decentralization principles. We fulfill the decentralization
principles by proposing a blockchain-based architecture that is
inherently decentralized. In our implementation, we publish data
and metadata through a network of validators rather than a

TABLE 3 Class diagram of the DTobligations smart contract.

DTobligations <<extends >> Ownable

dtIndexing: DTindexing

defaultPodObligation: ObligationRules

resourcesObligation: mapping(int=>ObligationRules)

<<modifier>>hasSpecificRules(resourceId: int)

<<modifier>>isValidTemporal(deadline: uint)

<<modifier>>isTheResourceCovered(idResource: int)

public constructor(dtInd: address, podAddress: address)

public getObligationRules(idResource: int):
ObligationRules <<isTheResourceCovered>>

public getDefaultObligationRules(): ObligationRules

public addDefaultAccessCounterObligation(accessCounter:
uint)

public addDefaultTemporalObligation(temporalObligation:
uint) <<isValidTemporal, onlyOwner>>

public addDefaultCountryObligation(country:
uint) <<onlyOwner>>

public addDefaultDomainObligation(domain:
DomainType) <<onlyOwner>>

public addAccessCounterObligation(idResource: int,
accessCounter: uint):
ObligationRules <<isTheResourceCovered, onlyOwner>>

public addDomainObligation(idResource: int, domain:
DomainType): ObligationRules <<onlyOwner,
isTheResourceCovered>>

public addCountryObligation(idResource: int, country:
uint): ObligationRules <<onlyOwner, isTheResourceCovered>>

public addTemporalObligation(idResource: int, deadline:
uint): ObligationRules <<onlyOwner, isTheResourceCovered,
isValidTemporal>>

public removeAccessCounterObligation(idResource:
int) <<onlyOwner, isTheResourceCovered, hasSpecificRules>>

public removeTemporalObligation(idResource:
int) <<isTheResourceCovered, onlyOwner, hasSpecificRules>>

public removeDomainObligation(idResource:
int) <<isTheResourceCovered, onlyOwner, hasSpecificRules>>

public removeCountryObligation(idResource:
int) <<isTheResourceCovered, onlyOwner, hasSpecificRules>>

public removeDefaultTemporalObligation() <<onlyOwner>>

public
removeDefaultAccessCounterObligation() <<onlyOwner>>

public removeDefaultCountryObligation() <<onlyOwner>>

public removeDefaultDomainObligation() <<onlyOwner>>

public withSpecificRules(idResource: int): bool

public monitorCompliance() <<onlyOwner>>

Frontiers in Blockchain frontiersin.org18

Basile et al. 10.3389/fbloc.2023.1141909

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1141909


central authority. This ensures that no single entity has control
over shared data and smart contracts that are distributed in the
blockchain ecosystem. Through decentralization, we secure the
fairness and integrity of policy management and prevent any
single authority of the decentralized environment from having
too much control or disproportionate decision-making power.

(R2.4) The entities that form part of the governance
ecosystem must be able to represent policies and verify their
observance. The majority of smart contract technologies are
characterized by Turing-complete programming languages. We
use the expressive power of smart contracts to implement data
structures that can be used to represent usage policies and
automate their monitoring. We facilitate the communication
between smart contracts and off-chain nodes by integrating
oracle technologies that implement the protocols for data-
exchange processes.

6.2 Architecture discussion

In this section, we broaden our discussion on the effectiveness of
the proposed decentralized usage control architecture with a
particular focus on privacy, security, and affordability. The
criteria the discussion is based on have been inspired by the
work of Ferrag and Shu (2021).

6.2.1 Security
Several works already show how the decentralized model

makes it more difficult for attackers to compromise data, as
they would need to gain access to multiple nodes rather than just
one central server (Alabdulwahhab, 2018; Raman et al., 2019). As
per the vast majority of decentralized web initiatives, our
implementation preserves the security of data residing in
nodes through the Personal Online Datastore

component, which performs authentication and rights
evaluation procedures to prevent unauthorized access to
sensitive information or resources.

Our solution introduces new components into the decentralized
model whose security should be discussed. The metadata stored in
smart contracts (usage policies and resource indexes) are protected
from unauthorized updates through the consensus mechanism of
the blockchain platform and its distributed nature, which makes this
information immutable. Moreover, the state of distributed
applications running in this environment can only be changed by
transactions marked by a digital signature. This feature guarantees
that usage policy modifications can only be executed by authorized
entities.

The Intel SGX Trusted Execution Environment

provides a separate ecosystem for the execution of a Trusted

Application that manages resource utilization. It has already
shown its effectiveness in terms of preventing the injection of

TABLE 4 Gas expenditure of the DTobligations and DTindexing smart contracts. Costs are expressed in Gas units.

DTobligations DTindexing

Function Cost Function Cost

deployment 2057988 deployment 3255000

addDefaultAccessCounterObligation(/ ) 62627 registerPod(/ ) 2082494

addDefaultTemporalObligation(/ ) 62638 registerResource(/ ) 143004

addDefaultDomainObligation(/ ) 44219 deactivateResource(/ ) 21465

addDefaultCountryObligation(/ ) 62561 — —

addAccessCounterObligation(/ ) 138768 — —

addTemporalObligation(/ ) 97737 — —

addCountryObligation(/ ) 97728 — —

addDomainObligation(/ ) 79452 — —

removeDefaultAccessCounterObligation(/ ) 23780 — —

removeDefaultTemporalObligation(/ ) 16079 — —

removeDefaultDomainObligation(/ ) 24747 — —

removeDefaultCountryObligation(/ ) 23758 — —

removeAccessCounterObligation(/ ) 28184 — —

removeTemporalObligation(/ ) 28151 — —

removeCountryObligation(/ ) 28173 — —

removeDomainObligation(/ ) 38111 — —

monitorCompliance(/ ) 42000 — —

Frontiers in Blockchain frontiersin.org19

Basile et al. 10.3389/fbloc.2023.1141909

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1141909


malicious code coming from the operating system of the client’smachine
(Sabt et al., 2015), which could jeopardize the integrity of the stored
resources and the local representation of usage policies. Moreover, we
also leverage the security guarantees offered by this technology to
establish a protected environment in which the enforcement of the
usage policies is ensured, inside the consumer’s node.

The monitoring process, thanks to which nodes get evidence of
the utilization of their resources, involves the interaction between
the EVM Blockchain and consumer nodes. The procedure
involves the exchange of confidential information, the integrity of
which must be secured. Interactions between the involved
components are managed via blockchain oracles that are capable
of ensuring the legitimacy operations (Al-Breiki et al., 2020). By
definition, oracles establish secure communication protocols that
enable on-chain and off-chain computations to send and receive
data safely.

Security and verification of data consumption are enforced by
the ensemble of smart contracts, trusted execution environments,
and remote attestations. Through the latter, data providers are
able to remotely verify the integrity of a node’s data consumption
component and thwart attempts to instantiate malicious
consumer nodes in the decentralized environment.
Nevertheless, data provision of inappropriate information
through published data is a practice that requires automated
ex-post checking and whistleblowing (Kirrane and Di Ciccio,
2020).

We remark that ReGov cannot supervise users’ actions outside
the digital context of the decentralized environment. For example, it
is unable to prevent users from taking a picture of a protected image
resource using a separate camera, or copying reserved information
displayed on the screen. The framework is intended to operate at the
digital level. Therefore, ReGov monitors and controls data access,
processing, and distribution, ensuring that it is utilized in
compliance with the associated policy. Our motivating scenario
resorts to a list of approved applications that guarantee fair data
elaboration and facilitate misconduct uncovering. Considering the
running example, applications like “Socialgram” put in place
procedures that counteract OS screen recording actions. In
addition, unfair activities that break the enforcement mechanism
can be detected by the presented monitoring routines, enabling data
owners to indict malicious users.

6.2.2 Privacy
Privacy is key for decentralized web environments trying to

take personal data out of the control of single organizations.
With usage control, users can benefit from a greater level of
privacy, as they have a way to determine how their resources
are being used. However, enforcement and monitoring
mechanisms that characterize usage control involve the
exchange of data and metadata whose confidentiality should
constantly be guaranteed.

One of the most critical issues of our solution regarding
confidentiality relates to the blockchain metadata, which are
publicly exposed in smart contracts. Public blockchains, such
as Ethereum, provide public ledgers, thus allowing every node of
the decentralized environment to get access to usage policy and

resource locations. Despite the possibility of specifying private
variables in smart contracts, the method invocations thanks to
which those variables are set are recorded in publicly readable
transactions. Therefore, blockchain users can freely deduce the
state of a private variable by inspecting the public transactions
associated with the invocation of the setter methods. In some use
cases, it may be desirable to keep this data public. However, there
may also be a need to encrypt data stored in the blockchain, so
that only authorized parties (those that have access to the
decryption key) can read this metadata (Pan et al., 2011;
Marangone et al., 2022).

The confidentiality of the shared resources must be regulated
after their retrieval inside consumer nodes, in order to apply the
constraints associated with their policy rules. Our
implementation leverage the Intel SGX Trusted

Execution Environment that manages retrieved
resources through the SGX Protected File

System(PFS). One of the key features of SGX-PFS is that it
allows for files to be stored in a secure, encrypted format, even
when the operating system is not running. This makes it difficult
for attackers to access the resources, as they would need to have
physical access to the machine and be able to bypass the SGX
hardware security features in order to read the contents of the
files.

6.2.3 Affordability
The affordability of our solution is strongly related to the

costs associated with the smart contracts running in the
blockchain ecosystem. EVM Blockchains associate the
execution of smart contracts with a fee charged to the
invoking user, according to the complexity of the code to be
executed. This fee is measured in (units of) Gas. In Table 4, we
collect the Gas expenses associated with the functions of the
DTobligations and DTindexing smart contracts. The
table omits their read functions, for which no transactions
need to be sent to the network.

The deployment cost of DTindexing is 32 55 000 Gas units.
The registerPodmethod is the most expensive DTindexing’s
function (20 82 494 Gas units) as it involves the deployment of a new
contract instance, too. The Gas consumption of
registerResource turns out to be significantly lower,
requiring 1 43 004 Gas units. The least expensive function of the
smart contract is deactivateResource with an expenditure of
21 465 Gas units.

DTobligations is deployed during the registration of a new
personal online datastore at the cost of 20 57 988 Gas units.
DTobligations offers methods and functions to modify the
obligation rules related to the resources contained in personal
online datastore. Among the functions for adding rules, the most
expensive one is addAccessCounterObligation with a value
of 1 38 768 Gas units. However, the adding of a domain restriction
through addDefaultDomainObligation costs significantly
less with 44 219 Gas units per invocation. Methods for rule
deactivation determine a lower expense than the previous ones.
The cheapest among them is removeDomainObligation (16
079 Gas units). The cost required to initialize a monitoring process

Frontiers in Blockchain frontiersin.org20

Basile et al. 10.3389/fbloc.2023.1141909

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1141909


through the monitorCompliance function is 42 000 units
of Gas.

As expected, operations involving new smart contract
deployments are the most expensive ones. However, these
costs are associated with one-time operations performed at
setup time (at the bootstrapping of the platform, or every
time a new pod is registered). On the other hand, functions
intended for more frequent invocations (e.g., to monitor
compliance or update rules) are characterized by significantly
lower costs. Costs in fiat money are subject to high variability, as
they depend on multiple factors including the network capacity
utilization, the price in cryptocurrency per Gas unit, and the
market exchange rate of the cryptocurrency. Also, these values
change depending on the EVM blockchain in use (e.g.,
Ethereum16, Avalanche17, Polygon18, and more). At the time
of writing, we empirically found variations of four orders of
magnitude19. However, we remark that our implementation costs
align with ERC721 implementations20. For example, the
deployment fees of the Ethereum Name Service (ENS)21, a
non-fungible token in the neighboring area of personal
information indexing, amounts to 24 43 978 Gas units22. The
market scenario can support the structural expenses associated
with the proposed implementation and provides an incentive
system that allows users to earn money by sharing their data.
However, cost reduction practices are necessary to increase
usability. These include design improvements to the
implementation’s architecture as well as the adoption of side-
chains and layer-2 networks.

7 Conclusion

Since its inception, the web has evolved from a read-only
medium for information dissemination to a ubiquitous

information and communication platform that supports
interaction and collaboration globally. Although the web is by
design decentralized and thus is not controlled by any single
entity or organization, the web as we know it today is dominated
by a small number of centralized platforms. Consequently, the
decentralized web initiative aims to promote research into tools
and technologies that give data owners more control over their
data and enable smaller players to gain access to data, thus
enabling innovation.

In this paper, we focus specifically on resource governance in
a decentralized web setting. We extend the state of the art by
proposing a conceptual resource governance framework,
entitled ReGov, that facilitates usage control in a
decentralized setting, with a particular focus on policy
respecting resource utilization and resource indexing and
continuous monitoring. In order to demonstrate the potential
of our ReGov framework, we propose a concrete instantiation
that employs a trusted execution environment to cater for the
former, and blockchain technologies to facilitate the latter. The
effectiveness of the ReGov framework and our particular
instantiation is assessed via a detailed analysis of concrete
requirements derived from a data market motivating scenario
and an assessment of the security, privacy, and affordability
aspects of our proposal.

Future work includes extending our primitive rule syntax to
encompass more expressive usage control policies that are based on
standard policy languages. Additionally, we plan to explore
strategies for reducing the costs associated with the smart
contracts running in the blockchain ecosystem. Studying
incentivization mechanisms to encourage users to use the
platform and possibly gain rewards for sharing information also
paves the path for future endeavors.

The community-based categorization of applications interfaced
with ReGov is a challenging aspect, the solution to which potentially
involves the adoption of dedicated smart contracts for voting and
arbitrage mechanisms. Also, erroneous or malicious misuse of ReGov
such as the publication and disclosure of otherwise private information
is beyond the reach of ReGov and would entail ex-post patrolling of the
system. Studying these integrations with our framework is a task we
envision for future work.

Finally, we aim to conduct case studies with users to evaluate our
approach in real-world settings.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found below: https://github.com/ValerioGoretti/
UsageControl-DecentralTrading.

Author contributions

All authors contributed to the conception and design of the
framework. DB and VG implemented the working prototype, ran
tests, analyzed the experimental results, and wrote the first draft
of the manuscript. All authors contributed to the manuscript

16 https://ethereum.org/. Accessed: Friday 24th March 2023.

17 https://www.avax.com/. Accessed: Friday 24th March 2023.

18 https://polygon.technology/. Accessed: Friday 24th March 2023.

19 The amount of gas needed for the deployment of the DTindexing smart
contract, e.g., is 32 55000.Duringour experiments, theprice perGas unit in
the Ethereum public network amounted to 36.15 Gwei (one GWei is worth
10–9 ETH). The ETH/EUR exchange rate was 1/1590 EUR. The total gas cost
price was thus 187.09 EUR. Other EVM blockchains exhibited lower Gas
prices or exchange rates, decreasing the overall cost in fiat money.
Considering the Avalanche and Polygon platforms, their Gas price was
42.56 and 168.65 Gwei, respectively. The AVAX/EUR exchange rate was 1/
15.67, and the MATIC/EUR exchange rate was 1/1.19. As a result, the total
expenses amounted to 2.17 and 0.65 EUR, respectively. Data collected:
14 March 2023, 11:30 p.m. Our smart contract deployments can be
found on the Görli Ethereum test network at https://goerli.etherscan.io/
address/0xb0fe7d07947d9dd7cda47825e61ec14b98ef271a, on the Fuji
Avalanche test network at https://testnet.snowtrace.io/address/
0x0082698263ccc5765c97404af39023daefe20096, and on the Mumbai
Polygon test network at https://mumbai.polygonscan.com/address/
0x9ee2cb5ef7b1449d615d9fd0f9b167543e0d28eb.

20 https://eips.ethereum.org/EIPS/eip-721. Accessed: Friday 24th March 2023.

21 https://etherscan.io/token/0xc18360217d8f7ab5e7c516566761ea12ce7
f9d72. Accessed: Friday 24th March 2023.

22 https://etherscan.io/tx/0xff3ee18523c9ec20e62d31d3d3ce3e8bf25
f5ffcdfc4c32cd43ed0a786cc8640. Accessed: Friday 24th March 2023.

Frontiers in Blockchain frontiersin.org21

Basile et al. 10.3389/fbloc.2023.1141909

https://github.com/ValerioGoretti/UsageControl-DecentralTrading
https://github.com/ValerioGoretti/UsageControl-DecentralTrading
https://ethereum.org/
https://www.avax.com/
https://polygon.technology/
https://goerli.etherscan.io/address/0xb0fe7d07947d9dd7cda47825e61ec14b98ef271a
https://goerli.etherscan.io/address/0xb0fe7d07947d9dd7cda47825e61ec14b98ef271a
https://testnet.snowtrace.io/address/0x0082698263ccc5765c97404af39023daefe20096
https://testnet.snowtrace.io/address/0x0082698263ccc5765c97404af39023daefe20096
https://mumbai.polygonscan.com/address/0x9ee2cb5ef7b1449d615d9fd0f9b167543e0d28eb
https://mumbai.polygonscan.com/address/0x9ee2cb5ef7b1449d615d9fd0f9b167543e0d28eb
https://eips.ethereum.org/EIPS/eip-721
https://etherscan.io/token/0xc18360217d8f7ab5e7c516566761ea12ce7f9d72
https://etherscan.io/token/0xc18360217d8f7ab5e7c516566761ea12ce7f9d72
https://etherscan.io/tx/0xff3ee18523c9ec20e62d31d3d3ce3e8bf25f5ffcdfc4c32cd43ed0a786cc8640
https://etherscan.io/tx/0xff3ee18523c9ec20e62d31d3d3ce3e8bf25f5ffcdfc4c32cd43ed0a786cc8640
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1141909


writing, revision, and reading and approved the submitted
version.

Funding

The work of DB, CD, and VG was partially funded by the Italian
Ministry of University and Research under grant “Dipartimenti di
eccellenza 2018–2022” of the Department of Computer Science at
Sapienza, by the EU-NGEU NRRP MUR under grant PE00000014
(SERICS), by the Cyber 4.0 project BRIE, and by the Sapienza project
“Drones as a Service for First Emergency Response”. The work of SK
was funded by the FWF Austrian Science Fund and the Internet
Foundation Austria under the FWF Elise Richter and netidee
SCIENCE programmes as project number V 759-N.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Akaichi, I., and Kirrane, S. (2022a). A semantic policy language for usage control
SEMANTiCS (Posters and Demos) (CEUR-WS.org), 10:1–10:5.

Akaichi, I., and Kirrane, S. (2022b). Usage control specification, enforcement, and
robustness: A survey. arXiv preprint arXiv:2203.04800.

Al-Breiki, H., Rehman, M. H. U., Salah, K., and Svetinovic, D. (2020). Trustworthy
blockchain oracles: Review, comparison, and open research challenges. IEEE Access 8,
85675–85685. doi:10.1109/access.2020.2992698

Alabdulwahhab, F. A. (2018). “Web 3.0: The decentralized web blockchain
networks and protocol innovation,” in 2018 1st international conference on
computer applications and information security (ICCAIS), 1–4. doi:10.1109/
CAIS.2018.8441990

Ayoade, G., Karande, V., Khan, L., and Hamlen, K. (2018). “Decentralized IoT data
management using blockchain and trusted execution environment,” in 2018 IEEE
international conference on information reuse and integration (IRI), 15–22. doi:10.1109/
IRI.2018.00011

Bai, G., Yan, L., Gu, L., Guo, Y., and Chen, X. (2014). Context-aware usage control for
web of things. Secur. Commun. Netw. 7, 2696–2712. doi:10.1002/sec.424

Basile, D., Goretti, V., Di Ciccio, C., and Kirrane, S. (2021). “Enhancing blockchain-
based processes with decentralized oracles,” in BPM (blockchain and RPA forum),
102–118.

Becker, H., Vu, H., Katzenbach, A., Braun, C. H., and Käfer, T. (2021). “Monetising
resources on a solid pod using blockchain transactions,” in The semantic web: ESWC
2021 satellite events, 49–53. doi:10.1007/978-3-030-80418-3_9

Bonatti, P. A., Kirrane, S., Petrova, I. M., and Sauro, L. (2020). Machine
understandable policies and GDPR compliance checking. KI-Künstliche Intell. 34,
303–315. doi:10.1007/s13218-020-00677-4

Buterin, V., et al. (2014). A next-generation smart contract and decentralized
application platform. white Pap. 3, 2–1.

Cai, T., Yang, Z., Chen, W., Zheng, Z., and Yu, Y. (2020). A blockchain-assisted trust
access authentication system for solid. IEEE Access 8, 71605–71616. doi:10.1109/access.
2020.2987608

Carroll, E. L., McGowen, M. R., McCarthy, M. L., Marx, F. G., Aguilar, N., Dalebout,
M. L., et al. (2021). Speciation in the deep: Genomics and morphology reveal a new
species of beaked whale mesoplodon eueu. Proc. R. Soc. B 288, 20211213. doi:10.1098/
rspb.2021.1213

Costan, V., and Devadas, S. (2016). Intel sgx explained. Cryptology ePrint Archive.

Esteves, B., and Rodríguez-Doncel, V. (2022). Analysis of ontologies and policy
languages to represent information flows in GDPR. Semantic Web 1–35, 1–35. doi:10.
3233/sw-223009

Ferrag, M. A., and Shu, L. (2021). The performance evaluation of blockchain-based
security and privacy systems for the internet of things: A tutorial. IEEE Internet Things J.
8, 17236–17260. doi:10.1109/JIOT.2021.3078072

Grünbacher, A. (2003). “POSIX access control lists on linux,” in Proceedings of the
FREENIX track: 2003 USENIX annual technical conference, 259–272.

Havur, G., Vander Sande, M., and Kirrane, S. (2020). “Greater control and
transparency in personal data processing,” in International conference on
information systems security and privacy (ICSSP), 655–662. doi:10.5220/
0009143206550662

Hilty, M., Pretschner, A., Basin, D., Schaefer, C., and Walter, T. (2007). “A policy
language for distributed usage control,” in European symposium on research in computer
security (Springer), 531–546.

Jauernig, P., Sadeghi, A.-R., and Stapf, E. (2020). Trusted execution environments:
Properties, applications, and challenges. IEEE Secur. Priv. 18, 56–60. doi:10.1109/msec.
2019.2947124

Johnson, D., Menezes, A., and Vanstone, S. (2001). The elliptic curve digital signature
algorithm (ecdsa). Int. J. Inf. Secur. 1, 36–63. doi:10.1007/s102070100002

Khan, M. Y., Zuhairi, M. F., Syed, T. A., Alghamdi, T. G., and Marmolejo-Saucedo,
J. A. (2020). An extended access control model for permissioned blockchain
frameworks. Wirel. Netw. 26, 4943–4954. doi:10.1007/s11276-019-01968-x

Kirrane, S., and Di Ciccio, C. (2020). “BlockConfess: Towards an architecture for
blockchain constraints and forensics,” in AIChain@Blockchain (IEEE), 539–544. doi:10.
1109/Blockchain50366.2020.00078

Koshutanski, H., and Massacci, F. (2003). “An access control framework for business
processes for web services,” in Proceedings of the 2003 ACM workshop on XML security,
15–24.

Lazouski, A., Martinelli, F., and Mori, P. (2010). Usage control in computer security:
A survey. Comput. Sci. Rev. 4, 81–99. doi:10.1016/j.cosrev.2010.02.002

Liang, X., Shetty, S., Zhao, J., Bowden, D., Li, D., and Liu, J. (2017). “Towards
decentralized accountability and self-sovereignty in healthcare systems,” in
International conference on information and communications security (Springer),
387–398.

Lind, J., Eyal, I., Kelbert, F., Naor, O., Pietzuch, P., and Sirer, E. G. (2017). Teechain:
Scalable blockchain payments using trusted execution environments. arXiv preprint
arXiv:1707.05454.

Mammadzada, K., Iqbal, M., Milani, F., García-Bañuelos, L., and Matulevicius, R.
(2020). “Blockchain oracles: A framework for blockchain-based applications,” in BPM
(blockchain and RPA forum) (Springer), 19–34.

Marangone, E., Di Ciccio, C., and Weber, I. (2022). Fine-grained data access
control for collaborative process execution on blockchain. arXiv preprint arXiv:
2207.08484.

McGillion, B., Dettenborn, T., Nyman, T., and Asokan, N. (2015). “Open-tee–an open
virtual trusted execution environment,” in 2015 IEEE trustcom/BigDataSE/ISPA
(IEEE), 1, 400–407.

Mohanty, D. (2018). Ethereum for architects and developers. California: Apress Media
LLC, 14–15.

Mühlberger, R., Bachhofner, S., Ferrer, E. C., Di Ciccio, C., Weber, I., Wöhrer, M.,
et al. (2020). “Foundational oracle patterns: Connecting blockchain to the off-chain
world,” in BPM (blockchain and RPA forum) (Springer), 35–51.

Neisse, R., Pretschner, A., and Di Giacomo, V. (2011). “A trustworthy usage control
enforcement framework,” in 2011 sixth international conference on availability
(Reliability and Security), 230–235. doi:10.1109/ARES.2011.40

Ouaddah, A., Abou Elkalam, A., and Ait Ouahman, A. (2016). Fairaccess: A new
blockchain-based access control framework for the internet of things. Secur. Commun.
Netw. 9, 5943–5964. doi:10.1002/sec.1748

Pan, J., Paul, S., and Jain, R. (2011). A survey of the research on future internet
architectures. IEEE Commun. Mag. 49, 26–36. doi:10.1109/mcom.2011.5936152

Frontiers in Blockchain frontiersin.org22

Basile et al. 10.3389/fbloc.2023.1141909

https://doi.org/10.1109/access.2020.2992698
https://doi.org/10.1109/CAIS.2018.8441990
https://doi.org/10.1109/CAIS.2018.8441990
https://doi.org/10.1109/IRI.2018.00011
https://doi.org/10.1109/IRI.2018.00011
https://doi.org/10.1002/sec.424
https://doi.org/10.1007/978-3-030-80418-3_9
https://doi.org/10.1007/s13218-020-00677-4
https://doi.org/10.1109/access.2020.2987608
https://doi.org/10.1109/access.2020.2987608
https://doi.org/10.1098/rspb.2021.1213
https://doi.org/10.1098/rspb.2021.1213
https://doi.org/10.3233/sw-223009
https://doi.org/10.3233/sw-223009
https://doi.org/10.1109/JIOT.2021.3078072
https://doi.org/10.5220/0009143206550662
https://doi.org/10.5220/0009143206550662
https://doi.org/10.1109/msec.2019.2947124
https://doi.org/10.1109/msec.2019.2947124
https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/s11276-019-01968-x
https://doi.org/10.1109/Blockchain50366.2020.00078
https://doi.org/10.1109/Blockchain50366.2020.00078
https://doi.org/10.1016/j.cosrev.2010.02.002
https://doi.org/10.1109/ARES.2011.40
https://doi.org/10.1002/sec.1748
https://doi.org/10.1109/mcom.2011.5936152
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1141909


Park, J., and Sandhu, R. (2004). The uconabc usage control model. ACM Trans. Inf.
Syst. Secur. (TISSEC) 7, 128–174. doi:10.1145/984334.984339

Pasdar, A., Lee, Y. C., and Dong, Z. (2022). Connect API with blockchain: A survey on
blockchain oracle implementation. ACM Comput. Surv. 55, 1–39. doi:10.1145/3567582

Patel, S., Sahoo, A., Mohanta, B. K., Panda, S. S., and Jena, D. (2019). “Dauth: A
decentralized web authentication system using ethereum based blockchain,” in
2019 international conference on vision towards emerging trends in communication
and networking (ViTECoN) (IEEE), 1–5.

Quail, C., and Larabie, C. (2010). Net neutrality: Media discourses and public
perception. Glob. Media J. 3, 31.

Quintais, J. (2020). “The new copyright in the digital single market directive: A critical
look,” in European intellectual property review.

Ramachandran, M., Chowdhury, N., Third, A., Domingue, J., Quick, K., and Bachler,
M. (2020). “Towards complete decentralised verification of data with confidentiality:
Different ways to connect solid pods and blockchain,”In Companion proceedings of the
web conference 2020, 645–649.

Raman, A., Joglekar, S., Cristofaro, E. D., Sastry, N., and Tyson, G. (2019). “Challenges
in the decentralised web: The mastodon case,” in Proceedings of the internet
measurement conference, 217–229.

Rushby, J. M. (1981). Design and verification of secure systems. ACM SIGOPS Oper.
Syst. Rev. 15, 12–21. doi:10.1145/1067627.806586

Sabt, M., Achemlal, M., and Bouabdallah, A. (2015). “Trusted execution environment:
What it is, and what it is not,” in 2015 IEEE TrustCom/BigDataSE/ISPA, 57–64.

Sandhu, R. S., and Samarati, P. (1994). Access control: Principle and practice. IEEE
Commun. Mag. 32, 40–48. doi:10.1109/35.312842

Terry Bahill, A., and Henderson, S. J. (2005). Requirements development,
verification, and validation exhibited in famous failures. Syst. Eng. 8, 1–14.
doi:10.1002/sys.20017

Toninelli, A., Montanari, R., Kagal, L., and Lassila, O. (2006). “A semantic context-
aware access control framework for secure collaborations in pervasive computing
environments,” in International semantic web conference (Springer), 473–486.

Tran, H., Hitchens, M., Varadharajan, V., and Watters, P. (2005). “A trust based
access control framework for P2P file-sharing systems,” in Proceedings of the 38th
annual Hawaii international conference on system sciences (IEEE), 302c.

Xiao, Y., Zhang, N., Li, J., Lou, W., and Hou, Y. T. (2020). “Privacyguard: Enforcing
private data usage control with blockchain and attested off-chain contract execution,” in
Computer security – esorics 2020. Editors L. Chen, N. Li, K. Liang, and S. Schneider,
610–629.

Xu, X., Pautasso, C., Zhu, L., Gramoli, V., Ponomarev, A., Tran, A. B., et al. (2016).
“The blockchain as a software connector,” inWicsa (IEEE Computer Society), 182–191.

Xu, X., Weber, I., and Staples, M. (2019). Architecture for blockchain applications.
Springer.

Zhao, C., Saifuding, D., Tian, H., Zhang, Y., and Xing, C. (2016). “On the performance
of intel sgx,” in 2016 13Th web information systems and applications conference (WISA)
(IEEE), 184–187.

Zhaofeng, M., Lingyun, W., Xiaochang, W., Zhen, W., and Weizhe, Z. (2020).
Blockchain-enabled decentralized trust management and secure usage control of IoT
big data. IEEE Internet Things J. 7, 4000–4015. doi:10.1109/jiot.2019.2960526

Zheng,W., Wu, Y., Wu, X., Feng, C., Sui, Y., Luo, X., et al. (2021). A survey of intel sgx
and its applications. Front. Comput. Sci. 15, 153808–153815. doi:10.1007/s11704-019-
9096-y

Frontiers in Blockchain frontiersin.org23

Basile et al. 10.3389/fbloc.2023.1141909

https://doi.org/10.1145/984334.984339
https://doi.org/10.1145/3567582
https://doi.org/10.1145/1067627.806586
https://doi.org/10.1109/35.312842
https://doi.org/10.1002/sys.20017
https://doi.org/10.1109/jiot.2019.2960526
https://doi.org/10.1007/s11704-019-9096-y
https://doi.org/10.1007/s11704-019-9096-y
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1141909

	Blockchain based resource governance for decentralized web environments
	1 Introduction
	2 Background and related work
	2.1 Background
	2.1.1 Data access and usage control
	2.1.2 Trusted execution environments
	2.1.3 Decentralized applications and blockchain oracles

	2.2 Related work

	3 Motivating scenario and requirements
	3.1 Motivating scenario
	3.2 Requirements

	4 Conceptual resource governance framework
	4.1 ReGov framework entities
	4.1.1 Components of a node
	4.1.1.1 Data provision
	4.1.1.2 Data consumption
	4.1.1.3 Governance interface
	4.1.2 Components of the governance ecosystem
	4.1.2.1 Policy governance
	4.1.2.2 Resource indexing

	4.2 Predominant ReGov framework operations
	4.2.1 Data retrieval
	4.2.2 Monitoring


	5 Blockchain and trusted execution environment instantiation
	5.1 Usage policy instantiation
	5.1.1 Temporal rules
	5.1.2 Access counter rules
	5.1.3 Domain rules
	5.1.4 Geographical rules

	5.2 Personal online data stores for data provision
	5.2.1 Resource storage
	5.2.2 Web service

	5.3 Trusted execution environment for data consumption
	5.3.1 Data protection
	5.3.1.1 Protection of usage data
	5.3.1.2 Protection of log data
	5.3.2 Implementation of the enforcement mechanisms
	5.3.2.1 Receiving a request for access to a resource stored in the trusted application
	5.3.2.2 Retrieval of the requested resource and its usage policy
	5.3.2.3 Geographical rule enforcement
	5.3.2.4 Domain rule enforcement
	5.3.2.5 Access counter rule enforcement
	5.3.2.6 Temporal rule enforcement

	5.4 Blockchain as a governance ecosystem
	5.4.1 DTindexing smart contract
	5.4.2 DTobligations smart contract


	6 Evaluation
	6.1 Requirement verification
	6.1.1 (R1) Resource utilization and policy fulfillment must be managed by trusted entities
	6.1.2 (R2) policy compliance must be monitored via the entities of a governance ecosystem

	6.2 Architecture discussion
	6.2.1 Security
	6.2.2 Privacy
	6.2.3 Affordability


	7 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


