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Application of story-wise shear
building identification method to
actual ambient vibration
Kohei Fujita , Ayumi Ikeda and Izuru Takewaki *

Department of Architecture and Architectural Engineering, Kyoto University, Kyoto, Japan

A sophisticated and smart story stiffness system identification (SI) method for a shear
building model is applied to a full-scale building frame subjected to micro-tremors. The
advantageous and novel feature is that not only the modal parameters, such as nat-
ural frequencies and damping ratios but also the physical model parameters, such as
story stiffnesses and damping coefficients, can be identified using micro-tremors. While
the building responses to earthquake ground motions are necessary in the previous SI
method, it is shown in this paper that the micro-tremor measurements in a full-scale five-
story building frame can be used for identification within the same framework. The SI using
micro-tremor measurements leads to the enhanced usability of the previously proposed
story-wise shear building identification method. The degree of auto-regressive eXoge-
nous models and the cut-off frequencies of band-pass filter are determined to derive
reliable results.

Keywords: system identification, ambient vibration, stiffness evaluation, identification function, multiple objective
genetic algorithm

Introduction

Much research interest has been directed recently to system identification (SI) of civil, mechanical,
and aerospace structures in response to the increasing need of enhancement of safety and upgrade of
ability of damage detection (or damage diagnosis) of various kinds of structures (Hart and Yao, 1977;
Beck and Jennings, 1980; Hoshiya and Saito, 1984; Kozin andNatke, 1986; Agbabian et al., 1991; Koh
et al., 1991; Ghanem and Shinozuka, 1995; Hjelmstad et al., 1995; Shinozuka and Ghanem, 1995;
Doebling et al., 1996; Hjelmstad, 1996; Masri et al., 1996; Housner et al., 1997; Kobori et al., 1998;
Johnson and Smyth, 2006; Nagarajaiah and Basu, 2009; Fujino et al., 2010; Ji et al., 2011). Such need
results from the accelerated demand of rapid assessment on material aging issues and of continu-
ing use of buildings after earthquakes. The Building Continuity Plan (BCP) and resilience-oriented
design framework also supports the increasing need of advancement of structural health monitoring
technologies. It is also well-recognized that SI plays an important and principal role in reducing gaps
between the constructed structural systems and their structural design models (model refinement).

Basically, two kinds of branches of the SI technique are known. One is called themodal parameter
SI, which is well-established, and another is called the physical parameter SI. The modal parameter
SI is well-established and various types of research have been conducted and accumulated so far [for
example, see Hart and Yao (1977) and Beck and Jennings (1980)]. Since the modal parameters are
global parameters and stable in principle, many useful techniques have been proposed. In the modal
parameter SI, for evaluating the natural frequency and damping ratio, the observations at two places
at least (usually the base and the top) are necessary. Furthermore, for evaluating modal shape iden-
tification, the simultaneous observations (or interpolation from fewer observations) at many places
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are usually required that is often a cumbersome task in the modal
parameter SI method. When the observations at all the floors of
a building are possible, all story stiffnesses of the shear build-
ing model with known floor masses may be identified within an
acceptable accuracy (Hjelmstad et al., 1995).

In contrast to such modal parameter SI, the physical parameter
SI has been developed for direct identification of physical param-
eters (stiffness and damping coefficients). For example, Takewaki
and Nakamura (2000; 2005) introduced a method based on the
work by Udwadia et al. (1978). In that method, a shear build-
ing model is used and stiffness and damping coefficients of a
specific story are identified directly from the floor accelerations
just above and below the specific story. However, the method
by Takewaki and Nakamura (2000; 2005) has a difficulty result-
ing from the small signal/noise (SN) ratio in the low frequency
range and cannot be applied to ambient vibration data, e.g., micro-
tremors, and to high-rise buildings with large height-to-width
aspect ratios. The former problem has been a major and most dif-
ficult problem in the field of SI and the latter problem has been
tackled by Minami et al. (2013) and Fujita et al. (2013) by using a
shear-bending model.

Hernandez-Garcia et al. (2010a;b) have developed an interest-
ing method of damage detection using a floor-by-floor approach
to enhance the efficiency and accuracy of the identification results.
Xing and Mita (2012) have devised a time-domain substructure
damage identification method for shear buildings by focusing on
a substructure consisting of one story. Zhang and Johnson (2013)
have developed another substructure identification method for
shear buildings, which considers the noise effect of recorded data
on identification accuracy and utilizes an iterative inductive pro-
cedure from the top story. Furthermore, a combined method of
the modal parameter SI and the physical parameter SI is also well
used (for example, Shinozuka and Ghanem, 1995; Barroso and
Rodriguez, 2004). After modal parameters are identified, physical
parameters are determined by solving inverse problems in which
the existence and uniqueness of solutions are principal prob-
lems. Takewaki and Nakamura (2009) have developed a method
for identifying the temporal variation of modal properties of a
base-isolated building during an earthquake by using the relation
between auto-regressive eXogenous (ARX)model parameters and
modal parameters.

The difficulty arising in the limit manipulation in the method
by Takewaki and Nakamura (2000; 2005) has been overcome
by introducing an ARX model in the previous paper (Maeda
et al., 2011). The weakness of a small signal-to-noise (SN) ratio
in the low frequency range in the method (Takewaki and Naka-
mura, 2000; 2005) has been avoided by using the ARX model
and introducing new constraints on theARXparameters. Another
difficulty due to small vibration levels of micro-tremor has been
tackled by introducing a combination of the ARXmodel, filtering
in the frequency domain (low and high-cut filter), and averag-
ing in the time domain (sequential time-window shift for Fourier
transformation and averaging). In this paper, for obtaining reli-
able and stable identification of story stiffnesses, a practical proce-
dure to decide the combination of the degree of ARX models and
cut-off frequencies of filtering is investigated by applying a multi-
objective optimization algorithm. It is shown that the previously

proposed story-wise stiffness identification method is applica-
ble in the new approaches to actual recorded data of an ambient
vibration level with the help of this sophisticated combination.

System Identification Method for Physical
Parameters of Shear Building Model

Governing Equations of Shear Building Model
Consider an N-story shear building model with viscous damping
as shown inFigure 1. Letmj and kj denote themass of the j-th floor
and the story stiffness of the j-th story and let cj be the viscous
damping coefficient of the j-th story. Since the formulation in the
frequency domain is appropriate in the present formulation, all
the governing equations are expressed in the frequency domain.
Let “i” denote the imaginary unit.

Keeping the relations U̇(ω) = iωU(ω), Ü(ω)=−ω2U(ω) in
mind, the equations of motion in the frequency domain for this
shear building model subjected to the horizontal ground acceler-
ation üg is expressed as:

(−ω2M+ iωC+ K)U(ω) = −M1Üg(ω) (1)

whereU(ω) andÜg(ω) are the Fourier transforms of the horizontal
displacements u(t)= {uj(t)} of floors relative to ground and the
ground base acceleration üg, respectively. The vector 1 in the right-
hand side of Eq. (1) denotes 1= {1, 1, . . ., 1}T. The mass, stiffness,
and damping matrices of shear building model are defined by:

M = diag (m1, m2, · · · , mN) , (2a)

K =


k1 + k2 −k2
−k2 k2 + k3 −k3

. . .
−kN kN

 , (2b)

C =


c1 + c2 −c2
−c2 c2 + c3 −c3

. . .
−cN cN

 (2c)

FIGURE 1 | N-story shear building model with viscous damping.
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The transfer function T(ω) can be defined from Eq. (1) as the
ratio of the horizontal displacement to the ground acceleration.

T(ω) ≡ U(ω)/Üg(ω) = −A(ω)−1M1 (3)

where A(ω) =−ω2M+ iωC+K.

Sub-system Identification Based on Identification
Function
Based on the mathematical formulation for the SI of the physi-
cal parameters (Takewaki and Nakamura, 2000), the story stiff-
ness and damping coefficient can be expressed by using the limit
manipulation of the identification function fj(ω) for ω→ 0. The
story stiffness and damping coefficient are derived as:

kj = lim
ω→0

(
Mj × Re

[
−ω2 (Üg + Üj)

(Üg + Üj−1)− (Üg + Üj)

])
(4)

cj = lim
ω→0

(
Mj ×

d
dω

{
Im

[
−ω2 (Üg + Üj)

(Üg + Üj−1)− (Üg + Üj)

]})
(5)

whereMj =
∑N

i=j mi. Referring Takewaki and Nakamura (2000),
the identification function can be defined by:

fj (ω) ≡ −ω2Mj
Üg + Üj

Üj−1 − Üj
(6)

In Eqs (4–6), Ü0 = 0. From Eqs (4) and (5), it is concluded that
the story stiffness and damping coefficient can be derived only
from the accelerations just above and below floors of the object
story in the previously proposed identificationmethod (Takewaki
and Nakamura, 2000).

Identification of Stiffness and Damping
Coefficient using ARX Model

Taylor Series Expansion of Transfer Function
using ARX Parameters
In the previous SI method (Takewaki and Nakamura, 2000; 2005)
for shear building models as formulated in Eqs (4) and (5), the
limit manipulation of the identification function fj(ω) for ω→ 0
was needed. However, when the identification functions are eval-
uated from the raw data such as actual vibration testing data, it
is often the case that the identification functions become unsta-
ble and exhibits a large variability in the low frequency range. To
overcome this difficulty, an ARX model is introduced, which is
a time-domain model. The reliability of the ARX model in this
direction has been confirmed and the applicability of the ARX
model to shear building models and shear-bending models has
been demonstrated in Maeda et al. (2011) and Minami et al.
(2013).

The identification function fj(ω) defined by Eq. (6) can be
rewritten by introducing the transfer function Gj ,j−1(ω) between
j-th and (j− 1)-th floors as

fj (ω) = −
ω2Mj
1

Gj,j−1(ω)
− 1

(7)

where Gj ,j−1(ω)≡ (Üg +Üj)/(Üg +Üj−1). The reason of the
unstable phenomenon of the identification function in the low
frequency range can be understood from Eq. (7). From the
theoretical investigation, the limit value of the transfer func-
tion Gj ,j−1(ω) at ω= 0 should be Gj ,j−1(0)= 1, because the
j-th floor and (j− 1)-th floor move identically at ω→ 0. There-
fore, the limit value of the denominator of the identification
function 1/Gj ,j− 1(ω)− 1 for ω→ 0 is zero. Furthermore, the
limit value of the numerator of the identification function
ω2Mj for ω→ 0 is also zero. For these reasons, the limit value
of the identification function fj(ω) for ω→ 0 is theoretically
indefinite.

By using ARX parameters, the transfer function can also be
expressed as (see Appendix)

Gj,j−1(ω) =
b1e−iωT0 + · · ·+ bne−inωT0

1+ a1e−iωT0 + · · ·+ ane−inωT0
(8)

For evaluation of the limit value of the transfer function
Gj ,j− 1(ω) for ω→ 0, the formulation of the Taylor series expan-
sion of the transfer function Gj ,j−1(ω) is meaningful. The Taylor
series expansion of the transfer function Gj ,j− 1(ω) in terms of
ARX parameters can be defined as

Gj,j−1(ω) ≃ A0 + A1ω + A2ω
2 + · · · (9)

Considering the relationship of ARX parameters in Eq. (8) and
the coefficients of the Taylor series expansion in Eq. (9), the coeffi-
cients A0, A1, A2 of the Taylor series expansion can be formulated
in terms of the ARX parameters {ak}, {bk} as follows.

A0 = bsum/(1+ asum) (10)

A1 = iT0

(1+ asum)
∑n−1

k=1 (n− k)bk
−bsum

{
n+

∑n−1
k=1 (n− k)ak

}
(1+ asum)2

(11)

A2 = −T0
2

2

[∑n−1
k=1 (n− k)2bk
1+ asum

−
bsum

{
n2 +

∑n−1
k=1 (n− k)2ak

}
(1+ asum)2

−
2
∑n−1

k=1 (n− k)bk
{
n+

∑n−1
k=1 (n− k)ak

}
(1+ asum)2

+
2bsum

{
n+

∑n−1
k=1 (n− k)ak

}2

(1+ asum)3

 (12)

where asum ≡
∑n

k=1 ak, bsum ≡
∑n

k=1 bk.
By introducing the real and imaginary parts of Aj as Aj =

AR
j + iAI

j and substituting the properties of the real and imag-
inary parts of Aj into Eqs (10–12), the transfer function can be
reduced to:

Gj,j−1(ω) ≃
(
AR
0 + AR

2ω
2 + · · ·

)
+ i

(
AI
1ω + AI

3ω
3 + · · ·

)
(13)
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Constraints on ARX Parameters Derived from the
Limit Value of Taylor Series Expansion of Transfer
Function
Asmentioned in the previous section, it is meaningful to note that
Eqs (14a,b) can be derived from the mechanical interpretation,
i.e., the j-th floor and ( j− 1)-th floor move identically at ω→ 0
and Gj ,j− 1(ω) should not include linear terms of ω judging from
Eqs (4–6).

lim
ω→0

Re
{
Gj,j−1(ω)

}
= 1, (14a)

lim
ω→0

d
dω Im

{
Gj,j−1(ω)

}
= 0 (14b)

From Eqs (13) and (14a, b), AR
0 = 1,AI

1 = 0. Furthermore, by
substituting these equations into Eqs (10) and (11), the following
equations can be derived.∑n

k=1
ak + 1 =

∑n

k=1
bk (15)

∑n−1

k=1
(n− k)bk = n+

∑n−1

k=1
(n− k)ak (16)

For enhancing the reliability of the proposed SI method, these
relations will be used as the constraints in the estimation of the
ARX parameters. It is found that Eq. (15) is a linear equation for
the ARX parameters. A batch processing least-squares estimation
method (see Appendix) (Adachi, 2009) provides:

Rθ = f (17)

R, θ, and f are defined in Appendix.
By applying the Lagrange multiplier method, the linear con-

straint can be incorporated into the batch processing least-squares
estimation method as pTθ=−1 where p= {1, . . ., 1, −1, . . .,
−1}T. Therefore, the present method is reduced to the problem
for solving the following equations.[

R p

pT 0

]{
θ

λ

}
=

{
f
−1

}
(18)

Objective Functions for Determination of
Order of ARX Model

It is important to investigate how to determine the order of the
ARX model. Let us introduce the following objective function in
the time domain as the ensemble average of amplitude vector in
time domain.

Ft =
∑Nt

i=1
ft(ti)/Nt (19)

where ft(ti) is defined by using an estimated time history uARX
from ARX parameters and raw measurement data uraw as:

ft (ti) =
(
uARX (ti)− uraw (ti)

σraw
× uraw (ti)− ūraw

σraw

)2
(20)

In Eq. (20), σraw is the SD of uraw, and uraw is the mean value
of the time history. The first term [uARX(ti)− uraw(ti)]/σraw of the

FIGURE 2 | Five-story steel building.

FIGURE 3 | Installation of velocity meter.

objective function in time domain indicates the accuracy of uARX
comparedwith uraw. The second term [uraw(ti)− ūraw]/σraw can be
regarded as the weighting function for the amplitude level of the
time history, i.e., the influence of data on the objective function
is small when uraw(ti)≈ ūraw ≈ 0. When the estimated time his-
tory uARX, which can be computed from the ARX parameters as
uARX = θTφ(k), matches with the measured data in an acceptable
accuracy, the objective function Eq. (19) is close to 0.

On the other hand, let us introduce another objective function
in the frequency domain.

Fω =
∑NN

i=1
(|GARX (i)| − |Graw (i)|)2/

∑NN

i=1
|Graw (i)|2 (21)

where Graw denotes the transfer function computed from the
records after appropriate post-data processing, e.g., filtering and
ensemble averaging, and GARX is the transfer function evaluated
by the ARXmodel. Note that ω1 =ωl and ωNN =ωu, where ωl and
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FIGURE 4 | Frame dimension and its shear building model.

ωu are the lower and upper cut-off frequencies in the band-pass
filter. It can be said that, if the objective function in the frequency
domain is close to 0, the function in terms of the ARX model
matches well with the record.

Application: Ambient Vibration Data in
Steel Structure

Ambient Vibration Measurement in Five-Story
Steel Frame Structure
Actual micro-tremor observations were conducted in an exper-
imental real-size building at the Uji campus, Disaster Prevention
Research Institute of Kyoto University, Japan. An overview photo-
graph of the building is shown in Figure 2. The servo-type velocity
meters (VSE-15D; Tokyo Sokushin) were installed in several sto-
ries. The velocity resolution of this velocity meter is 10−4 mm/s.
Figure 3 shows a photo of an installed velocity meter. The frame
dimension and its shear building model are shown in Figure 4.
The locations of velocity meters for three patterns of identifica-
tion are presented in Table 1. In all measurement patterns, the
velocity meters are fixed at the basement and roof floor so as
to obtain the transfer function of the objective frame structure.
Pattern A is aimed at identifying the story stiffnesses of the first
and second stories and pattern B the fourth and fifth stories. On
the other hand, pattern C is set for identifying the third story.
The ambient measurements data were recorded in the long-span
direction and short-span direction, respectively. The floor

TABLE 1 | Location of velocity meter and measurement pattern for stiffness
identification.

Pattern A;
Object:

1st and 2nd story

Pattern B;
Object:

4th and 5th story

Pattern C;
Object:
3rd story

Roof Located Located Located
5th story – Located –
4th story – Located Located
3rd story Located – Located
2nd story Located – –
1st story Located Located Located

masses are estimated as m1 = 28.7× 103 kg, m2 = 28.2× 103 kg,
m3 =m4 = 27.6× 103 kg, and m5 = 26.6× 103 kg by preliminary
investigation.

Ambient Data Measurement
Figure 5 shows some examples of recorded ambient data at the
base, 3rd floor, 4th floor, and roof in the short-span direction in
Pattern C. Durations of the measurement time were 5 and 10min.
Figure 6 presents the transfer function of the roof velocity to the
base for each pattern of the short-span direction measurements.
In Figure 6, the transfer functions evaluated by raw data, i.e., no
post-processing, are compared with those after smoothing and fil-
tering. From these preliminary analyses of steel structure, natural
frequencies can be estimated as shown in Table 2.
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FIGURE 5 | Examples of recorded data (ground level, 3rd floor, 4th floor, and roof).

Optimal Combination of Order of ARX
Model and Filtering Parameters

Determination of Identification Parameters by
Iterative Manipulation
As seen in Figure 6, the transfer functions evaluated by raw data
exhibit large variability in the low frequency range. For this reason,
it is difficult to obtain the limit value of the identification func-
tion directly from the raw data. It is well known that the order of
ARX models is important to obtain reliable identification results.
Furthermore, it is also observed that the band-pass filter as post-
data processing stabilizes the variability of the ARX modeling.
Taking these unknown parameters for the structural identifica-
tion into account, it is needed to investigate the influence of the
combination of these unknown parameters on the stability of the
identification results.

One of the solutions to this problem, i.e., the identifica-
tion method combining the previous method (Hernandez-Garcia
et al., 2010b; Xing and Mita, 2012) with the band-pass filtering
and the ARX modeling is presented here. Figure 7 shows the
outline of the identification procedure including the band-pass fil-
tering and the ARX modeling. In the flowchart (Figure 7), three
procedures are needed; Procedure 1 is for determination of the
order of the ARX model, which was derived by the parametri-
cal analysis to minimize objective functions defined by Eqs (19)
and (21); procedure 2 is for determination of the lower cut-off fre-
quency; and procedure 3 is for that of the upper cut-off frequency.

Finally, the story stiffnesses are evaluated from the limit value
of the identification function in Eq. (4) by selecting unknown
identification parameters. If the stability of the limit value is not
acceptable, it is needed to select the order of ARX models again
in procedure 1. Figure 8 presents examples of SI by using the
measured ambient data of the real structure. The red lines, which
can be derived by iterative manipulations, are the finally selected
identification parameters for the order of the ARX model and
cut-off frequencies. However, as seen in Figure 8, the objective
functions in terms of these identification parameters vary dras-
tically. Therefore, these procedures of iterative flows to deter-
mine several identification parameters may depend on the knowl-
edge of structural engineers so as to derive reliable identification
results.

Determination of Identification Parameters by
Multi-Objective Optimization
It is important to select an appropriate combination of identifica-
tion parameters for reliable identification of the story stiffnesses.
In this section, this combination will be derived by applying a
multi-objective optimization solver based on genetic algorithm.
The design parameters for optimization are the order of the ARX
model, lower and upper bounds of cut-off frequency. The objec-
tive functions are given by Eqs (18) and (20). In the application to
themeasured ambient data as shown in the following section, four
velocity sensors are used simultaneously, which means that the
transfer functions and identification functions can be evaluated
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FIGURE 6 | Transfer function of short-span (A) Pattern A, (B) Pattern B,
and (C) Pattern C.

TABLE 2 | Estimated natural frequencies in short-span direction from
transfer function (roof/base).

1st 2nd 3rd 4th 5th

2.42Hz 7.46Hz 12.10Hz 13.84Hz 18.10Hz

at three different consecutive stories. For the application to this
experimental data, the number of the objective functions in
the multi-objective optimization algorithm is six, i.e., the error
rate in time domain and frequency domain at three consecutive
stories.

The multi-objective optimization algorithm (MOGA-II)
implemented in modeFRONTIER 4.5 (ESTECO) is used to inves-
tigate the optimal combination of the identification parameters.
Initial design parameters are provided by the uniform random
number method. Figure 9 describes the multi-dimensional
analysis in the post-data processing for all individuals in the
multi-objective optimization (the number of designs is 8000).
The points connected by lines represent a generated design and
the corresponding error rates of objective functions. From this
figure, an excellent combination of the identification parameters
can be derived by determining an allowable range of objective
functions. Figure 9 shows two results (top and bottom illustra-
tions) for different allowable ranges of the objective functions. In
the bottom illustration, the error rate in time domain is widen,
which causes the wide variability of design parameters. As for
the order of ARX models, two different ranges of ARX order can

be seen as 26–36 and 58–60 by widening the error rate in time
domain. From this multi-dimensional analysis, the evaluation
of the objective functions influences the decision making on the
identification parameters. Figure 10 shows the comparison of
the transfer function (roof/base) obtained from raw data with
the transfer functions derived by the optimal combination of the
order of ARX models and the cut-off frequencies in the multi-
objective optimization (nine combinations are selected here).
In Figure 10, no difference can be seen in these combinations,
which demonstrates the reliability of the evaluation of error rate
in the multi-objective optimization procedure.

Stability of Stiffness Identification by Limit Value
of Identification Function
By applying the multi-objective optimization algorithm, sev-
eral designs of the combination of identification parameters are
obtained, which can make the objective functions in time and
frequency-domain minimized in an acceptable manner. In this
section, stability of the story stiffnesses is investigated by applying
the SI method to the various (and optimized) identification func-
tions derived by the multi-objective optimization. As explained
before, the present SI method needs the evaluation of the limit
value of identification functions. In the previously proposed SI
method in the same framework, this limit value was just deter-
mined by selecting the raw value of the identification function
at ω≈ 0 (called Method 1). In this sense, Method 1 is a simple
and primitive one. Figure 11 shows the cumulative frequency of
the identified story stiffness ki (i= 1, 2, . . ., 5) for various combi-
nations derived from the multi-dimensional analysis in Figure 9
where the number of optimal designs is about 150. It can be
observed that identified story stiffnesses by Method 1 have large
variability although the selected combination groups of the iden-
tification functions are similar. This means instability of the story
stiffness identification.

For enhancing the stability of story stiffness identification,
other approaches to limit value evaluation are proposed as:

Method 2: Using gradient sensitivity of identification function.

Method 3: Using model pole derived by ARX model.

A conceptual illustration of these methods for limit value eval-
uation is shown in Figure 12. InMethod 2, the gradient sensitivity
of the identification function is evaluated successively in the fre-
quency domain. The limit of the identification function is deter-
mined by evaluating themean value of the identification functions
in a stable range where the gradient of the identification function
is sufficiently small (see Figure12: Method 2). While, in Method
3, a raw value of the identification function at a particular fre-
quency determined by the frequency for the model pole of ARX
model is used as the limit value of the identification function.
The particular frequency point is given by assuming an appro-
priate constant value, e.g., 0.5, as the ratio to the model pole
frequency (see Figure12: Method 3). Let us see Figure 11 again
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FIGURE 7 | Flowchart of system identification.

FIGURE 8 | Determination of order of ARX model and cut-off frequencies.

FIGURE 9 | Multi-dimensional analysis for optimal combination of identification parameters.
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where the cumulative frequency of story stiffnesses is evaluated
by the proposed methods. The variability of the identified story
stiffnesses can be evaluated from the comparison of the gradient
in the cumulative frequency shown in Figure 11. As for the first,
second, and third stories, identified story stiffnesses have smaller
variability compared with those byMethod 1. However, improve-
ment of stability for the fourth and fifth story stiffnesses cannot

FIGURE 10 | Comparison of transfer functions (raw data VS ARX
model).

FIGURE 11 | Cumulative frequency of identified story stiffnesses.

FIGURE 12 | Limit value evaluation for identification functions derived by ARX model.

be observed even in applying Method 2 and 3. This means that it
is difficult to determine story stiffnesses in these cases. This in-
stability needs further investigation on the relationship between
the objective functions, Eqs (19) and (21), and the identification

TABLE 3 | Identified story stiffness.

×104 kN/m 1st
story

2nd
story

3rd
story

4th
story

5th
story

Frame analysis 10.82 9.83 9.56 9.23 8.49
Method 1 9.10 9.13 8.13 6.25 6.48
Methods 2, 3 9.05 8.56 6.83 4.86 4.76

TABLE 4 | Natural frequencies of identified shear model.

Hz 1st
mode

2nd
mode

3rd
mode

4th
mode

5th
mode

Reference (Table 2) 2.42 7.46 12.1 13.8 18.1
Method 1 2.47 6.77 11.0 13.7 16.6
Method 2, 3 2.37 6.20 9.91 12.4 15.5
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function derived by theARXmodel.Tables 3 and 4 summarize the
identified story stiffnesses and natural frequencies obtained by the
shear model using the identified story stiffnesses. The identified
story stiffnesses derived byMethod 2, 3 in Table 3 are determined
by the mean values of the selected optimal designs in Figure 11.
In Table 3, a frame analysis was conducted by using a frame
model including measured section size of columns and beams.
It should be mentioned that the boundary condition of the nu-
merical frame analysis may not correspond to the real structure.
It is difficult to define “reference stiffness values” because a real
building structure cannot be expressed by a shear building model
exactly.

Conclusion

A previously proposed story-wise stiffness identification method
using an ARX model for a shear building structure has been
applied to the case where the shear building is subjected to
micro-tremors measured in a full-scale steel frame structure.
While earthquake ground motions and the building responses
to such inputs are necessary in the previous method, it has
been shown that micro-tremors can be used for identifica-
tion within the same framework. This enhanced the usabil-
ity of the previously proposed identification method. The
difficulty in the selection of the combination of identification
parameters, i.e., the order of the ARX model and the cut-
off frequencies of band-pass filtering, has been tackled by a

multi-objective optimization algorithm. Advantageous features
are as follows:

(1) Micro-tremors can be used as an input for the previously pro-
posed SI method for shear building models regardless of its
small vibration level.

(2) In order to investigate identification parameters for reliable
identification based on the ambient vibration, the objective
functions in time and frequency domains have been proposed
by applying filtering in the frequency range (low and high
cuts) and averaging in time domain (sequential time-window
shift for Fourier transformation and averaging).

(3) Stability in the story stiffness evaluation for optimal com-
binations of identification parameters derived by the multi-
objective optimization has been compared among various
limit-value estimation approaches. It has been observed that
the limit value by selecting the raw value of the identifica-
tion function atω≈ 0 is not necessarily appropriate. Proposed
approaches such as using gradient sensitivity of the identifi-
cation function or the model pole of the ARX model make it
stable to derive story stiffnesses.
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Appendix: ARX model

Let k denote a discrete time step number (Adachi, 2009). When
the output, the input, and white noise are denoted by y(·), u(·),
and w(·), the ARX model is described by:

y(k) + a1y(k− 1) + · · ·+ anay(k− na) = b1u(k− 1) + · · ·
+ bnbu(k− nb) + w(k) (A1)

The transfer function can be expressed in terms of the shift
operator q.

G(q) = B(q)/A(q) (A2)

where

A(q) = 1+ a1q−1 + · · ·+ anaq−na , (A3)

B(q) = b1q−1 + · · ·+ bnbq−nb (A4)

The relation between the Z transformation and the Fourier
transformation is given by Eq. (A5) and the transfer function in
terms of the variable q in Eq. (A2) can be expressed as the trans-
fer function in terms of the variable ω (circular frequency). In Eq.
(A5), T0 denotes the sampling period.

q = eiωT0 (A5)

G(ω) = b1e−iωT0 + · · ·+ bne−inωT0

1+ a1e−iωT0 + · · ·+ ane−inωT0
(A6)

Define the parameter vector θ and the data vector φ(k) by Eqs
(A7) and (A8), respectively. The prediction of the output at time k
from the input–output data until the time number (k− 1) can be
expressed by Eq. (A9).

θ = {a1 · · · ana b1 · · · bnb}
T (A7)

φ(k) = {−y(k− 1) · · · −y(k− na)
T

u(k− 1) · · · u(k− nb)} (A8)

ŷ(k;θ) = θTφ(k) (A9)

Using Eq. (A9), the prediction error in the ARX model can be
described by:

ε(k,θ) = y(k)− ŷ(k;θ) = y(k)− θTφ(k) (A10)

Introduce the objective function by Eq. (A11) for predicting the
parameter vector θ. Then the least-squares method can be applied
to the parameter prediction problem.

JN(θ) =
1
Nd

Nd∑
k=1

ε2(k;θ) (A11)

In this case, the prediction problem of θ can be reduced to the
following simultaneous equations.

Rθ = f (A12)

where

R =
1
Nd

ΦΦT
(
Φ =

[
φ(1) φ(2) · · · φ(Nd)

]T) (A13)

f = 1
Nd

ΦTy
(
y = {y(1) y(2) · · · y(Nd)}

T
)

(A14)

The least-square estimation of the unknown parameters based
on the Nd-pair input–output measured data may then be
expressed by:

θ̂ = R−1f (A15)
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