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The multiple impulse input is introduced as a substitute of the long-duration earthquake 
ground motion, mostly expressed in terms of harmonic waves, and a closed-form solu-
tion is derived of the elastic–plastic response of a single-degree-of-freedom structure 
under the “critical multiple impulse input.” Since only the free vibration appears under 
such multiple impulse input, the energy approach plays an important role in the deriva-
tion of the closed-form solution of a complicated elastic–plastic response. It is shown 
that the critical inelastic deformation and the corresponding critical input frequency
can be captured depending on the input level by the substituted multiple impulse input 
in the form of original and modified input sequence. The validity and accuracy of the 
proposed theory are investigated through the comparison with the response analysis to 
the corresponding sinusoidal input as a representative of the long-duration earthquake 
ground motion.

 

Keywords: earthquake response, critical input, critical response, elastic–plastic response, ductility factor,  
long-duration ground motion, resonance, multiple impulse

introduction

There are several types of earthquake ground motions. One is a near-fault ground motion, which 
is getting much interest recently, another is a random ground motion, which is represented by El 
Centro NS etc., and the other is a long-duration, long-period ground motion, which was observed 
rather recently [see Takewaki et  al. (2011, 2012)]. The effects of near-fault ground motions on 
structural response have been investigated extensively (Bertero et al., 1978; Hall et al., 1995; Sasani 
and Bertero, 2000; Alavi and Krawinkler, 2004; Mavroeidis et al., 2004; Kalkan and Kunnath, 2006, 
2007; Xu et al., 2007; Rupakhety and Sigbjörnsson, 2011; Yamamoto et al., 2011; Khaloo et al., 2015; 
Vafaei and Eskandari, 2015). The fling-step and forward-directivity are widely recognized as special 
keywords to characterize such near-fault ground motions (Mavroeidis and Papageorgiou, 2003; 
Bray and Rodriguez-Marek, 2004; Kalkan and Kunnath, 2006; Mukhopadhyay and Gupta, 2013a,b; 
Zhai et al., 2013; Hayden et al., 2014; Yang and Zhou, 2014). Especially, Northridge earthquake in 
1994, Hyogoken-Nanbu (Kobe) earthquake in 1995, and Chi-Chi (Taiwan) earthquake in1999 raised 
special attention to many earthquake structural engineers.

The fling-step and forward-directivity inputs have been characterized by two or three wavelets. 
For this class of ground motions, many useful research works have been conducted. Mavroeidis and 
Papageorgiou (2003) investigated the characteristics of this class of ground motions in detail and 
proposed some simple models (e.g., Gabor wavelet and Berlage wavelet). Xu et al. (2007) employed 
a kind of Berlage wavelet and applied it to the performance evaluation of passive energy dissipation 

http://www.frontiersin.org/Built_Environment/
http://crossmark.crossref.org/dialog/?doi=10.3389/fbuil.2015.00015&domain=pdf&date_stamp=2015-09-15
http://www.frontiersin.org/Built_Environment/archive
http://www.frontiersin.org/Built_Environment/editorialboard
http://www.frontiersin.org/Built_Environment/editorialboard
http://dx.doi.org/10.3389/fbuil.2015.00015
http://www.frontiersin.org/Built_Environment/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:takewaki@archi.kyoto-u.ac.jp
http://dx.doi.org/10.3389/fbuil.2015.00015
http://www.frontiersin.org/Journal/10.3389/fbuil.2015.00015/abstract
http://www.frontiersin.org/Journal/10.3389/fbuil.2015.00015/abstract
http://www.frontiersin.org/Journal/10.3389/fbuil.2015.00015/abstract
http://loop.frontiersin.org/people/232353/overview
http://loop.frontiersin.org/people/166204/overview


September 2015 | Volume 1 | Article 152

Kojima and Takewaki Elastic–plastic long-duration response

Frontiers in Built Environment | www.frontiersin.org

systems. Takewaki and Tsujimoto (2011) used the Xu’s approach 
and proposed a method for scaling ground motions from the 
viewpoints of drift and input energy demand. Takewaki et  al. 
(2012) employed a sinusoidal wave for pulse-type waves.

Most of the previous works on the near-fault ground motions 
deal with the elastic response because the number of parameters 
(e.g., duration and amplitude of pulse, ratio of pulse frequency 
to structure natural frequency, and change of equivalent natural 
frequency for the increased input level) to be considered on 
this topic is many and the computation itself of elastic–plastic 
response is quite complicated.

In order to tackle such important but complicated problem, 
the double impulse input was introduced by Kojima and 
Takewaki (2015a) as a substitute of the fling-step near-fault 
ground motion and a closed-form solution of the elastic–plastic 
response of a structure by the “critical double impulse input” is 
derived. It was shown that, since only the free vibration appears 
under such double impulse input, the energy approach plays an 
important role in the derivation of the closed-form solution of a 
complicated elastic–plastic response. It was also shown that the 
maximum inelastic deformation can occur either after the first 
impulse or after the second impulse depending on the input level. 
The validity and accuracy of the proposed theory are investigated 
through the comparison with the response analysis result to the 
corresponding one-cycle sinusoidal input as a representative of 
the fling-step near-fault ground motion. The amplitude of the 
double impulse was modulated so that its maximum Fourier 
amplitude coincides with that of the corresponding one-cycle 
sinusoidal input. The extension of the theory for the fling-step 
near-fault ground motion to the forward-directivity near-fault 
ground motion was made by Kojima and Takewaki (2015b).

It was pointed by Takewaki (1996, 1997) that, when consid-
ering the upper bound of response to the random earthquake 
ground motions, it is appropriate to introduce the response 
spectrum method and the bounding theories [see Takewaki 
(1996, 1997)].

The closed-form or nearly closed-form solutions of the elas-
tic–plastic earthquake response have been obtained so far only 
for the steady-state response to sinusoidal input or the transient 
response to an extremely simple sinusoidal input (Caughey, 
1960a,b; Roberts and Spanos, 1990; Liu, 2000). In this article, 
the following motivation is raised. If a long-duration ground 
motion can be represented by a multiple impulse, the elastic–
plastic response (continuation of free vibrations) can be derived 
by an energy approach without solving directly the differential 
equation (equation of motion). The input of impulse is expressed 
by the instantaneous change of velocity of the structural mass. 
A closed-form expression of plastic-deformation amplitude is 
derived by using an energy approach. An approximate expression 
of residual displacement is also provided by using the multiple 
impulse.

In the earthquake-resistant design, the resonance is a key 
word and it has been investigated extensively. While the reso-
nant equivalent frequency has to be computed for a specified 
input level by changing the excitation frequency in a parametric 
manner in dealing with the sinusoidal input (Caughey, 1960a,b; 
Iwan, 1961, 1965a,b; Roberts and Spanos, 1990; Liu, 2000), no 

iteration is required in the proposed method for the multiple 
impulse. This is because the resonant equivalent frequency can 
be obtained directly without the repetitive procedure. In the 
multiple impulse, the analysis can be done without the input 
frequency (timing of impulses) before the second impulse is 
input. The resonance can be proved by using energy investiga-
tion and the timing of the second and third impulses can be 
characterized as the time with zero restoring force. The maxi-
mum elastic–plastic response after impulse can be obtained by 
equating the initial kinetic energy computed by the initial 
velocity to the sum of hysteretic and elastic strain energies. It 
should be pointed out that only critical response (upper bound) 
is captured by the proposed method and the critical resonant 
frequency can be obtained automatically for the increasing input 
level of the multiple impulse.

Figure 1 shows an actual resonant response of a super high-
rise building in Osaka, Japan, during the 2011 off the Pacific coast 
of Tohoku earthquake. This phenomenon clearly indicates the 
necessity and requirement of consideration of response under 
long-duration ground motion.

Multiple impulse input

It has been shown that the fling-step input (fault-parallel) of the 
near-fault ground motion can be represented by a one-cycle sinu-
soidal wave, and the forward-directivity input (fault-normal) of 
the near-fault ground motion can be expressed by a series of three 
sinusoidal wavelets (Kalkan and Kunnath, 2006; Khaloo et  al., 
2015). In the works by Kojima and Takewaki (2015a,b), it was 
demonstrated that these typical near-fault ground motions can be 
simplified by a double impulse (Kojima et al., 2015) and a triple 
impulse. This is because the double impulse and triple impulse 
have a simple characteristic and a straightforward expression of 
the response can be expected even for elastic–plastic responses 
based on an energy approach to free vibrations. Furthermore, the 
double impulse and triple impulse enabled us to describe directly 
the critical timing of impulses (resonant frequency), which is 
not easy for the sinusoidal and other inputs without a repetitive 
procedure (Caughey, 1960a,b; Iwan, 1961, 1965a,b).

Consider a ground acceleration u tg ( ) as the multiple impulse, 
as shown in Figure 2A, expressed by

 �� �u t V t V t t V t t V t tg ( ) ( ) ( ) ( ) ( )= − − + − − − +d d d d0 0 02 3  (1a)

where V is the given initial velocity and t0 is the time interval 
between two consecutive impulses. Its velocity and displacement 
are shown in Figure 2A. In view of the realistic point of view, 
the following modified multiple input is introduced and treated 
principally in this article (see Figure 2B).

 �� �u t V t V t t V t t V t tg ( ) . ( ) ( ) ( ) ( )= − − + − − − +0 5 2 30 0 0d d d d  (1b)

The comparison with the corresponding multicycle sinusoidal 
wave as a representative of the long-duration earthquake ground 
motion input is plotted in Figure 2B. The corresponding velocity 
and displacement of such multiple impulse and sinusoidal wave 
are also plotted in Figure 2B. It can be understood that the multiple 
impulse is a good approximation of the corresponding sinusoidal 
wave even in the form of velocity and displacement. However, the 
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correspondence in the response should be discussed carefully. 
This will be conducted later (see Section: Maximum Elastic–
Plastic Deformation of SDOF System Subjected to Multiple 
Impulse; Figure 5).

Figure  3A shows the Input Sequence 1 (original input 
with equal interval) corresponding to Figure  2B. The points 
of impulses in the force–deformation relation converge to 
two points. On the other hand, Figure 3B presents the Input 
Sequence 2 (critical timing with residual deformation). The 
acting points of impulses in the force–deformation relation 
indicate the points with zero restoring force. It can be found 
that the time interval between the first and second impulses 
is different from those between the later consecutive two 
impulses. It is interesting to note that, if we consider the 
case as shown in Figure 3C, we can set the residual displace-
ment to zero by changing the magnitude of the first impulse. 
It is also interesting that, if we employ the critical timing t0

c 
in Figure  3B [criticality can be shown by the same reason 
as proved in Appendix in Kojima and Takewaki (2015a)] as 
the timing of the multiple impulse in Figure  3A, the acting 
points of impulses in the force–deformation relation converge 
to two points with zero restoring force. This fact supports the 
significance of introducing the Input Sequence 2 in order to 
find the critical interval of the multiple impulse for the Input 
Sequence 1 without repetition. This is the most original aspect 
in this article.

The Fourier transform of u tg ( ) of the multiple impulse input 
(Input Sequence 1 expressed by Eq. 1b) can be derived as

FigUre 1 | resonant response of a super high-rise building in Osaka, Japan, during the 2011 off the Pacific coast of Tohoku earthquake under 
long-duration, long-period ground motion (Takewaki et al., 2011, 2012).
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sDOF system

Consider an undamped elastic–perfectly plastic single-degree-
of-freedom (SDOF) system of mass m and stiffness k. The 
yield deformation and yield force are denoted by dy and fy. Let 
ω1= k m/ , u, and f denote the undamped natural circular 
frequency, the displacement of the mass relative to the ground 
(deformation of the system), and the restoring force of the model, 
respectively. The time derivative is denoted by an over-dot. In 
Section “Maximum Elastic–Plastic Deformation of SDOF System 
Subjected to Multiple Impulse,” these parameters will be dealt with 
in a non-dimensional or normalized form to derive the relation 
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FigUre 2 | long-duration earthquake ground motion in terms of sinusoidal waves and the corresponding multiple impulse: (a) multiple impulse with 
equal magnitude and (B) multiple impulse with smaller magnitude of first impulse.
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of permanent interest between the input and the elastic–plastic 
response. However, numerical parameters will be introduced 
partially in Sections “Maximum Elastic–Plastic Deformation 
of SDOF System Subjected to Multiple Impulse” and “Accuracy 
Check by Time-History Response Analysis Subjected to the 
Corresponding Multicycle Sinusoidal Input” to demonstrate an 
example of actual parameters.

Maximum elastic–Plastic Deformation of 
sDOF system subjected to Multiple impulse

non-iterative Determination of critical Timing 
and critical Plastic Deformation by Using 
Modified input sequence
Consider Input Sequence 1 in Figure  3A at first. If the SDOF 
system is elastic, the critical timing t0 is half the natural period of 
the SDOF system. However, if the SDOF system goes into a plastic 
region, the critical set of input amplitude and input frequency 

(timing of impulse) has to be computed iteratively. This situation 
is the same for the multicycle sinusoidal wave (Caughey, 1960a,b; 
Iwan, 1961, 1965a,b).

In order to overcome this difficulty, consider Input Sequence 
2 in Figure  3B, which introduces a modified input (only the 
timing between the first and second impulses is modified so that 
the second impulse is given at the zero restoring force). Input 
Sequence 2 is based on the assumption that, if the steady state 
exists in which the impulse is given at zero restoring-force timing, 
impulse provides the maximum steady-state plastic deformation. 
This assumption is verified by giving the critical timing obtained 
from Input Sequence 2 to Input Sequence 1. In other words, if the 
critical timing obtained from Input Sequence 2 is given to Input 
Sequence 1, the timing of impulse converges to zero restoring-
force timing. This verification is also supported by the one-to-one 
correspondence between the input amplitude and its critical tim-
ing of impulses (impulses have to be given at zero restoring-force 
points). It is also possible to derive the Input Sequence 3 and its 
response with zero residual displacement (see Figure 3C).

http://www.frontiersin.org/Built_Environment/archive
http://www.frontiersin.org/Built_Environment/
http://www.frontiersin.org


A

B

C

FigUre 3 | Three input sequences: (a) input sequence 1: multiple impulse input with equal interval; (B) input sequence 2: multiple impulse input with 
modification of first impulse timing; (c) input sequence 3: multiple impulse input with modification of first impulse timing and first impulse amplitude.
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FigUre 4 | Definition of response quantities and response transition: (a) schematic diagram of deformation quantities in force–deformation relation 
and (B) transition of response process and impulse timing (input sequence 2).
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FigUre 6 | normalized timing t / Ts
0 1 and t Tc

0 1/  with respect to the input level: (a) t / Ts
0 1 and (B) t / Tc

0 1.

A B

FigUre 5 | comparison of response among input sequence 1 (multiple impulse), input sequence 1 (sine wave), and input sequence 2 (multiple 
impulse): (a) plastic deformation amplitude and (B) residual deformation.
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The elastic–plastic response to the multiple impulse can be 
described by the continuation of free vibrations.

The maximum deformation after the first impulse is denoted 
by umax 1 and that after the second impulse is expressed by umax 2 
as shown in Figure 4. The input of each impulse is expressed by 
the instantaneous change of velocity of the structural mass. Such 
response can be derived by an energy approach without solving 
directly the differential equation (equation of motion). The kinetic 
energy given at the initial stage (the time of the first impulse) and 
at the time of the second impulse is transformed into the sum of 
the hysteretic energy and the strain energy corresponding to the 
yield deformation. By using this rule, the maximum deformation 
can be obtained in a simple manner.

It should be emphasized that, while the resonant equivalent 
frequency has to be computed for a specified input level by 
changing the excitation frequency in a parametric manner in 
dealing with the sinusoidal input (Caughey, 1960a,b; Iwan, 1961, 
1965a,b; Roberts and Spanos, 1990; Liu, 2000; Moustafa et  al., 
2010), no iteration is required in the proposed method for the 

multiple impulse. This is because the resonant equivalent fre-
quency [resonance can be proved by using energy investigation: 
see Appendix in Kojima and Takewaki (2015a)] can be obtained 
directly without the repetitive procedure. As a result, the timing 
of the second impulse can be characterized as the time with zero 
restoring force.

Only critical response (upper bound) is captured by the 
proposed method and the critical resonant frequency can be 
obtained automatically for the increasing input level of the 
multiple impulse. One of the original points in this article is the 
introduction of the concept of “critical excitation” in the elas-
tic–plastic response (Drenick, 1970; Abbas and Manohar, 2002; 
Takewaki, 2002, 2007; Moustafa et al., 2010). Once the frequency 
and amplitude of the critical multiple impulse are computed, the 
corresponding multicycle sinusoidal motion as a representative 
of the long-duration earthquake ground motion can be identified.

Let us explain the evaluation method of umax 1 and umax 2. The 
plastic deformation after the first impulse is expressed by up1 
and that after the second impulse is denoted by up2. There are 
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FigUre 7 | response to input sequence 1 for V/Vy = 2 (impulse timing is the critical one obtained by using the input sequence 2): (a) displacement, 
(B) velocity, (c) restoring force, and (D) force–deformation relation.
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three cases to be considered depending on the yielding stage 
(Kojima and Takewaki, 2015a). Let Vy(=  ω1dy) denote the 
input level of velocity of the impulse at which the SDOF sys-
tem at rest just attains the yield deformation after the impulse 
of such velocity.

Consider the case where the model goes into the yielding stage 
even after the first impulse. This case corresponds to (CASE 3) in 
the problem of double impulse (Kojima and Takewaki, 2015a). 
Figure 4A shows the schematic diagram of the response in this case. 
umax 1 can be obtained from the following energy conservation law.

 m V f d f u f d f u dy y y p y y y y( . ) / / / ( )max0 5 2 2 22
1 1= + = + −  (4)

On the other hand, umax 2 can be computed from another 
energy conservation law.

 m v V f d f uc y y y p( ) / /+ = +2
22 2  (5)

where vc is characterized by mv f dc y y
2 2 2/ /=  and up2 is char-

acterized by umax 2 + (umax 1 − dy) = dy + up2. In other words, 
umax 2 can be obtained from

 m v V f d f u u dc y y y y( ) / / ( ).max max+ = + + −2
1 22 2 2  (6)

As in the above case, the velocity V induced by the second 
impulse is added to the velocity vc introduced by the first impulse 
(the maximum velocity during the unloading stage). Although 
only CASE 3 in the double impulse (Kojima and Takewaki, 
2015a) has been considered here, CASE 2 (yielding only after the 
second impulse) can be treated by replacing vc in Eqs 5, 6 by 0.5V.

Figure 5 shows the plot of the plastic deformation amplitude 
up (up2 in this case) and the residual deformation ur, shown in 
Figure 4A, with respect to the input level V/Vy for Input Sequence 
1 and 2. While the plastic deformation amplitude is the same for 
Sequence 1 and 2, the residual deformations are different. This 
results from the difference in the initial disturbances in Input 
Sequence 1 and 2.

Determination of critical Timing of impulses
Consider the Input Sequence 2 in this section. The time between 
two consecutive impulses can be obtained by solving the dif-
ferential equations (equations of motion) and substituting the 
continuation conditions at the transition points. The time t s

0 
between the first and second impulses and the time t c

0  between 
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FigUre 8 | response to input sequence 1 for V/Vy = 3 (impulse timing is the critical one obtained by using the input sequence 2): (a) displacement, 
(B) velocity, (c) restoring force, and (D) force–deformation relation.
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two consecutive impulses after the second impulse can be 
expressed as follows:

 t T t t t Ts
0 1 1/ ( ) /= + +OA AB BC  (7a)

 t T t t t Tc
0 1 1/ ( ) /= + +CD DE EF  (7b)

where tOA, tAB, tBC, tCD, tDE, and tEF are the times between two 
consecutive transition points shown in Figure 4B. If V/Vy < 2, 
t Ts

0 1 1 2/ / .=

 t T VOA / {arcsin( / )} / ( )1 2 2= p  (8a)

 t T VAB / ( / ) / ( )1
22 1 2= − p  (8b)

 t TBC / /1 1 4=  (8c)

 t T VCD / {arcsin( / ( ))} / ( )1 1 1 2= + p  (8d)

 t T V VDE / ( ) / ( )1
2 2 2= + p  (8e)

 t TEF / /1 1 4=  (8f)

In Eqs 8a–f, V  denotes V/Vy.

Figures  6A,B present the normalized timing t Ts
0 1/  and 

t Tc
0 1/  with respect to the input level. These timings coincide 

with the time intervals between the points with zero restoring 
force (see Figure 4). It can be observed that the timing is delayed 
due to plastic deformation as the input level increases. It seems 
noteworthy to state again that only the critical response giving 
the maximum value of up/dy is sought by the proposed method 
and the critical resonant frequency is obtained automatically 
without repetition for the increasing input level of the multiple 
impulse. One of the original points in this article is the track-
ing of the critical elastic–plastic response.

correspondence of responses Between input 
sequence 1 (Original One) and input sequence 2 
(Modified One)
Figures 7 and 8 show the time histories of relative displacement 
(relative to base motion), relative velocity, restoring force, and 
the force–deformation relation under Input Sequence 1 with 
t t c

0 0 1 0/ .=  for V/Vy = 2 and V/Vy = 3, respectively. In Figures 7 
and 8, ω1 = 2π(rad/s)(T1 = 1.0 s) and dy = 0.16 m are used. Since 
the steady state is very sensitive to the time increment in the 
time-history response analysis using an elastic–perfectly plastic 
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model, the time increment has been chosen as 1.0 × 10−6  s. In 
fact, an elastic–perfectly plastic model was not treated in most 
works (Caughey, 1960a,b; Iwan, 1961, 1965a,b) for its difficult 
treatment. It should be noted that the impulse timing is the 
critical one obtained by using the Input Sequence 2. The circles 
in Figures 7 and 8 indicate the acting points of impulses. It can 
be observed that, although some irregularities appear at first, the 
response converges to a state with the timing of impulse at zero 
restoring-force point irrespective of the input level.

Figure  9 summarizes the force–deformation relation under 
the multiple impulse of Input Sequence 1 with the time inter-
val t t c

0 0 0 0/ . , . , .= 8  1  1 2 for two input levels V/Vy =  2, 3. While 
in Figures 7 and 8 only the case of t t c

0 0 1 0/ .=  is treated, three 
cases t t c

0 0 0 0/ . , . , .= 8  1  1 2 of time intervals are dealt with in 
Figure 9. It can be confirmed that the response converges to a 
steady state irrespective of the impulse timing and t t c

0 0 0/ .=1  
certainly gives the maximum plastic deformation amplitude up. 
This demonstrates the validity of introducing the Input Sequence 
2 for finding the critical timing of multiple impulse even for the 
Input Sequence 1.

On the other hand, Figures  10 and 11 show the time 
histories of relative displacement (relative to base motion), 
relative velocity, restoring force, and the force–deformation 
relation under Input Sequence 2 for V/Vy =  2 and V/Vy =  3, 
respectively. In Figures 10 and 11, ω1 = 2π(rad/s)(T1 = 1.0 s) 

and dy = 0.16 m are used. It can be observed that the realized 
response exhibits a steady state from the initial stage and cor-
responds to a state with the timing of impulse at zero restoring-
force point irrespective of the input level. The critical timing 
t c

0  of multiple impulse computed by Eq.  7b can be obtained 
without repetition and can be used as the critical timing even 
for the Input Sequence 1.

accuracy check by Time-history 
response analysis subjected to the 
corresponding Multicycle sinusoidal input

In order to investigate the accuracy of using the multiple impulse 
(Input Sequence 1) as a substitute of the corresponding multicycle 
sinusoidal wave (representative of the long-duration ground motion 
input), the time-history response analysis of the elastic–plastic SDOF 
model under the multicycle sinusoidal wave has been conducted.

In the evaluation procedure, it is important to adjust the input 
level of the multiple impulse and the corresponding multicycle 
sinusoidal wave. This adjustment is made by using the equivalence 
of the maximum Fourier amplitude and a modification based on 
the response equivalence at some points with different input levels.

Figures 12A,B illustrate the comparison of the ground dis-
placement and velocity between the multiple impulse and the 
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FigUre 10 | response to input sequence 2 for V/Vy = 2: (a) displacement, (B) velocity, (c) restoring force, and (D) force–deformation relation.
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corresponding multicycle sinusoidal wave for the input level 
V/Vy  =  3 In Figures  12A,B, ω1  =  2π(rad/s)(T1  =  1.0  s) and 
dy = 0.16 m are used. The amplitude of the sinusoidal wave 
has been amplified by 1.15 after both Fourier amplitudes of 
the sinusoidal wave and the multiple impulse are adjusted (10 
cycles). This amplification factor 1.15 has been set based on 
the response equivalence at some points with different input 
levels. It should be remarked that the information on critical 
timing shown in Figure 6 is incorporated in Figure 12.

Figure 5 presents the comparison of the maximum plastic 
deformation up/dy and the residual displacement ur/dy of the 
elastic–plastic structure under the multiple impulse and 
the corresponding multicycle sinusoidal wave with respect 
to the input level. It can be seen that the multiple impulse 
provides a fairly good substitute of the multicycle sinusoidal 
wave in the evaluation of the maximum plastic deformation 
up/dy if the amplitudes of both inputs are adjusted appropri-
ately. Although the residual displacement exhibits a rather 
good correspondence between the multiple impulse (Input 
Sequence 1) and the corresponding multicycle sinusoidal 
wave, the Input Sequence 2 shows somewhat larger residual 
displacement. However, since the Input Sequence 2 is used 

mainly for getting the critical timing, this discrepancy does not 
cause any problem.

Figure 13 shows the comparison of displacement responses 
to the multiple impulse (Input Sequence 1) and the correspond-
ing sinusoidal wave for V/Vy = 2, 3 and t t c

0 0 0/ . .=1  In Figure 13, 
ω1 = 2π(rad/s)(T1 = 1.0 s) and dy = 0.16 m are used. It should be 
noted that the phase lag has been adjusted for ease in compari-
son. The ground displacement and velocity of the correspond-
ing sinusoidal wave for V/Vy  =  3 are shown in Figure  12. It 
can be observed that, although a slight difference exists in the 
first cycle, both responses show a fairly good correspondence 
in the steady state. If desired, the residual displacement can 
be evaluated from Figure  5B. As is well known, the residual 
displacement is sensitive to the irregularity in the input in the 
case of the elastic–perfectly plastic system. This issue is beyond 
the scope of this article.

Proof of critical Timing

Figure 14 shows the normalized plastic deformation amplitude 
up/dy with respect to timing of multiple impulse input for vari-
ous input levels V/Vy = 1, 2, 3, 4, 5 (Input Sequence 1). It can be 
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A B

C D

FigUre 11 | response to input sequence 2 for V/Vy = 3: (a) displacement, (B) velocity, (c) restoring force, and (D) force–deformation relation.

confirmed that the critical timing t t c
0 0=  derived from the Input 

Sequence 2 provides the critical case even under Input Sequence 1. 
Repetitive appearance of peaks with the same amplitude indicates 
the existence of multiple solutions. However, the lowest timing 
t t c

0 0 1 0/ .=  is meaningful from the viewpoint of occurrence pos-
sibility of such ground motion with long duration. It is noted that 
the peak at the value of t0 larger than t c

0 (t t c
0 0 1 0/ .> ) implies the 

action of the second impulse after the point with zero restoring 
force. As the input level becomes smaller, the value t t c

0 0/  attaining 
the peak becomes larger.

conclusion

The conclusions may be summarized as follows:

 (1) The multiple impulse input has been introduced as a substi-
tute of the long-duration earthquake ground motion, mostly 
expressed in terms of harmonic waves, and a closed-form 
solution has been derived of the elastic–plastic response 
of an SDOF structure under the critical multiple impulse 
input. It should be mentioned that the critical elastic–plastic 
response is treated mainly in this article.

 (2) While the critical set of input amplitude and input frequency 
(timing of impulse) have to be computed iteratively for the 

A

B

FigUre 12 | comparison of ground displacement and velocity between 
the multiple impulse and the corresponding multicycle sinusoidal wave 
for the input level V/Vy = 3: (a) displacement, (B) velocity.
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FigUre 13 | comparison of responses to multiple impulse and sinusoidal wave (phase lag has been adjusted): (a) V/Vy = 2 and (B) V/Vy = 3.
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multicycle sinusoidal wave that can be obtained directly 
without iteration for the multiple impulse input by introduc-
ing a modified version (only the timing between the first and 
second impulses is modified so that the second impulse is 
given at the zero restoring force). The resonance has been 
proved by using energy investigation, and it has been made 
clear that the critical timing of the multiple impulses can 
be characterized as the time with zero restoring force. This 
decomposition of input amplitude and input frequency has 
overcome the long-time difficulty in finding the resonant 
frequency without repetition. This is one of the most origi-
nal contributions in this article.

 (3) It has been shown that, since only the free vibration appears 
in such multiple impulse input, the energy approach plays 
an important role in the derivation of the closed-form 
solution of a complicated elastic–plastic critical response. 
In other words, the energy approach enables the derivation 
of the maximum critical elastic–plastic seismic response 

without solving the differential equation (equation of 
motion). In this process, the input of impulse is expressed 
by the instantaneous change of velocity of the structural 
mass. The maximum elastic–plastic response after impulse 
can be obtained by equating the initial kinetic energy 
computed by the initial velocity to the sum of hysteretic 
and elastic strain energies. It has been shown that the 
critical inelastic deformation and the corresponding 
critical input frequency can be captured by the substituted 
multiple impulse input depending on the input level. This 
is the second one of the most original contributions in this 
article.

 (4) The validity and accuracy of the proposed theory have 
been investigated through the comparison with the 
response analysis result to the corresponding multicycle 
sinusoidal input as a representative of the long-duration 
earthquake ground motion. It has been made clear that, 
if the adjustment of both inputs is made by using the 
equivalence of the Fourier amplitude and a modifica-
tion based on the response equivalence at some points 
with different input levels, the maximum elastic–
plastic deformation to the multiple impulse exhibits 
a good correspondence with that to the multicycle 
sinusoidal wave.

 (5) While the previous approaches (Caughey, 1960a,b; Iwan, 
1961, 1965a,b) are aimed at constructing an equivalent 
linear structural model to an unchanged input (sinu-
soidal input) in order to enable the simple approximate 
computation of complicated elastic–plastic responses, 
the present article is aimed at finding an equivalent input 
model for an unchanged exact elastic–plastic model. The 
most significant difference between two approaches is 
that, while the previous approaches require the repetition 
both in the computation of equivalent model parameters 
for one input frequency and the computation of the 
resonant frequency giving the maximum response, the 
present approach does not require any repetition in the 

FigUre 14 | Plastic deformation amplitude with respect to timing of 
multiple impulse input for various input levels (input sequence 1).
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computation of the critical input timing (resonant fre-
quency) and the critical response. The present approach 
also enables the computation of the steady-state response 
for an elastic–perfectly plastic model which cannot be 
treated by the previous approaches.
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