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Critical earthquake response of
elastic–plastic structures under
near-fault ground motions
(Part 1: Fling-step input)
Kotaro Kojima and Izuru Takewaki*

Department of Architecture and Architectural Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan

The double impulse input is introduced as a substitute of the fling-step near-fault ground
motion and a closed-form solution of the elastic–plastic response of a structure by the
“critical double impulse input” is derived. Since only the free-vibration appears under such
double impulse input, the energy approach plays an important role in the derivation of
the closed-form solution of a complicated elastic–plastic response. It is shown that the
maximum inelastic deformation can occur either after the first impulse or after the second
impulse depending on the input level. The validity and accuracy of the proposed theory
are investigated through the comparison with the response analysis to the corresponding
one-cycle sinusoidal input as a representative of the fling-step near-fault ground motion.
Since the critical input means the resonant case, the present theory dealing with the
resonant response should be applied to buildings except very flexible ones.

Keywords: earthquake response, critical response, elastic–plastic response, ductility factor, near-fault ground
motion, fling-step input, double impulse

Introduction

The effects of near-fault ground motions on structural response have been investigated extensively
(Bertero et al., 1978; Hall et al., 1995; Sasani and Bertero, 2000; Alavi andKrawinkler, 2004;Mavroei-
dis et al., 2004; Kalkan and Kunnath, 2006, 2007; Xu et al., 2007; Rupakhety and Sigbjörnsson,
2011; Yamamoto et al., 2011; Khaloo et al., 2015; Vafaei and Eskandari, 2015). The fling-step
and forward-directivity are widely recognized as special keywords to characterize such near-fault
ground motions (Mavroeidis and Papageorgiou, 2003; Bray and Rodriguez-Marek, 2004; Kalkan
and Kunnath, 2006; Mukhopadhyay and Gupta, 2013a,b; Zhai et al., 2013; Hayden et al., 2014; Yang
and Zhou, 2014). Especially, Northridge earthquake in 1994, Hyogoken-Nanbu (Kobe) earthquake
in 1995, and Chi-Chi (Taiwan) earthquake in1999 raised special attention to many earthquake
structural engineers.

The fling-step and forward-directivity inputs have been characterized by two or three wavelets.
For this class of ground motions, many useful research works have been conducted. Mavroeidis and
Papageorgiou (2003) investigated the characteristics of this class of ground motions in detail and
proposed some simple models (for example, Gabor wavelet and Berlage wavelet). Xu et al. (2007)
employed a kind of Berlage wavelet and applied it to the performance evaluation of passive energy
dissipation systems. Takewaki and Tsujimoto (2011) used the Xu’s approach and proposed a method
for scaling ground motions from the viewpoints of drift and input energy demand. Takewaki et al.
(2012) employed a sinusoidal wave for pulse-type waves. In this paper, a new approach based on the
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double impulse (Kojima et al., 2015a) is proposed and the intrin-
sic response characteristics by the near-fault ground motion are
captured.

Most of the previous works on the near-fault ground motions
deal with the elastic response because the number of parameters
(e.g., duration and amplitude of pulse, ratio of pulse frequency
to structure natural frequency, change of equivalent natural fre-
quency for the increased input level) to be considered on this topic
is many and the computation itself of elastic–plastic response is
quite complicated.

In order to tackle such important but complicated problem,
the double impulse input is introduced as a substitute of the
fling-step near-fault ground motion and a closed-form solution of
the elastic–plastic response of a structure by the “critical double
impulse input” is derived. It is shown that, since only the free-
vibration appears under such double impulse input, the energy
approach plays an important role in the derivation of the closed-
form solution of a complicated elastic–plastic response. It is also
shown that the maximum inelastic deformation can occur either
after the first impulse or after the second impulse depending
on the input level. The validity and accuracy of the proposed
theory are investigated through the comparison with the response
analysis result to the corresponding one-cycle sinusoidal input as
a representative of the fling-step near-fault ground motion. The
amplitude of the double impulse is modulated so that its maxi-
mum Fourier amplitude coincides with that of the corresponding
one-cycle sinusoidal input.

The closed-form or nearly closed-form solutions of the elas-
tic–plastic earthquake response have been obtained so far only
for the steady-state response to sinusoidal input or the tran-
sient response to an extremely simple sinusoidal input (Caughey,
1960a,b; Roberts and Spanos, 1990; Liu, 2000). In this paper, the
following motivation is raised. If a near-fault ground motion can
be represented by a double impulse, the elastic–plastic response
(continuation of free-vibrations) can be derived by an energy
approach without solving directly the differential equation (equa-
tion of motion). The input of impulse is expressed by the instan-
taneous change of velocity of the structural mass.

In the earthquake-resistant design, the resonance is a key word
and it has been investigated extensively.While the resonant equiv-
alent frequency has to be computed for a specified input level
by changing the excitation frequency in a parametric manner
in dealing with the sinusoidal input (Caughey, 1960a,b; Roberts
and Spanos, 1990; Liu, 2000), no iteration is required in the
proposed method for the double impulse. This is because the
resonant equivalent frequency can be obtained directly without
the repetitive procedure. In the double impulse, the analysis can
be done without the input frequency (timing of impulses) before
the second impulse is input. The resonance can be proved by
using energy investigation and the timing of the second impulse
can be characterized as the time with zero restoring force. The
maximum elastic–plastic response after impulse can be obtained
by equating the initial kinetic energy computed by the initial
velocity to the sum of hysteretic and elastic strain energies. It
should be pointed out that only critical response (upper bound)
is captured by the proposed method and the critical resonant

frequency can be obtained automatically for the increasing input
level of the double impulse.

In the history of seismic-resistant design of building struc-
tures, the earthquake input energy has played an important role
together with deformation and acceleration [for example, Hous-
ner (1959, 1975), Berg and Thomaides (1960), Housner and
Jennings (1975), Zahrah and Hall (1984), Akiyama (1985), and
Leger and Dussault (1992)]. While deformation and acceleration
can predict and evaluate the performance of a building struc-
ture mainly for serviceability, the energy can evaluate the per-
formance of a building structure mainly for safety. Especially
energy is appropriate for describing the performance of build-
ing structures of different sizes in a unified manner because
energy is a global index different from deformation and accel-
eration as local indices. In fact, in Japan, there are three crite-
ria in parallel (force, deformation, and energy). In 1981, force
was introduced as a criterion for safety and in 2000 deforma-
tion was introduced as a criterion for safety. More recently in
2005, input energy evaluated from the design velocity response
spectrum was used as a criterion. These three criteria are used
now in parallel (Building Standard Law in Japan, 1981, 2000,
2005).

A theory of earthquake input energy to building structures
under single impulse was shown to be useful for disclosing the
property of the energy transfer function (Takewaki, 2004, 2007).
This property means that the area of the energy transfer func-
tion is constant. The property of the energy transfer function
similar to the case of a simple single-degree-of-freedom (SDOF)
model has also been clarified for a swaying-rocking model. By
using this property, the mechanism of earthquake input energy
to the swaying-rocking model including the soil amplification
has been made clear under the input of single impulse (Kojima
et al., 2015b). However, single impulse may be unrealistic because
the frequency characteristic of input cannot be expressed by
this input. In order to resolve such issue, the double impulse is
introduced in this paper. Furthermore, because the elastic–plastic
response is treated, the time-domain formulation is introduced in
this paper.

Double Impulse Input

It is well accepted that the fling-step input (fault-parallel) of the
near-fault ground motion can be represented by a one-cycle sinu-
soidal wave and the forward-directivity input (fault-normal) of the
near-fault ground motion can be expressed by a series of three
sinusoidal wavelets (see Figure 1). In this paper and a subsequent
paper, it is intended to simplify these typical near-fault ground
motions by a double impulse (Kojima et al., 2015a) and a triple
impulse. This is because the double impulse and triple impulse
have a simple characteristic and a straightforward expression of
the response can be expected even for elastic–plastic responses
based on an energy approach to free vibrations. Furthermore, the
double impulse and triple impulse enable us to describe directly
the critical timing of impulses (resonant frequency) which is
not easy for the sinusoidal and other inputs without a repetitive
procedure.
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FIGURE 1 | (A) Fling-step input and double impulse, (B) Forward-directivity input and triple impulse.

Consider a ground acceleration üg(t) as double impulse, as
shown in Figure 1A, expressed by

üg(t) = Vδ(t)− Vδ(t− t0) (1)

where V is the given initial velocity and t0 is the time interval
between two impulses. The comparison with the corresponding
one-cycle sinusoidal wave as a representative of the fling-step
input of the near-fault ground motion (Mavroeidis and Papageor-
giou, 2003; Kalkan and Kunnath, 2006) is plotted in Figure 1A.
The corresponding velocity and displacement of such double
impulse and sinusoidal wave are also plotted in Figure 1A. It
can be understood that the double impulse is a good approxima-
tion of the corresponding sinusoidal wave even in the form of
velocity and displacement. However, the correspondence in the
response should be discussed carefully. This will be conducted
in Section “Accuracy Check by Time-history Response Analysis
Subjected to the Corresponding One-cycle Sinusoidal Input.” The

Fourier transform of üg(t) of the double impulse input can be
derived as

Üg(ω) =

∫ ∞

−∞
{Vδ(t)− Vδ(t− t0)} e−iωtdt

=

∫ ∞

−∞

{
Vδ(t)e−iωt − Vδ(t− t0)e−iωt0e−iω(t−t0)

}
dt

= V(1 − e−iωt0) (2)

SDOF System

Consider an undamped elastic-perfectly plastic SDOF system of
mass m and stiffness k. The yield deformation and yield force
are denoted by dy and f y (see Figure 2). Let ω1 =

√
k/m,

u, and f denote the undamped natural circular frequency, the
displacement of the mass relative to the ground and the restoring
force of the model, respectively. The time derivative is denoted by
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FIGURE 2 | Prediction of maximum elastic–plastic deformation under double impulse based on energy approach: (A,B) Case 1: Elastic response; (C,D)
Case 2: Plastic response after the second impulse; (E,F) Case 3: Plastic response after the first impulse (•: first impulse,N: second impulse).
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an over-dot. In Section “Maximum Elastic–plastic Deformation
of SDOF System Subjected to Double Impulse,” these parameters
will be dealt with in a non-dimensional or normalized form to
derive the relation of permanent interest between the input and
the elastic–plastic response. However numerical parameters will
be introduced partially in Section “Accuracy Check by Time-
history Response Analysis Subjected to the Corresponding One-
cycle Sinusoidal Input” to demonstrate an example of actual
parameters.

Maximum Elastic–Plastic Deformation of
SDOF System Subjected to Double Impulse

The elastic–plastic response to the double impulse can be
described by the continuation of free-vibrations. The maximum
deformation after the first impulse is denoted by umax 1 and that
after the second impulse is expressed by umax 2 as shown in
Figure 2. The input of each impulse is expressed by the instan-
taneous change of velocity of the structural mass. Such response
can be derived by an energy approach without solving directly
the differential equation (equation of motion). The kinetic energy
given at the initial stage (the time of the first impulse) and at the
time of the second impulse is transformed into the sum of the
hysteretic energy and the strain energy corresponding to the yield
deformation. By using this rule, the maximum deformation can
be obtained in a simple manner.

It should be emphasized that, while the resonant equivalent
frequency has to be computed for a specified input level by chang-
ing the excitation frequency in a parametric manner in dealing
with the sinusoidal input (Caughey, 1960a,b; Roberts and Spanos,
1990; Liu, 2000; Moustafa et al., 2010), no iteration is required
in the proposed method for the double impulse. This is because
the resonant equivalent frequency (resonance can be proved by
using energy investigation: see Appendix) can be obtained directly
without the repetitive procedure. As a result, the timing of the sec-
ond impulse can be characterized as the time with zero restoring
force.

Only critical response (upper bound) is captured by the pro-
posedmethod and the critical resonant frequency can be obtained
automatically for the increasing input level of the double impulse.
One of the original points in this paper is the introduction of
the concept of “critical excitation” in the elastic–plastic response
(Drenick, 1970; Abbas and Manohar, 2002; Takewaki, 2007;
Moustafa et al., 2010). Once the frequency and amplitude of
the critical double impulse are computed, the corresponding
one-cycle sinusoidal motion as a representative of the fling-step
motion can be identified.

Let us explain the evaluation method of umax 1 and umax 1. The
plastic deformation after the first impulse is expressed by up1 and
that after the second impulse is denoted by up2. There are three
cases to be considered depending on the yielding stage. Let Vy
(=ω1dy) denote the input level of velocity of the double impulse
at which the SDOF system just attains the yield deformation after
the first impulse.

Figures 2A,B show the maximum deformation after the first
impulse and that after the second impulse, respectively, for the

elastic case (Case 1) during the whole stage. umax 1 can be obtained
from the following energy conservation law.

mV2/2 = kumax 1
2/2 (3)

On the other hand, umax 2 can be computed from another
energy conservation law.

m(2V)2/2 = kumax 2
2/2 (4)

As explained in the previous part of this section, the critical
timing of the second impulse is the time of zero restoring force
and the velocity−V by the second impulse is added to the velocity
−V induced by the first impulse (full recovery at the zero restoring
force due to zero damping).

Consider next the case (Case 2) where the model goes into the
yielding stage after the second impulse. Figures 2C,D show the
schematic diagram of the response in this case. As in Case 1, umax 1
can be obtained from the energy conservation law.

mV2/2 = kumax 1
2/2 (5)

On the other hand, umax 2 can be computed from another
energy conservation law by regarding the system as a non-linear
elastic system tentatively.

m(2V)2/2 = fydy/2 + fyup2 = fydy/2 + fy(umax 2 − dy) (6)

As in the above case, the velocity −V by the second impulse is
added to the velocity −V induced by the first impulse.

Consider finally the case (Case 3) where the model goes into
the yielding stage even after the first impulse. Figures 2E,F show
the schematic diagram of the response in this case. umax 1 can be
obtained from the following energy conservation law.

mV2/2 = fydy/2 + fyup1 = fydy/2 + fy(umax 1 − dy) (7)

On the other hand, umax 2 can be computed from another
energy conservation law.

m(vc + V)2/2 = fydy/2 + fyup2 (8)

where vc is characterized by mvc2/2 = fydy/2 and up2 is charac-
terized by umax 2 + (umax 1 − dy)= dy + up2. In other words, umax 2
can be obtained from

m(vc + V)2/2 = fydy/2 + fy(umax 1 + umax 2 − 2dy). (9)

As in the above case, the velocity −V by the second impulse
is added to the velocity −vc induced by the first impulse (the
maximum velocity during the unloading stage).

Figure 3 shows the plot of umax/dy =max(umax 1/dy, umax 2/dy)
with respect to the input level. There are three regions corre-
sponding to Cases 1–3. In Cases 1 and 2, umax 2/dy is larger than
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FIGURE 3 | Maximum normalized elastic–plastic deformation under
double impulse with respect to input level.

umax 1/dy. On the other hand, in Case 3, two regions exist for
the boundary case of umax 1 = umax 2. While umax 2/dy is larger
than umax 1/dy in the smaller input level, umax 1/dy is larger than
umax 2/dy in the larger input level.

Figure 4 presents the normalized timing t0/T1 (T1 = 2π/ω) of
the second impulsewith respect to the input level. As stated before,
this timing coincides with the time of zero restoring force after
the first unloading (see Figure 2). It can be observed that the
timing is delayed due to plastic deformation as the input level
increases. It seems noteworthy to state again that only critical
response giving the maximum value of umax 2/dy is sought by the
proposed method and the critical resonant frequency is obtained
automatically for the increasing input level of the double impulse.
One of the original points in this paper is the tracking of the critical
elastic–plastic response.

Accuracy Check by Time-History
Response Analysis Subjected to the
Corresponding One-Cycle Sinusoidal Input

In order to investigate the accuracy of using the double impulse
as a substitute of the corresponding one-cycle sinusoidal wave
(representative of the fling-step input), the time-history response
analysis of the elastic–plastic SDOF model under the one-cycle
sinusoidal wave has been conducted.

In the evaluation procedure, it is important to adjust the input
level of the double impulse and the corresponding one-cycle
sinusoidal wave based on the equivalence of the Fourier ampli-
tude. Figure 5 shows one example for the input level V/Vy = 3.
Figures 6A,B illustrate the comparison of the ground displace-
ment and velocity between the double impulse and the corre-
sponding one-cycle sinusoidal wave for the input level V/Vy = 3.
In Figure 5 and Figures 6A,B, ω1 = 2π(rad/s) (T1 = 1.0 s) and
dy = 0.16(m) are used.

FIGURE 4 | Interval time between the first and second impulses with
respect to input level.

FIGURE 5 | Adjustment of input level of double impulse and the
corresponding one-cycle sinusoidal wave based on Fourier amplitude
equivalence.

Figure 7 presents the comparison of the ductility (maximum
normalized deformation) of the elastic–plastic structure under the
double impulse and the corresponding one-cycle sinusoidal wave
with respect to the input level. It can be seen that the double
impulse provides a fairly good substitute of the one-cycle sinu-
soidal wave in the evaluation of the maximum deformation if the
maximum Fourier amplitude is adjusted appropriately. Although
some discrepancy is observed in the large deformation range,
that response range is out of interest in the earthquake structural
engineering. If desired, other adjustment criterion on input level
can be introduced. This is a future issue.
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FIGURE 6 | Comparison of ground displacement and velocity between
double impulse and the corresponding one-cycle sinusoidal wave: (A)
displacement, (B) velocity.

FIGURE 7 | Comparison of ductility of elastic–plastic structure under
double impulse and the corresponding one-cycle sinusoidal wave.

Figure 8 shows the comparison of the earthquake input ener-
gies by the double impulse and the corresponding one-cycle sinu-
soidal wave. Although a good correspondence can be observed in
a lower input level, the double impulse tends to provide a slightly
larger upper bound in the larger input level. This property can be
understood from the time-history responses shown in Figures 9
and 10, i.e., a rather clear difference in deformation after the first
impulse.

FIGURE 8 | Comparison of earthquake input energies by double
impulse and the corresponding one-cycle sinusoidal wave.

FIGURE 9 | Comparison of response time-history under double
impulse and that under the corresponding one-cycle sinusoidal wave:
(A) Normalized deformation, (B) Restoring-force.

Figure 9 illustrates the comparison of response time histories
(normalized deformation and restoring-force) under the double
impulse and those under the corresponding one-cycle sinusoidal
wave. The parameters ω1 = 2π (rad/s) (T1 = 1.0 s), dy = 0.16(m)
were also used here. While a rather good correspondence can
be seen in the restoring-force, the maximum deformation after
the first impulse exhibits a rather larger value in the double
impulse. The difference in the initial condition may affect these
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response discrepancies. However, it is noteworthy that the maxi-
mum deformation after the second impulse demonstrates a rather
good correspondence. This may be related to the fact that the
effect of the initial condition becomes smaller in this stage.
Figure 10 presents the comparison of the restoring-force charac-
teristic under the double impulse and that under the correspond-
ing one-cycle sinusoidal wave. The parameters ω1 = 2π (rad/s)
(T1 = 1.0 s), dy = 0.16(m) are also used here. As seen in Figure 9,
while the maximum deformation after the first impulse exhibits
a rather larger value in the double impulse compared to that
of the corresponding one-cycle sinusoidal wave, the maximum
deformation after the second impulse demonstrates a rather good
correspondence.

FIGURE 10 | Comparison of restoring-force characteristic under
double impulse and that under the corresponding one-cycle
sinusoidal wave.

FIGURE 11 | Flowchart for design of stiffness and strength.

Design of Stiffness and Strength for
Specified Velocity and Period of Near-Fault
Ground Motion Input and Response
Ductility

It is useful to present a flowchart for design of stiffness and
strength for the specified velocity and period of the near-fault
ground motion input and response ductility. This design concept
is based on the philosophy that, if we focus on the worst case of
resonance, the safety for other non-resonant cases is guaranteed
[see Takewaki (2002)].

Since Figures 3 and 4 are non-dimensional ones, they can be
used for such design. Figure 11 shows the flowchart for design of
stiffness and strength. One example can be drawn as follows:

[Specified conditions]: V = 2(m/s) (velocity of double impulse),
t0 = 0.5(s) (interval of the double impulse and half the period
of the corresponding sine wave), umax/dy = 4.0 (ductility),
m= 4.0× 106(kg).

[Design results]: V/Vy = 2.5, Vy = 0.80(m/s), T1 = 0.74(s),
dy = 0.094(m), k= 2.9× 108(N/m), f y = 2.7× 107(N).

From Figure 3, V/Vy = 2.5 can be obtained for the specified
ductility umax/dy = 4.0. Then Vy = 0.80(m/s) is derived from the
specified condition V = 2(m/s) and V/Vy = 2.5. In the next step,
T1 = 0.74(s) is found from Figure 4 forV/Vy = 2.5 and t0 = 0.5(s).
In this model, dy = 0.094(m) is determined from Vy = ω1dy and
T1(= 2π/ω1)= 0.74(s). Finally k= 2.9× 108(N/m) is obtained
from k= ω1

2m and f y = 2.7× 107(N) is derived by f y = kdy.
It should be reminded that, while most of the previous

researches on near-fault ground motions are aimed at disclos-
ing the response characteristics of elastic or elastic–plastic struc-
tures with arbitrary stiffness and strength parameters and require
tremendous amount of numerical task, the present paper focused
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on the critical response (resonant response) and enabled the
drastic reduction of computational works.

Conclusion

The conclusions may be summarized as follows:

(1) The double impulse input has been introduced as a substitute
of the fling-step near-fault ground motion and a closed-form
solution of the elastic–plastic response of a structure by the
critical double impulse input has been derived.

(2) It has been shown that, since only the free-vibration appears
in such double impulse input, the energy approach plays an
important role in the derivation of the closed-form solution
of a complicated elastic–plastic response. In other words the
energy approach enables the derivation of the maximum elas-
tic–plastic seismic response without solving the differential
equation (equation of motion). In this process, the input of
impulse is expressed by the instantaneous change of velocity
of the structural mass. Themaximum elastic–plastic response
after impulse can be obtained by equating the initial kinetic
energy computed by the initial velocity to the sum of hys-
teretic and elastic strain energies. It has been shown that the
maximum inelastic deformation can occur either after the
first impulse or after the second impulse depending on the
input level.

(3) The validity and accuracy of the proposed theory have been
investigated through the comparison with the response anal-
ysis result to the corresponding one-cycle sinusoidal input as
a representative of the fling-step near-fault ground motion. It
has been made clear that, if the level of the double impulse is
adjusted so as for its maximum Fourier amplitude to coincide
with that of the corresponding one-cycle sinusoidal wave, the
maximum elastic–plastic deformation to the double impulse
exhibits a good correspondence with that to the one-cycle
sinusoidal wave.

(4) While the resonant equivalent frequency has to be computed
for a specified input level by changing the excitation frequency
in a parametric manner in dealing with the sinusoidal input,
no iteration is required in the proposedmethod for the double
impulse. This is because the resonant equivalent frequency
can be obtained directly without the repetitive procedure. The
resonance has been proved by using energy investigation and
it has been made clear that the timing of the second impulse
can be characterized as the time with zero restoring force.

(5) Only critical response (upper bound) has been captured
by the proposed method and it has been shown that the
critical resonant frequency can be obtained automatically
for the increasing input level of the double impulse. Once
the frequency and amplitude of the critical double impulse
are computed, the corresponding one-cycle sinusoidal
motion as a representative of the fling-step motion can be
identified.

(6) A flowchart for design of stiffness and strength for the speci-
fied velocity and period of the near-fault groundmotion input
and response ductility has been proposed using the newly
derived non-dimensional relations among response ductility,
input velocity, and input period. It has been demonstrated
that this flowchart can provide a useful result for such design.
Since the critical input of double impulse means the reso-
nant case, the proposed method may be conservative when
applied to flexible structures that do not fall in the resonant
region.
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Appendix

Proof of Critical Timing of the Second
Impulse and Numerical Demonstration

Consider the critical timing of the second impulse. Let vc
denote the velocity of the mass passing the zero restoring-force
(zero elastic strain energy) after the first unloading and v*, u*
denote the velocity and the elastic deformation component at
an arbitrary point between the first unloading and the second
yielding. Since the first unloading starts from the state with
zero velocity and the elastic strain energy f ydy/2, the relation
mvc2/2 = fydy/2 holds. From the energy conservation law
between the first unloading and the second yielding, the relation
mv*2/2+ ku*2/2= fydy/2 holds. Consider the second impulse at
the same time of the state of v*,u*. The total mechanical energy
can be expressed by m(v*+V)2/2+ ku*2/2. Since the relation
m(v*+V)2/2+ ku*2/2=mv*2/2+ ku*2/2+mv*V +mV2/2=
f ydy/2+mv*V +mV2/2 holds and the maximum deformation
after the second yielding is caused by the maximum total
mechanical energy, the maximum velocity v* causes the
maximum deformation after the second yielding. This timing is
the zero restoring-force after the first unloading. This completes
the proof.

In order to confirm the validity of the critical timing shown
above, numerical computation has been conducted. Let t0c denote
the critical interval between two impulses. Figure A1 shows the

FIGURE A1 | Variation of the maximum deformation under double
impulse with respect to the timing of the second impulse.

plot of umax/dy with respect to t0/t0c. t0/t0c = 1 indicates the critical
timing at zero restoring force. It can be understood that, for larger
V/Vy, t0/t0c = 1 is one of the value yielding the maximum value of
umax/dy and, for smaller V/Vy, t0/t0c = 1 certainly gives the maxi-
mum value of umax/dy. This supports the numerical validation of
the proof given above.
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