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Seismic behavior and design of
wall–EDD–frame systems
Oren Lavan* and David Abecassis

Faculty of Civil and Environmental Engineering, Technion – Israel Institute of Technology, Haifa, Israel

Walls and frames have different deflection lines and, depending on the seismic mass
they support, may often possess different natural periods. In many cases, wall–frame
structures present an advantageous behavior. In these structures, the walls and the
frames are rigidly connected. Nevertheless, if the walls and the frames were not rigidly
connected, an opportunity for an efficient passive control strategy would arise: connecting
the two systems by energy dissipation devices (EDDs) to result in wall–EDD–frame
systems. This, depending on the parameters of the system, is expected to lead to
an efficient energy dissipation mechanism. This paper studies the seismic behavior of
wall–EDD–frame systems in the context of retrofitting existing frame structures. The
controlling non-dimensional parameters of such systems are first identified. This is
followed by a rigorous and extensive parametric study that reveals the pros and cons
of the new system versus wall–frame systems. The effects of the controlling parameters
on the behavior of the new system are analyzed and discussed. Finally, tools are given
for initial design of such retrofitting schemes. These enable both choosing the most
appropriate retrofitting alternative and selecting initial values for its parameters.

Keywords: seismic retrofitting, energy dissipation devices, passive control, viscous dampers, wall–frame systems

Introduction

Many of the relatively new buildings located in seismic regions were designed according to stringent
seismic codes. These are expected to perform relatively well in seismic events. Contrariwise, many
older existing buildings have known deficiencies. These buildings are still expected to be a part of the
landscape formany years to come. Seismic retrofitting of such buildingsmay reduce their probability
of collapse as well as the level of damage expected to them in seismic events. This, in turn, may
shorten the time required to bring them to normal functionality (Nakashima et al., 2014).

A very efficient and promising approach for seismic retrofitting and damage control makes use
of energy dissipation devices (EDDs) [see, e.g., Soong and Dargush (1997), Christopoulos and
Filiatrault (2006), and Takewaki (2009)]. Out of those, fluid viscous dampers (FVDs) have been
shown to effectively reduce both displacement and force related seismic responses of structures
(Constantinou and Symans, 1992; Lavan and Dargush, 2009; Lavan, 2012). Hence, the use of FVDs
seems natural for seismic retrofitting where both displacements and forces due to earthquakes are
to be decreased. Indeed, optimal design of such dampers for the purpose of seismic retrofitting of
frame structures received much attention (Zhang and Soong, 1992; Gluck et al., 1996; Takewaki,
1997; Singh andMoreschi, 2001; Lopez-Garcia and Soong, 2002; Dargush and Sant, 2005; Lavan and
Levy, 2005, 2006, 2009, 2010; Aydin et al., 2007; Lavan et al., 2008; Lavan andDargush, 2009; Adachi
et al., 2013; Aguirre et al., 2013; Kanno, 2013; Martínez et al., 2013; Sonmez et al., 2013; Gidaris
and Taflanidis, 2014; Hatzigeorgiou and Pnevmatikos, 2014; Lavan and Amir, 2014; Lin et al., 2014;
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Lavan, 2015). To allow a quick examination of whether such
devices are a good alternative, simple methodologies for initial
design were proposed as well (FEMA 356, 2000; Palermo et al.,
2013; Landi et al., 2014; Rama Raju et al., 2014). Uncertainty in
structural and/or ground motion parameters was also evaluated
(Lavan and Avishur, 2013; Peng et al., 2014; Tubaldi et al., 2015)
or taken into account as part of the design process (Gidaris and
Taflanidis, 2014).

When seismic retrofitting of frame structures is the sole con-
cern, the abovementioned research presents a wide arsenal of
design tools in the hands of the engineer. Nevertheless, in Israel,
seismic retrofitting of old buildings is usually done in parallel
to adding shelter rooms to protect the tenants from potential
threats from various weapons. These shelter rooms are made
of reinforced concrete and their in-plan location in the various
stories is consistent so as to form reinforced concrete cores. These
new cores are rigidly connected to the existing floors, thus, they
supply a new lateral load resisting system (see Figure 1A). This
considerably reduces the displacements of the existing structure,
hence the internal forces in some existing structural elements.
However, the high stiffness of the cores results in a relatively
short natural period. Thus, for most ground motion records, i.e.,
relatively short predominant period ones, much larger seismic
inertia forces are attracted. These forces that act on, and are
transferred by the existing slabs, are potentially larger than they
can take. Furthermore, the path that the inertia forces take from
the mass to the new lateral load resisting system is different from
before. As the new cores are located at the edges of the building,
the path now is much longer. Thus, the slabs need to transfer
loads between points that are at a large distance, i.e., the distance
between the center of mass and the lateral load resisting elements.
This may require strengthening of the existing slabs, which is
not practical. In addition, a major portion of the large inertia
forces is to be transferred through the connections between the
new cores and the existing slabs. As the existing slabs are usually
thin and their concrete quality is relatively low, these connections
may be problematic. Furthermore, very large horizontal forces

are to be carried by the new core system. This may result in
large base moments. These grow considerably with the number
of stories. As the new cores support gravity loads due to their self-
weight only, large moments may lead to considerable tension in
their foundations. Depending on the soil type, this may lead to
additional considerable expenses. Similarly, the combination of
large moments and small compression forces in the cores leads to
larger reinforcement ratios. Finally, when it comes to important
buildings that are expected to function after the earthquake, the
large accelerations expected due to the considerable increase in
stiffness is also an issue due to the potential damage they could
induce.

The new cores, as they are rigidly connected to the existing
building, considerably increase the inertia forces. Nevertheless,
if they were not rigidly connected, their natural period would
have been much different from that of the existing building.
Furthermore, their deflection line would have been different
in nature from that of the frames: the deflection lines of wall
structures possess larger drifts at the top stories while those
of frame structures possess larger drifts at the bottom stories.
This opens an opportunity for an efficient passive control strat-
egy. If the two systems are not rigidly connected (e.g., by using
seismic gaps), the relative displacements and velocities between
them are expected to be large. Thus, connecting the two systems
by EDDs to result in wall–EDD–frame systems (see Figure 1B
and the detailed description in Section “Structural Systems”) is
expected to lead to an efficient energy dissipation mechanism.
This, of course, depends on the parameters of the system (wall
and frame stiffnesses; height, distribution of mass between the
two systems, etc.) as well as on the parameters of the EDDs
used (damping coefficients and stiffness). While the motivation
for research on this system stems from the particular environ-
ment in Israel, the wall–EDD–frame system and the research
presented herein are fully applicable in other cases. It should
be noted that a related system, where the walls were assumed
infinitely rigid, was proposed and studied by Trombetti and Sil-
vestri (2004, 2006) and Silvestri and Trombetti (2007). They noted

A B

FIGURE 1 | Schematic of rehabilitation system: (A) wall–frame; (B) wall–EDD–frame.
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that, in their system, a mass-proportional added damping matrix
is attained for the frame. This is in contrast to the stiffness-
proportional added damping matrix attained when dampers are
assigned within the frame stories. They further emphasized the
superiority of mass-proportional damping. Another related sys-
tem was presented byMurase et al. (2013). In this novel structural
system, a base isolated frame structure was connected with oil
dampers to a free wall. Through frequency domain and time
domain analyses, they demonstrated the effectiveness of this
structural system for both pulse-type and long period ground
motions.

The idea of connecting adjacent structures by controllers to
reduce their responses is not new [seeCimellaro andLopez-Garcia
(2011), and references therein]. In the context of using FVDs
or viscoelastic dampers (VEDs), Aida et al. (2001) proposed an
approximate analysis model for two buildings connected by a
VED. The MDOF model of each building was replaced by its first
mode representation, thus, resulting in a 2-DOF model for the
analysis. They further indicated that VEDs are only efficient if
the buildings connected are of different natural periods. In that
context, optimum viscous damping values were proposed for a
damper connecting two SDOF systems excited by either harmonic
or white-noise ground motions (Bhaskararao and Jangid, 2007).
Closed-form equations for the frequency response characteristics
of two SDOF systems connected by a spring and a dashpot in
parallel where derived as well (Richardson et al., 2013). A 2-
DOF reduced model was also used by Huang and Zhu (2013)
to investigate the optimal design of VEDs connecting adjacent
frame buildings. They further proposed a design method for the
optimal locations and sizes of the dampers. Sun et al. (2014)
derived expressions for stochastic characteristics and responses
of a twin-tower structure linked by a sky-bridge. They assumed a
white-noise input and a simplified 3-DOFmodel (oneDOF for the
mass of the bridge). Subsequently, they investigated the optimal
parameters of the connections.

In other research works, a full MDOF system was considered.
Enrique Luco and De Barros (1998) investigated the optimal
viscous damping connecting two adjacent shear beams of different
heights. For that purpose, they derived the continuous equations
(in space) assuming uniformly distributed parameters for each of
the beams. The optimal parameters of the dampers were found
based on frequency response parameters of the taller structure.
Zhang and Xu (1999) adopted the complex modal superposition
method using a random seismic input. They further identified the
optimal parameters ofVEDs connecting adjacent frame structures
using a parametric study. In another work, they proposed an anal-
ysis procedure for adjacent frame structures connected by VEDs
while considering a Maxwell model to represent the dampers
(Zhang and Xu, 2000). A parametric study on six story frame
buildings connected by FVDs was presented by Trombetti and
Silvestri (2007). They highlighted the superiority of this arrange-
ment of dampers that leads tomass-proportional damping over an
inter-story placing of viscous dampers. A very unique approach
was taken by Takewaki (2007). He developed a frequency domain
method to evaluate the input seismic energy to a system of two
frames connected by viscous dampers. This enabled him to come
to a very strong conclusion that the input energy to the system

considered is insensitive to the quantity of the dampers and their
locations. Thus, the larger the energy absorbed by the dampers,
the smaller the energy input to the frames themselves. Patel and
Jangid (2010) investigated several damping distributions between
two similar frames. They found that viscous dampers are very
efficient in such structures and that there is an optimum damping
value to minimize the structural responses. Similar observations
had been presented by Kim et al. (2006). Cimellaro and Lopez-
Garcia (2011) applied, for the design of damping between adjacent
buildings, an algorithm thatwas originally proposed for the design
of dampers in frame structures (Gluck et al., 1996) aswell as for the
damping and weakening of frame structures (Lavan et al., 2008).
Recently, Tubaldi (2015) derived the non-dimensional continuous
equations of two shear frames of different heights connected by
a VED at the top of the shorter frame. Those were then ana-
lytically analyzed to lead to the natural periods and modes. An
approximate reduced order model and closed-form solutions for
the modal parameters were then proposed and compared to the
analytical results with good agreement. Another recent research
presented by Bigdeli et al. (2015) proposed a bi-level optimization
approach for the optimal design of dampers connecting two frame
structures. In the first level of optimization, the combinatorial
problem of damper placement was solved, while in the second
level the continuous design of each damper was handled.

Most of the abovementioned works investigated the response
of either SDOF representations of two buildings connected by a
single VED or two MDOF frames connected by several VEDs.
A main conclusion was that in these cases dampers are expected
to efficiently reduce the responses only if the periods of the two
SDOF systems, or the two frames, are sufficiently different. It
is argued here that if two buildings having different lateral load
resisting systems (i.e., frames and walls) are coupled by dampers,
a reduction of the responses is expected even if the periods of
the buildings are similar. This is due to the differences in their
deflection shapes.

Research on frames connected to infinitely rigid walls by
dampers has been presented in the literature. Trombetti and
Silvestri (2004, 2006) identified the superior effect of mass-
proportional damping over stiffness-proportional damping in
frame structures. They further proposed various approaches for
achieving such damping characteristics by using FVDs. One of the
approaches connected horizontal dampers from the floors of the
frame to an infinitely rigid wall.

As can be seen, the efficiency of connecting two systems with
different periods by means of EDDs has been highlighted many
times. This has been investigated using either SDOF representa-
tions of two buildings connected by a single VED, two MDOF
frames connected by several VEDs or anMDOF frame connected
to a rigid wall by several FVDs. The behavior of frame–EDD–wall
systems, however, has not been examined while considering the
flexibility of the wall. Furthermore, no tools for initial design of
such systems are available.

It is the aim of this paper to gain some insight to the seismic
behavior of wall–EDD–frame systems as part of retrofitting exist-
ing frame structures. This was done by means of a rigorous para-
metric study. The controlling parameters of such systems were
first identified, and their effect on various responses of interest
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was assessed. Furthermore, the results presented could be used for
initial design of such systems in two levels. At the first level, the
engineer could assess the feasibility of such a strategy for a given
building and its pros and cons compared to rigidly connecting the
newwalls to the existing building. At the second level, based on the
graphs presented herein, the engineer could choose appropriate
values for the initial design of the controlling parameters.

Structural Systems Considered and
Modeling Assumptions

Structural Systems
The focus of this paper is the behavior and design of
wall–EDD–frame systems as part of retrofitting existing
frame structures. Such a system is presented in Figure 1B. The
system consists of a frame and a wall that are connected by
viscous dampers and springs. The seismic mass per floor taken
by the frame is Mf, equal for all floors, and the story stiffness of
the frame is Ks (shear force required to result in a unit inter-story
drift). The seismic mass per floor taken by the wall is Mw and
the bending stiffness of the wall is EI. The damping coefficient
of each viscous damper is Cd while the stiffness of each spring is
Kd. The total height of the N story building is H with a typical
story height of h=H/N. For the sake of comparison, a similar
system where the frame and the wall are rigidly connected is also
considered. This system is presented in Figure 1A. In the models
described above a few assumptions are embedded. Those are:

• A plane model is considered, indicating that the parametric
study results are applicable to structures where the torsional
response is limited.

• A fixed base is assumed for both frame and walls.
• Auniform distribution of structural and damping properties

was assumed along the height.While thismaynot necessarily
be the case, inmany cases, the use of some average properties
may still lead to very good approximations.

• The frame is assumed to behave like a shear beam while the
wall is assumed to behave like a flexural beam. That is, in
the frame, axial deformations of the columns are neglected
while, in the wall, shear deformations are neglected.

• The inherent damping of the frame is considered by a
Rayleigh damping matrix constructed for the bare frame
with 5% damping in the first and third modes. A similar
procedure is used to consider the inherent damping of the
wall.

• It is assumed that the behavior of the system could be
approximated by use of linear analysis. That is, either the
behavior of the system is actually linear, or a linear analysis
leads to a good approximation of the displacement related
responses. This assumption holds reasonably well for regular
structures with either a medium to long period or with low-
ductility demands. It should be noted that, when viscous
dampers are utilized, the behavior of the system is indeed
expected to be linear or close to that. Thus, the ductility
demands are expected to be low. Furthermore, in such cases,
the fundamental period of the system is similar to that of the
bare frame, which is usually long enough.

FIGURE 2 | Psuedo-acceleration response spectrum adopted in the
study.

Seismic Environment
The seismic environment, in this study, is represented using a
typical 5% damping pseudo-acceleration response-spectrum. It is
assumed that the periods of the systems considered are within the
period range of the constant acceleration and constant velocity
regions of the spectrum (see, e.g., Figure 2). Thus, two parameters
are controlling the shape of the spectrum. In this study, the elastic
5% damping spectral acceleration at some given period (with
no behavior factor), Sa(T′), and the corner period, between the
constant acceleration and the constant velocity regions, Tc, are
adopted. The period at which Sa(T′) is evaluated will be chosen
in the next sections.

Responses of Interest
In this paper, the frame is assumed to be the lateral load resisting
system of the existing old building as well as its gravity carrying
system. Thus, the maximum peak inter-story drift angle of all
stories of the frame, IDf, is of much importance. Here, the inter-
story drift angle is the horizontal displacement of the story ceiling
relative to the story floor normalized by the story height. Based
on this parameter, one could assess if yielding occurs and to what
extent. Inter-story drifts also indicate the extent of damage to some
non-structural components (e.g., partition walls). Furthermore,
the maximum peak elastic shear in the frame could be computed
by GA·IDf where GA is the smeared frame stiffness as will be
explained in section “Controlling Parameters”. Another important
response related to the frame is its base over-turning moment,
OTMf, that affects the axial forces in its columns and its foun-
dations. Recently, focus was also drawn to the level of absolute
accelerations. These are especially important in cases where the
structure is expected to remain operational after the seismic event.
Asmost of the important functions in the considered buildings are
expected to be supported by the frame, the maximum peak frame
absolute acceleration, Af, is considered as a response of interest.

The walls are the new lateral load resisting system. In general,
no partition walls or gravity frames are rigidly connected to these
walls; hence, their inter-story drifts are of no particular impor-
tance. The design of thesewalls and the design of their foundations
are dictated by the wall base shear, BSw, and base moment,OTMw.
Thus, these are the responses of interest related to the walls.

Finally, the responses of interest related to the connection
between the frame and the wall, and to the EDDs are identified.
Viscous dampers and springs are designed and sized based on
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the peak force they are expected to experience, Fd. Furthermore,
this force is to be locally taken by the existing slabs at the region
of the connection. Thus, the connection force serves as the first
response of interest related to the connection. To avoid pounding
between the frame and the wall, it is important to insert seismic
gaps. Furthermore, another design parameter of EDDs is the
stroke they are expected to experience. Thus, the second response
parameter related to the EDDs is the maximum peak relative
displacement between the frame and the wall, or the damper
elongation/contraction, Dd.

The Parametric Study Design

Controlling Parameters
In view of the previous section, the parameters controlling the
behavior of the problem are Mf, KS, Mw, EI, H, h, Cd, Kd, Sa(T′),
and Tc. For the sake of generality, “smeared” properties per unit
height will be used as parameters rather than discrete properties.
It is assumed that two systems with similar smeared properties
but with different numbers of stories will have similar smeared
responses. The error associated with this approximation is also
assessed later on in Section “Analysis Approach.” The use of
smeared properties to transfer fromdiscretemodels to continuous
ones is not new and has even been used in the seismic analysis of
structures with EDDs (Lavan, 2012; Tubaldi, 2015). It is known
to lead to very good approximations with accuracy growing with
the number of stories. The shear stiffness of the frame is therefore
GA=Ks·h. The seismic mass per unit height taken by the frame
is mf =Mf/h while that taken by the wall is mw =Mw/h. The
damping coefficient of the EDDs and their stiffness per unit height
are cd =Cd/h and kd =Kd/h, respectively. This reduces the group
of controlling parameters to the following nine parameters: mf,
GA, mw, EI, H, cd, kd, Sa(T′), and Tc. The responses of interest
are, as before: IDf, OTMf, Af, BSw, OTMw, Fd, and Dd.

Most of the responses of interest are either smeared measures
to begin with (e.g., IDf), or local responses at a specific point (e.g.,
OTMf,Af,BSw,OTMw, andDd). The only response of interest to be
smeared is therefore the damping force that is taken as fd = Fd/h.

Physical Considerations in the Reduction of the
Number of Controlling Parameters
Conducting a parametric study with as many as nine controlling
parameters is not realistic. Although with today’s computation
capabilities it may be computationally feasible, it may not easily
enable gaining insight. A clear way for presenting the study results

is also infeasible. To enable a more computationally efficient
study, that would allow a clear presentation of the results, and
enable gaining insight, advantage is taken of the physics of the
problem. In this section, Sa(T′) and Tc will be eliminated from
the parametric study as follows.

The problem at hand is a linear problem. It is well known that in
such problems there is a linear relation between themagnitudes of
the input loading and the magnitudes of the responses. That is, if
the input spectrum ismultiplied by a given factor, the responses of
interest will change by the same factor. Thus, modified responses
of interest will be adopted as the original responses of interest,
normalized by Sa(T′). With this set of parameters adopted, the
value of Sa(T′) has no effect on the parametric study results.
Hence, it is eliminated.

In general, the effect of Tc on the responses of interest is a
result of its effect on the spectral accelerations of the higher
modes. The contribution of these modes to some responses of
interest (e.g., base moment and shear) may be significant when
the natural period is relatively large. There are two specific cases,
however, where the actual value of Tc is insignificant. The first is
when the periods of all relevant modes of the retrofitted system
fall within the constant acceleration region. This is illustrated
in Figure 3A. The second is when the periods of all relevant
modes fall within the constant velocity region (Figure 3B). Thus,
this study is partitioned to these two cases. In the first case, a
constant acceleration spectrum is assumed and the value of Sa(T′)
by which the responses are normalized is taken as the spectral
acceleration at the fundamental period of the retrofitted system,
i.e., the wall–EDD–frame system. If indeed, the periods of all
relevant modes of the retrofitted system fall within the constant
acceleration region, then Sa(T′)= Sc. If the spectral acceleration at
the fundamental period of the bare frame falls within the constant
acceleration region, than the normalization could be done based
on that value, which is also equal to Sc. In the second case, a
constant velocity spectrum is assumed and the value of Sa(T′) is
taken as the spectral acceleration at the fundamental period of the
bare frame, Sa(T1).

Characteristic values for Tc in Israel usually range from 0.2 s to
about 0.8 s in extreme cases. Most of the structures retrofitted are
four stories and more, while two additional stories could be built
and sold to fund the retrofitting expenses. Thus, the structures
analyzed are usually six stories and more. Frame structures of that
height, in old buildings that were not seismically designed, usually
possess fundamental periods of about 1.2–1.8 s. Thus, although
in many cases, most relevant modes will fall within the constant

A B C

FIGURE 3 | Location of the first natural periods in the response spectrum: (A) all in the CA region, (B) all in the CV region, and (C) some in the CV
region while others in the CA region.
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velocity region, it is not uncommon to find cases where periods of
some relevant modes fall within the constant velocity region while
those of other modes fall within the constant acceleration region.
In such cases, the responses of interest attained assuming that
the periods of all relevant modes fall within the constant velocity
region will serve as upper bounds. This is because the spectral
accelerations of the higher modes, computed based on a constant
velocity spectrum, are higher than the actual ones (Figure 3C).
Similarly, the responses of interest attained assuming that the
periods of all relevant modes fall within the constant acceleration
region will serve as lower bounds. This is because the spectral
accelerations of the higher modes, computed based on a constant
acceleration spectrum, are lower than the actual ones (Figure 3C).
Note that, in this case, Sa(T′) is taken as the spectral acceleration at
the fundamental period of the retrofitted system, that is different
from Sc. It should be noted that, for the frame, responses the upper
bound and lower bound were found to be very close. That is, the
frame responses are not considerably affected by higher modes
contributions. However, if viscous dampers alone are used as
connections, the upper bound and lower bound for wall responses
were not as close. Nonetheless, the values of these responses, as
will be shown later on, weremuch smaller than those attainedwith
a rigid connection. Thus, for the sake of comparing alternatives,
and for initial design, this approach leads to reasonable results.

Dimensional Analysis
Taking advantage of the physics of the problem reduced the
number of controlling parameters from nine to seven. While this
presents a significant simplification of the problem, a parametric
study with seven controlling parameters is still complex to man-
age, present, and analyze. A further reduction of the number of
controlling parameters is thus desired. This is done by means of
dimensional analysis [see, e.g., Barenblatt (2003)]. The origins
of dimensional analysis are probably motivated by experimental
research where the number of required experiments may be dras-
tically decreased. The use of such tools in numerical parametric
studies has also been taken advantage of [e.g., Makris and Black
(2004a,b) and Lavan (2012)]. Here, the π theorem is adopted.

The first stage of the π theorem is choosing the repeating
variables. As the problem at hand involves three independent
dimensions, e.g., length, mass, and time, the number of repeating
variables may be up to three. Those are chosen as mf, GA, and
H. This choice is made for several reasons: for one, it is con-
venient that all non-dimensional parameters and responses are
normalized by known parameters. As in the retrofitting problem
stated above the frame parameters are given, this seems a natural
choice. This will later allow a simple comparison between various
retrofitting alternatives as it could be directly done based on the
non-dimensional parameters and responses (assuming that the
periods of all relevant modes of all retrofitting alternatives fall
within one region of the spectrum). Note also that this choice
will lead, later on, to some non-dimensional parameters that are
well known from the behavior of wall-frame systems in static
loadings. This is important as some engineers already developed
some intuition to the order of magnitude of reasonable values of
such parameters for given cases. Furthermore, with this choice, a
clear rational could be used to determine the range of values for

the non-dimensional controlling parameters. This may prevent
the parametric study, and the conclusions drawn from that, from
considering cases that are not practical.

With mf, GA, and H as the repeating variables, using dimen-
sional analysis theory, the following non-dimensional controlling
parameters are attained:

πm =
mw
mf

πs =

√
GA
EI H πc =

cd ·H√
mf · GA · π2

πk =
kd ·H2

GA
(1)

The first of these parameters is the ratio of wall mass to frame
mass. The second is the relative frame stiffness to wall stiff-
ness. This is very well known as α·H in wall–frame systems in
static loads (Stafford Smith and Coull, 1991). Finally, the third
and fourth parameters represent the relative EDD damping and
stiffness, respectively.

From the dimensional analysis, the non-dimensional responses
of interest are attained as well. Those are

πIDf =
IDf · GA

Sa(T ′) ·mf ·H
πOTMw =

OTMw
Sa(T ′) ·mf ·H2

πOTMf =
OTMf

Sa(T ′) ·mf ·H2 πBSw =
BSw

Sa(T ′) ·mf ·H

πAf =
Af

Sa(T ′)
πfd =

fd
Sa(T ′) ·mf

πDd =
Dd · GA

Sa(T ′) ·mf ·H2

πT = T ·

√
GA

mf ·H2 πξ = ξ (2)

Range of Values for the Controlling Parameters
The application considered herein focuses on an existing frame
structure retrofitted with new walls and dampers. These walls
would usually carry their self-weight only. Thus, practically, the
seismic mass to be carried by the frame is larger than that taken
by the wall. The range of values for the seismic mass carried by
the wall to that carried by the frame is thus taken as πm = mw

mf
:

1
10 ,

1
4 ,

1
2 .

In general, the range of values for the parameter α·H extends
from 0, when the wall is infinitely stiff compared to the frame, to
infinity, when the frame is infinitely stiff compared to the wall. For
the application considered herein, the practical range of values is
closer to the first case. This is both because the existing frames
are usually flexible and because the considered buildings are low
to medium-rise. Thus, values of πs =

√
GA
EI H : 1

10 ,
1
2 , 1 were

considered. It is important to emphasize that values smaller than
0.1 were also analyzed and led to responses practically identical to
those attained with 0.1.

Theoretically, the range of values for the damping coefficient of
the dampers extends from 0 to infinity. Although the damping is
very well utilized in the considered structural system, it is unlikely
that practical use will be made of damping that would lead to very
large damping ratios in the first modes, or even over-damped first
modes. Thus, a preliminary studywas conducted to tune the upper
bound for the non-dimensional parameter to try to avoid such
excessive damping as much as possible. The values of πc: 0, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 were therefore adopted.
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The range of values for the stiffness of the dampers can also,
theoretically, span from 0 to infinity. The latter represents a rigid
connection between the frame and the wall. As both 0 and a
relatively stiff damper are practical, the values for this parameter
were chosen so as to lead to a good distribution in terms of the
responses of interest. These are πk: 0, 4.8, 13.6, 8× 108.

Analysis Approach
As indicated earlier, a discretized model is used for the analysis.
The number of stories in this model was taken as 6, as this
is believed to be the most common number of stories in such
systems in Israel. Estimation of the potential errors in adopting the
“smeared“ properties and responses attained with a 6 story model,
for structures with a different number of stories, was then carried
out. This was done via analyses of models with different number
of stories ranging from 4 to 50. Those showed errors of ±3% in
most responses of interest. In some extreme cases, a few responses
were off by−8% to+10%.

The equations of motion of the discretized model subjected to
an input ground motion are given as follows:

Mẍ(t) + Cẋ(t) + Kx(t) = f(t) (3)

whereM, C, and K are the mass, damping, and stiffness matrices,
respectively; x(t) is the vector of coordinate displacements; an
overdot represents a derivative with respect to time, t; and f(t)
is a vector of loads. It should be emphasized that the considered
systems include mechanical dampers. In general, and in the cases
considered here, in particular, such systems may not qualify the
Caughey criterion (Caughey and O’Kelly, 1965). Thus, for the
purpose of analyzing such systems while modeling the seismic
hazard via a response spectrum, use is made of a complex modal
spectral analysis. Out of the procedures available for complex
modal spectral analysis [e.g., Singh (1980), Takewaki (2004), and
Song et al. (2008)], the one proposed by Song et al. (2008) was
adopted and programed inMatlab. Using this approach, the equa-
tions are first brought to their following state-space form [see, e.g.,
Soong (1990)]:

Aẏ(t) + By(t) = fS(t) (4)

Here,

A =

[
0 M
M C

]
; B =

[
−M 0
0 K

]
; fS(t) =

{
0
f(t)

}
;

y(t) =
{
ẋ(t)
x(t)

}
(5)

Solving the eigenvalue problem corresponding to the homo-
geneous counterpart of Eq. 4 leads to the eigenvalues, λi, in the
complex numbers domain fromwhich the natural frequencies and
damping ratios could be evaluated as follows:

ωi = |λi| ; ξi =
real(λi)

ωi
(6)

where |·| and real(·) represent the absolute and the real part of
a complex number, respectively. For each complex eigenvalue,
a corresponding complex eigenvector (mode shape) could be

computed. From the complex eigenvalues and mode shapes, the
following contribution of the complex mode i and its conjugate to
a response of interest could be assessed:

(ω2
i A2

0i + B2
0i) |qi(t)|2max (7)

where A0i and B0i are computed based on the eigenvalue and
mode shape i and its conjugate, and

∣∣qi(t)∣∣max
is the spectral dis-

placement corresponding to the natural period and the damping
ratio of these modes. Similarly, if real (overdamped) modes are
attained, the contribution of the overdamped mode i could be
assessed as follows:

(AP
0i)

2
∣∣∣qPi (t)∣∣∣2

max
(8)

where AP
0i is computed based on the eigenvalue and mode shape

i, and
∣∣qPi (t)∣∣max

is the spectral displacement corresponding to
the natural period of that mode. Finally, the contributions of
the various modes could be combined using various combination
rules. One of those rules, which was adopted here, is the GCQC
(Song et al., 2008).

Equations 7 and 8 require the spectral displacements of under-
damped and overdamped SDOF systems, respectively. Those of
the underdamped systems were evaluated by modifying the 5%
damping spectral accelerations using the following factor:

Rξ =

√
0.1

0.05+ ξ
(9)

where ξ is the damping ratio as a value (not in percent). This factor
is given in Eurocode 8 (CEN-Comité Européen de Normalisation,
2003) with a lower bound of 0.55. This factor, without the lower
bound, was compared with the results presented by Ramirez et al.
(2001) up to 99.99% damping with good agreement. Thus, it was
adopted as is, with no lower bound. The spectral displacements of
the overdamped modes, where applicable, were evaluated using
the approach presented by Song et al. (2008).

In order to verify the validity of the analysis approach and the
Matlab code, a comparison of the responses attained using this
code with those attained using time history analyses was made
with good agreement. In this comparison, the displacements of
the SDOF systems representing the modes were evaluated using
time history analyses.

Once a verification of the analysis engine was made, a com-
prehensive parametric study that includes the range of param-
eters indicated in Section “Range of Values for the Controlling
Parameters” was carried out. The results of the parametric study,
that present the attained non-dimensional responses of interest
as a function of the non-dimensional controlling parameters, are
presented in section “Parametric study results and discussion”.

Retrieving the Dimensional Responses of Interest
The non-dimensional responses are assessed in this study as part
of the parametric study. The parametric study results are pre-
sented in section “Parametric study results and discussion”. Once
a solution for the non-dimensional system is at hand, with known
non-dimensional responses of interest (the π values in Eq. 2), the
dimensional responses of interest are retrieved using Eq. 2.
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A B

FIGURE 4 | General preview of a typical response presentation: (A) the
matrix of graphs, (B) a cell in the matrix representing given wall and
frame.

Parametric Study Results and Discussion

Presentation of the Parametric Study Results
Although great effortsweremade to reduce the number of control-
ling parameters, their number amounts to four, for each region of
the spectrum. Thus, the results are presented in separate graphs
for each region of the spectrum. In addition, each response of
interest is presented in a dedicatedmatrix of graphs. In thismatrix,
each column has a different value of πs while each row has a
different πm. This is depicted in Figure 4A. Furthermore, in each
“cell” of this matrix lines are plotted to present the response of
interest as a function of πc. Each of these lines is plotted for
a different value of πk. This is depicted in Figure 4B. These
represent connections by viscous dampers (continuous blue); a
flexible spring (πk = 4.8) and a viscous damper (dashed green); a
stiffer spring (πk = 13.6) and a viscous damper (dash-dotted red),
and; a stiff connection (dotted black). Some results of the para-
metric study will be now presented and discussed. Results related
to other responses of interest could be found in Supplementary
Material.

Natural Periods
The non-dimensional fundamental period of the system is pre-
sented in Figure 5. As can be seen, a connection with viscous
dampers only retains the fundamental period of the frame (esti-
mated using πc = 0). In some systems having values of πs = 1 a
large damping leads to an increase in the fundamental period. In
these cases, the first mode was found to be overdamped. When
either springs are added, or rigid connections are used, the natural
period decreases drastically. This may have a huge effect on the
forces attracted by the system, as will be discussed later on.

Responses of Interest Related to the Frame
The first frame response of interest is its inter-story drift. This is
presented in Figures 6A,B for the constant velocity and constant
acceleration regions, respectively. As can be seen, a rigid connec-
tion between the frame and the wall, results in small inter-story
drifts in the frame. This is more pronounced for small πs values,
which indicate a large stiffness of the wall. This is because a rigid
connection leads to the same displacements in the frame and the
wall. When the connection is made with viscous damping only,

small inter-story drifts can also be attainedwith a sufficiently large
damping coefficient, especially in the constant velocity region.
These drifts may be much smaller than those experienced by
the bare frame (when a 0 value of the viscous damper is used).
When the wall is not “infinitely” rigid, the drifts of the damped
frame can sometimes be even as small as the ones attained with
a rigid connection. With the decrease in wall stiffness, this is
attained with a smaller amount of damping. When, in addition
to damping, stiffness is added to the connection, the frame inter-
story drift reduces considerably. This is true even if the amount
of stiffness is relatively small. Another point that is worth noting
is that, when a non-rigid connection is used, this response seems
relatively insensitive to πm and πs. This is important in case there
is some uncertainty with respect to structural properties. It should
be noted that, while this discussion focused on the frame inter-
story drift, similar trends were observed in some other frame
responses (e.g., base shear, top displacement, and over-turning
moment).

Another response of interest of the frame is its absolute acceler-
ation. This is presented in Figures 7A,B for the constant velocity
and acceleration regions, respectively. As can be seen, a rigid
connection between the frame and the wall, results in extremely
large absolute accelerations in the frame, especially in the constant
velocity region. This is attributed to the fact that, with a rigid
connection the floormass is directly connected to the walls, which
are relatively rigid. Thus, the periods of the modes that contribute
to the frame displacements become very short, indicating large
accelerations.When the connection ismadewith viscous damping
only, the smallest absolute acceleration is usually attained. When,
in addition to damping, stiffness is added to the connection, the
absolute acceleration tends to somewhat increase.

Large absolute accelerations indicate damage to some non-
structural components. This may be very important in structures
that are expected to remain operational after the earthquake. Nev-
ertheless, this is not their only importance. Absolute accelerations
also indicate the level of inertia forces acting on the mass. These
forces are to be transmitted from their point of action, through the
existing slabs of the frame, to the lateral load resisting systems.
These slabs are usually thin, and may sometimes be rib slabs. In
addition, due to their year of construction, they sometimes are
made of concrete of low quality. Thus, their ability to transfer these
forces is limited, and is usually known with a large uncertainty. In
addition, as new lateral load resisting systems exist, the path of
the inertia forces may change considerably and be much different
from the original one.

Responses of Interest Related to the Connection
The most important connection response of interest is the maxi-
mum peak connection force. It is strongly related to the feasibility
of the retrofitting approach. While new dampers or connection
elements can be designed to take these forces, they are con-
nected to existing elements that are of limited given capacity. The
maximum peak connection force is presented in Figure 8.

As can be seen, in the case of a rigid connection, the connection
force is extremely large, much larger than any other alternative.
This is more pronounced in the constant velocity region. When
the connection is made with viscous damping only, the smallest
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FIGURE 5 | Natural period of the coupled system.

connection force is usually attained. When, in addition to damp-
ing, stiffness is added to the connection, the connection force
increases. This increase is more pronounced with a small damp-
ing. For larger values of damping, the increase of connection force
due to the addition of some stiffness is much less pronounced, and
sometimes even a decrease is attained.

As indicated in the Section “Introduction,” large forces in the
connecting elements are locally transmitted through the existing
slabs of the building. These are limited in their given capacity.
Furthermore, the large forces in the connections indicate that a
large portion of the inertia forces acting on the slabs is trans-
mitted to the new lateral load resisting system. As the path that
these forces take from their point of action to the connections
is much different from their original path to the old lateral load
resisting system (frames), the slabs may not be able to withstand
these forces. This is especially true if their magnitude is large.
Thus, this response may lead to infeasibility of using a given
connection type.

Responses of Interest Related to the Wall
The wall response of interest is the peak base over-turning
moment (Figure 9). As can be seen, in the case of a rigid con-
nection, the wall moment is larger than any other alternative. As
in other responses, this is more pronounced in the constant veloc-
ity region. When the connection is made with viscous damping
only, the smallest moment is usually attained. When, in addition
to damping, stiffness is added to the connection, the moment
increases. This increase is more pronounced with a small damp-
ing. For larger values of damping, the increase of moment due to
the addition of some stiffness is less pronounced, and sometimes
even a decrease is attained. It should be noted that, while this

discussion focused on the wall base moment, similar trends were
observed in some other wall responses (e.g., base shear).

As indicated in the Section “Introduction,” large over-turning
moments in the wall, with the small gravity forces acting on them,
may lead to large tension in their foundations. Depending on the
soil type, this may lead to very large foundations. In turn, this may
lead to high retrofitting costs andmay sometimes fail a retrofitting
project. This becomes more and more of an issue with a growing
number of stories.

Summary of the Parametric Study
In view of the results presented above, frame inter-story drifts are
the smallest when a rigid connection is used. Connections with
viscous dampers and springs could also considerably reduce the
drifts with respect to the bare frame, in some cases, even to the
same levels as those attained with a rigid connection. When it
comes to other responses such as frame absolute accelerations,
connection force, and wall responses, a connection with dampers
is much superior. Thus, it is suggested to use a connection with
viscous dampers, possibly with springs as well, in any case that it
can reduce the frame drifts to allowable values. This is especially
true in the constant velocity region. It should be emphasized that
a damped connection showed better reduction in all responses
of interest, including frame drifts, with larger values of πs. While
these may be realistic for other purposes (e.g., new buildings), for
the retrofitting projects discussed those were not considered.

Example

The example considers the seismic retrofitting of an existing six
story frame structure. Each story area is 460m2 and its mass
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A

B

FIGURE 6 | Max Frame Interstory Drift: (A) constant velocity region (B) constant acceleration region.

is 600 ton (300 ton at the roof). The typical story height is 3m
and the total height of the building is 18m. Thus, the mass per
unit height is 200 ton/m. The typical story stiffness of the frames
assuming cracked cross sections is 106,300 kN/m leading to a
natural period of the building of 1.8 s. This period compares well
with the rule of thumb proposed by Crowley and Pinho (2004)

for the yield period of existing European RC structures. This
rule of thumb was originally proposed for better displacement
estimation and, although thoroughly fundamented, it has not yet
found its way to seismic codes. It should also be noted that if
some inaccuracy in the natural period of the frame, or in its
stiffness, exists, it affects the parameter πs. As can be seen from
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A

B

FIGURE 7 | Max absolute acceleration of the frame: (A) constant velocity region (B) constant acceleration region.

Figures 6–9, in this structure (πs ≈ 0.5, as will be calculated later)
some inaccuracy in πs is not expected to considerably affect
the values of the estimated responses (wall responses and frame
displacements). It would, however, affect the frame force related
responses. As those are computed based on the displacements and
the frame stiffness at a later stage, conservative assumptions could

be then made. The shear stiffness of the frame was computed as
GA=Ks/h= 318,900 kN. The corner period of the representing
spectrum is Tc = 0.4 s and its spectral pseudo-acceleration at 1.0 s
is S1 = 2.5m/s2.

Four cores were added to the building to supply shelter rooms.
Their total area is 55m2 per floor. Their total cracked moment
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B

FIGURE 8 | Max connection force: (A) constant velocity region (B) constant acceleration region.

of inertia is 387× 106 kN·m2 and their mass per unit height is
52 ton/m. It is now desired to find the best connection type
between the existing building and the new cores, as well as attain
responses of interest for initial design.

The two known non-dimensional parameters of the system
are πm and πs. Those are attained as πm = 52

200 = 0.26 and

πs =
√

318900
387·106 · 18 = 0.51 and rounded to 0.25 and 0.5, respec-

tively. Thus, the center graph in each graph matrix represents
the structure at hand. In order to attain the non-dimensional
responses from the graphs, one needs to determinewhat spectrum
region is relevant. Thus, the periods of the first three modes are
evaluated for each retrofitting alternative. Using damping only,
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B

FIGURE 9 | Wall base moment: (A) constant velocity region (B) constant acceleration region.

the periods are 1.74, 0.63, and 0.37 s. With a small stiffness added,
the periods became 0.95, 0.54, and 0.36 s. With a medium stiff-
ness added to the damper, values of 0.82, 0.48, and 0.33 s are
attained. Finally, with a rigid connection, the periods drop to 0.4,
0.09, and 0.04 s. Thus, when a non-rigid connection is used, the
constant velocity graphs will be adopted with Sa(T′)= 1.38m/s2

that is evaluated at the fundamental period of the bare frame,
1.8 s. This is slightly conservative as the third mode has a period
smaller then Tc. When a rigid connection is used, the constant
acceleration graphs will be adopted with Sa(T′)= 6.25m/s2 that
is evaluated at the fundamental period of the rigidly connected
system, 0.4 s.
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TABLE 1 | Responses of interest using the various connection options.

Response Bare frame FVD connection FVD+ low stiffness
spring connection

FVD+high stiffness
spring connection

Rigid connection

CV region CV region CV region CA region

IDF [%] 1.57 0.70 0.62 0.56 0.44
BSW [kN] – 4409 5215 8025 22,410
OTMF [kN*m] 55310 21,220 16,210 14,950 18,480
OTMW [k*m] – 50,420 58,600 90,770 266,000
AF [m/s2] 3.45 2.39 2.63 3.87 14.26
Fd [kN/m] – 180 284 502 1941
Dd [m] – 0.0672 0.0453 0.0350 0.0000

IDF, inter-story drift; BSW, base shear of the wall; OTMF, over-turning moment at the frame; OTMW, over- turning moment at the wall; AF, acceleration at the frame; Fd, force at the
damper; Dd, displacement at the damper-stroke.

The amount of damping that was adopted is πc = 0.4.
Thus, the damping coefficient per unit height was taken as
cd = 556.53 kN·s/m2. The responses of interest, which were eval-
uated using the non-dimensional graphs, are summarized in
Table 1. For example, the inter-story drift angle of the frame with
a viscous damping connection was computed as follows:

IDf =
πIDf · Sa(T ′) ·mf ·H

GA =
0.453 · 1.38 · 200 · 18

318, 900 = 0.705%
(10)

which translates to an inter-story drift of 0.00705·300= 2.11 cm.
As can be seen, with damping only, the inter-story drift was

reduced by 55% (72%with a rigid connection). If such a drift could
be accommodated by the frame, a large decrease could be attained
in other responses compared to those of the rigid connection
option: the wall over-turning moment is 19% of that of the rigid
connection; The frame acceleration is 17% of that of the rigid
connection and 70% of that of the bare frame, and; the connection
force is 12% of that of the rigid connection. These huge differences
are attributed to three factors: a viscous damper as a connection
dissipates energy thus reduces the response; the forces in viscous
dampers are out-of-phase with forces due to displacements and
with inertia forces, and; the period of the damped system is much
longer than that of the rigidly connected system. Smaller drifts
than those attained with viscous damping only are attained when
some stiffness is added to the damping. Those are accompanied,
however, with some increase in other responses.

Discussion

This paper studied the seismic behavior of wall–EDD–frame
systems in the context of retrofitting existing frame structures. The

controlling non-dimensional parameters of such systems were
identified and a rigorous parametric study was performed.

It was found that, frame inter-story drifts, as well as other
frame responses, could efficiently be reducedwhen connecting the
existing frame building to new walls with viscous dampers, with
or without springs in parallel. Those responses were sometimes
comparable to those attained with a rigid connection between the
frame and the new wall. Other responses such as frame absolute
accelerations, connection force, and wall responses, were much
smaller when a connection with dampers was utilized in com-
parison to those attained with a rigid connection. These huge
differences are attributed to three factors: a viscous damper as
a connection dissipates energy thus reduces the response; the
forces in viscous dampers are out-of-phase with forces due to
displacements and with inertia forces, and; the period of the
damped system is much longer than that of the rigidly connected
system. Thus, it is suggested to use a connection with viscous
dampers, possibly with springs as well, in any case that it can
reduce the frame drifts to allowable values. This is especially true if
the periods of the modes contributing to the bare frame response
are within the constant velocity region. In addition, the sensitivity
of the damped system to uncertainty in wall stiffness is much
smaller than that of the system with a rigid connection.

Finally, tools were given for initial design of such retrofitting
schemes. These enable both choosing the most appropriate
retrofitting alternative and selecting initial values for its param-
eters, as demonstrated by the example.

Supplementary Material

The Supplementary Material for this article can be found online
at http://journal.frontiersin.org/article/10.3389/fbuil.2015.00007
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Appendix

List of symbols

h Typical story height
cd Damping coefficient of the EDDs per unit height
f(t) Load vector
fd Peak force experience by the EDDs per unit height
kd Stiffness of the EDDs per unit height
mf Seismic mass per unit height taken by the frame
mw Seismic mass per unit height taken by the wall
|qi(t)|max Spectral displacement corresponding to the natural period and the damping ratio of an underdamped mode∣∣∣qPi (t)∣∣∣max

Is the spectral displacement corresponding to the natural period of an overdamped mode

x(t) Vector of coordinate displacements
t Time
A0i, B0i, and AP

0i Coefficients
Af The maximum peak frame absolute acceleration
BSw Peak wall base shear
C Damping matrix
Cd The damping coefficient of each connecting viscous damper
Dd Maximum peak relative displacement between the frame and the wall, or the EDD’s elongation/contraction
EI The bending stiffness of the wall
Fd Peak force experience by the EDDs
GA Shear stiffness of the frame
H The total height of building
IDf The maximum peak inter-story drift angle of all stories of the frame
K Stiffness matrix
Kd The stiffness of each connecting spring
Ks The story stiffness of the frame (shear force required to result in a unit inter-story drift)
M Mass matrix
Mf The seismic mass per floor taken by the frame (equal for all floors)
Mw The seismic mass per floor taken by the wall
N Number of stories in the building
OTMf The peak base over-turning moment of the frame
OTMw Peak wall base moment
Rξ A correction factor to account for damping ratios different than 0.05
Sa (T′) The elastic 5% damping spectral acceleration
Tc The corner period between the constant acceleration and the constant velocity regions
Sc The elastic 5% damping spectral acceleration at a period of Tc
T1 Fundamental period of the bare frame,
λi Eigenvalues
ξ Damping ratio (as a value, not in per-cent)
ξi Damping ratio of the mode i
πc Relative EDD damping
πfd Non-dimensional peak force experience by the EDDs per unit height
πk Relative EDD stiffness
πm Ratio of wall to frame mass
πs Relative frame stiffness to wall stiffness
πAf Non-dimensional maximum peak frame absolute acceleration

πBSw Non-dimensional peak wall base shear
πDd Non-dimensional maximum peak relative displacement between the frame and the wall, or the EDD’s elongation/contraction
πIDf Non-dimensional maximum peak inter-story drift angle of all stories of the frame

πOTMf Non-dimensional base over-turning moment of the frame

πOTMw Non-dimensional base over-turning moment of the wall
πT Non-dimensional period of the system
πξ Non-dimensional damping ratio of the system
ωi Natural frequency of the mode i
|·| Absolute of a complex number
real(·) Real part of a complex number
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