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Transmission line towers are usually analyzed using linear elastic idealized truss models. 
Due to the assumptions used in the analysis, there are discrepancies between the actual 
results obtained from full-scale prototype testing and the analytical results. Therefore, 
design engineers are interested in assessing the actual stress levels in transmission line 
towers. Since it is costly to place sensors on every member of a tower structure, the best 
locations for sensors need to be carefully selected. This study evaluates a methodology 
for sensor placement in transmission line towers. The objective is to find optimal locations 
for sensors such that the real behavior of the structure can be explained from measure-
ments. The methodology is based on the concepts of entropy and model falsification. 
Sensor locations are selected based on maximum entropy such that there is maximum 
separation between model instances that represent different possible combinations of 
parameter values which have uncertainties. The performance of the proposed algorithm 
is compared to that of an intuitive method in which sensor locations are selected where 
the forces are maximum. A typical 220-kV transmission tower is taken as case study 
in this paper. It is shown that the intuitive method results in much higher number of 
non-separable models compared to the optimal sensor placement algorithm. Thus, the 
intuitive method results in poor identification of the system.

Keywords: sensor configuration, structural monitoring, transmission line tower

inTrODUcTiOn

Transmission line towers form a significant part of the total cost of power transmission infrastruc-
ture. Generally, most of the transmission line towers employ steel lattice structures. Lattice towers are 
presently designed using traditional stress calculations obtained from linear elastic idealized truss 
analysis in which nodes are assumed to be concentrically loaded and members are pin connected. 
However, there are many discrepancies between the actual measurements obtained from full-scale 
prototype testing and the analytical results. Factors, such as joint eccentricity, connection rigidity, 
geometric and material non-linearities, uneven foundation, etc., are some of the reasons for varia-
tions in these results. Most structures are analyzed, typically using finite element software, by creating 
simplified models. However, real transmission line tower structures differ from idealized conditions 
in several aspects. Most of the lattice towers employ angle sections as members. These members that 
are connected with bolted connections introduce eccentricities between the line of action of the 
load/force and the longitudinal principal axis of the member. Zhang et al. (2013) point out that there 
are discrepancies in the structural behavior between the idealized model and the model with joint 
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eccentricities included. Similarly, geometric non-linearity leads 
to significant differences in the displacement values (Vinay et al., 
2014). Generally, truss element connections are assumed to be 
either pinned or rigid. However, usually semirigid connections 
exist (Bjorhovde et al., 1990; Kartal et al., 2010). Prasad Rao and 
Kalyanaraman (2001) have performed non-linear finite element 
analysis taking into account the effects, such as member joint 
eccentricity, rigidity of joints, and material non-linearity. It was 
found that the current methods of design based on the forces 
obtained from a linear analysis are not consistent with test results.

Engineers are interested in experimental results in order to 
determine the deviation of measured values from the predictions 
of analysis models. However, it may not be practical to measure 
the strains or deflections on each and every member. Hence, it is 
important to select the best locations for placing the sensors such 
that the real behavior of the structure is adequately explained. 
This issue had been investigated as early as 1978 (Shah and 
Udwadia, 1978). In this work, sensor placement was formulated 
as an optimization problem in order to minimize the error in the 
parameter estimates. Over the years, several methods have been 
proposed by various authors. Kammar and Yao (1994) proposed 
an iterative method called the Effective Independence method, 
based on the maximization of the determinant of the Fisher infor-
mation matrix for optimal sensor placement. Meo and Zumpano 
(2005) considered the problem of locating sensors on a bridge 
structure with the aim of maximizing the data information so that 
dynamic structural behavior can be fully characterized. Some 
of the above techniques are developed specifically for vibration 
(dynamic) measurements. Vibration measurements are generally 
more expensive than static measurements using strain gages.

Generic sensor placement methods that can be applied to 
static measurements are also found in the literature. Selvaraj 
et al. (2013) conducted experimental analysis on the composite 
transmission tower using strain gages. This work did not consider 
the effects of modeling and measurement errors. In addition to 
that, uncertainties were not considered, which subsequently led 
to discrepancies between simulation and experimental results.

Papadimitriou (2004) addressed the theoretical and computa-
tional issues in the selection of the optimal sensor configuration 
for parameter estimation in structures. He proposed to quantify 
the uncertainty in the parameter estimates using information 
entropy. The concept of information entropy (H) was introduced 
by Shannon (1948) and is defined as

 
H P x P xi i=− ( ) ( )∑ i

log2  (1)

where Pi(x) = probability of finding a value x within an interval i.
A uniform probability distribution gives the maximum value 

for the entropy. If all the values of a variable lie in the same interval, 
the entropy of that variable has the minimum value of 0. Hence, 
the entropy reflects the inhomogeneity, uncertainty, or disorder 
in a system. In the work of Papadimitriou (2004), among all sen-
sor configurations, the optimal sensor configuration is selected as 
the one that minimizes the information entropy.

Other authors have also used entropy as a criterion for select-
ing optimal sensor locations. Lam et  al. (2011) minimized the 
information entropy measure so that the uncertainty in the 

identification results was lower. They concluded that the top and 
the middle of the tower are generally good locations for sensor 
placement. Robert-Nicoud et  al. (2005) proposed a different 
approach using the same concept of entropy. They chose the 
location and type of measurement devices such that the entropy 
of predictions (output variables) of candidate models is the maxi-
mum. Here, candidate models represent possible variations in the 
values of model parameters which are uncertain, such as support 
conditions and material properties. In this work, sensors are used 
to falsify models whose predictions do not match measurements 
and the approach is called “model falsification,” in order to con-
trast it with the optimization approach which is more common.

In the model falsification approach, the goal is to identify 
the candidate models that reasonably explain observations. A 
model is selected to be a candidate if its predictions match the 
measurements at each and every sensor location within the 
threshold of modeling and measurement errors. Measurement 
errors are estimated using the sensor precision data provided 
by manufacturers. Estimating modeling errors is more complex 
and involves specific knowledge about the domain (Vernay et al., 
2015). The falsification process starts with generating a discrete 
population of model instances, which are created by randomly 
(or systematically) assigning values to parameters of a model class 
that have uncertainties. Since a large number of combinations of 
parameter values are possible and it is computationally expensive 
to evaluate each and every combination, a representative popula-
tion is selected as the initially model set. The prediction of each 
model in the population is compared with the measurement at 
each sensor location and if the difference is greater than the error 
threshold, the model is eliminated from the set. The remaining 
models are accepted as the set of candidates. The process does 
not aim to select a single “correct” model; instead a set of models 
whose predictions are consistent with the measurements are 
selected. These models are used to predict the ranges of values of 
output variables at other unmeasured locations.

In order to support model falsification, the best measurement 
system should produce maximum separation between candidate 
models. The degree of separation between model predictions is 
evaluated using the entropy function. Maximum disorder exists 
when parameter values show wide dispersion. An ideal measure-
ment system results in maximum variation in predicted responses 
of candidate models at the measured locations. Therefore, the 
location and type of measurement devices are determined such 
that the entropy of the set of model predictions is the maximum.

Model falsification approach has been applied to many full-
scale structures details of which can be found in Goulet and 
Smith (2013a,b), Goulet et al. (2014), etc. This approach was also 
used for the analysis of wind flow around buildings using CFD 
by Papadopoulou et al. (2014). They replaced entropy with “joint 
entropy” in order to avoid selection of sensors with duplicate 
information content.

Wang et al. (2009) compared the performance of four existing 
criteria for an optimal sensor layout, namely maximum entropy 
of the measured variables, minimum residual entropy of the 
system state variables given the sensor measurements, maximum 
mutual information between the state variables that have not 
been measured and the sensor measurements; and maximum 
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FigUre 1 | Views of the transmission tower selected as case study.
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information coverage of the sensor measurements. They found 
out that there is no criterion that gives the best predictive results 
for all the environmental models tested.

Another class of methods for sensor placement uses the concept 
of probability updating (Beck, 2010). Flynn and Todd (2010) pre-
sent a flexible sensor placement strategy within a detection theory 
framework, which considers the maximization of probability of 
detection along with minimization of costs, thus supporting 
decision making. They propose a Bayes risk-based performance 
metric to evaluate the optimal sensor configuration such that it 
includes both cost and detection probability. Genetic algorithm 
is used with one of the two criteria, i.e., either global detection 
rate or global false alarm rate as the fitness function to determine 
the best configuration. Azarbayejani et al. (2008) demonstrated 
a methodology to establish the probability distribution function 
that identifies the optimal sensor locations such that damage 
detection is enhanced. The approach used the weights of a neural 
network trained from simulations using a priori knowledge about 
damage locations and damage severities to generate a normalized 
probability distribution function for optimal sensor allocation. 
Even if one or more sensors fail, additional sensors are available 
as redundant sensors. These additional sensors were found out by 
computing the significant factor of each sensor and then sensors 
with high magnitudes are considered as critical sensors.

One of the difficulties with Bayesian updating is in estimating 
a priori probabilities. The results are sensitive to the probability 
distributions and correlations. Therefore, the model falsification 
approach (Robert-Nicoud et al., 2005; Goulet and Smith, 2013b) 
appears to be more robust. This approach is adopted in this work.

OBJecTiVes anD MeThODOlOgY

The overall goal of this work is to develop a generic methodology 
to determine optimal sensor locations for the system identifica-
tion of transmission line towers. Design engineers are interested 
in assessing the actual stress levels in transmission line towers. 
However, it will be costly to place sensors on each and every mem-
ber of a tower structure since transmission towers typically con-
sist of a few hundred members and joints. Therefore, a scientific 
methodology for determining sensor locations is required so that 
the real behavior of the structure can be explained with minimum 
number of sensors. Since the probabilities are difficult to establish, 
Bayesian updating procedures are not considered for system iden-
tification. Instead, the model falsification approach is adopted and 
an entropy-based sensor placement strategy is used. In order to 
bring out the advantages of this strategy, the performance of the 
optimal sensor configuration is evaluated by comparing it with 
a traditional intuitive method. The traditional rule of thumb is 
to place sensors where the stresses are the maximum. In many 
experimental methods, this rule of thumb is followed and no 
systematic sensor placement method is followed. Therefore, in 
this work, we aim to show that the maximum stress criterion is 
not appropriate for identifying the best sensor locations.

The research methodology consists of the following steps:

 1. Selection of a case study
 2. Generation and analysis of model instances

 3. Identification of optimal sensor locations using entropy-based 
sensor placement strategy

 4. Computation of the performance metric for the optimal sen-
sor configuration

 5. Computation of the performance metric for the intuitive sen-
sor configuration

 6. Comparison of results from steps 4 and 5. These steps are 
described in more detail below.

case study
A typical 220-kV transmission tower with square base con-
figuration is modeled (Figure 1). The structural analysis software 
STAAD Pro V6 was used for the analysis. Design data is sum-
marized in Table 1. Force calculations are performed as per the 
Indian standard code IS 802 and one critical load combination 
was chosen for illustration. This loading condition involves one 
broken earth line resulting in asymmetric loading. The details of 
the loading are summarized in Table 2.

From Table  2, a load case with security loading along with 
earth wire broken condition is considered while conductors 
remain intact. Then the combination load case is formulated 
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TaBle 1 | Design data for a typical 220-kV transmission tower.

sl no. Description Design parameter

1 Tower type and deviation
Small angle tower – DB 0–15° deviation

2 Basic span 320 m

3 conductor name and properties
(a) Number and code name of conductor 
per phase

Single conductor
ACSR “DRAKE”
Al – 26/4.44
Steel – 7/3.45

(b) Diameter 28.14 mm
(c) Unit weight 1.624 kg/mm
(d) Cross-sectional area 468.5 mm2

(e) Ultimate tensile strength 14175 kg
(f) Modulus of elasticity 7730 kg/mm2

(g) Coefficient of linear expansion (°C) 19.0 E−06

4 earth wire name and properties
GSW
(a) Number and code name of earth wire GSW 7/3.15
(b) Diameter 9.45 mm
(c) Unit weight 0.428 kg/m
(d) Cross-sectional area 54.55 mm2

(e) Ultimate tensile strength 5710 kg
(f) Modulus of elasticity 19330 kg/mm2

(g) Coefficient of linear expansion (°C) 11.5 E−06

5 Design wind pressure and temperature
(a) Wind zone Wind zone (2): 39 m/s
(b) Terrain category 2
(c) Reliability level 1
(d) Minimum temperature for conductor/
ground wire

10°C

(e) Everyday temperature for conductor/
ground wire

32°C

(f) Maximum temperature for conductor 85°C
(g) Maximum temperature for earth wire 
GSW

53°C

6 clearance requirement
(a) Normal ground clearance 7 m
(b) Allowance for sag error 4% of maximum sag
(c) Shielding angle 30°
(d) Midspan clearance 8.50 m

7 live metal clearance
Tension string
(i) Swing of jumper
for 0° swing 2130 mm
for 10° swing 2130 mm
for 20° swing 1675 mm
for 30° swing 915 mm

8 insulator length 3345 mm
Insulator diameter 255 mm
Number of insulator string 2
Weight of insulator string max 300 kg
Weight of insulator string min 150 kg

9 spans
(i) Wind span
(a) Normal condition 320 m
(b) Broken condition 192 m
(ii) Weight span (max/min)
Tower type DB
(a) Normal condition 640/−640 m
(b) Broken condition 384/−384 m

November 2015 | Volume 1 | Article 244

Raphael and Jadhav Sensor Placement

Frontiers in Built Environment | www.frontiersin.org

by considering the dead weight of the structure and the above 
mentioned primary load case. This combination load case is 
considered for the linear analysis of transmission tower. These 
point loads are applied at each node of six conductors and one at 
earth wire node accordingly.

generation of Model instances
Application of the model falsification approach involves generat-
ing multiple model instances by selecting different combination 
of values of model parameters that are uncertain. One model 
instance represents one set of combination of values of param-
eters and the corresponding results of the analysis. Linear static 
analysis of the transmission tower is performed. Uncertainties, 
such as support settlements, variations in material properties of 
steel, variations in joint connection rigidity, and support fixity 
conditions are modeled by selecting a range of values for the 
model parameters representing these effects. A series of model 
instances are generated by taking different combinations of values 
of these parameters as given in Table 3.

Four conditions of connections are used, namely, pinned, 
rigid, and partial moment resisting connections of 50 and 75% 
rigidity. In a model, all the joint connections have the same 
fixity condition except at the supports. Assuming the same type 
of connections for all the joints is justified because all the con-
nections involve similar design details and are fabricated using 
standard mechanized procedure. Different combinations of fixity 
conditions are used for the four supports. Four values of support 
settlements are used, namely 1, 1.5, 2, and 2.5 mm. Each value 
of support settlement is used for each support that is assumed 
to have settled. Different combinations of the four supports 
are assumed to have settled in different model instances. Two 
extreme variations of Young’s modulus for steel are used. They 
are 180 and 220 GPa.

By taking different combinations of the above variables, 555 
model instances are generated. The model responses considered 
are strains in the members of the transmission line tower in the 
axial direction. Then for each model instance, different strain 
values are tabulated for different members in the tower. All the 
members are considered as probable locations where sensors 
could be placed. In total, 320 probable sensor locations are 
considered.

identification of Optimal sensor locations
The entropy function is used to evaluate the degree of separa-
tion between the model predictions. Putting sensors at locations 
where model predictions have the maximum variation helps to 
eliminate maximum number of candidate models after a meas-
urement is taken. Hence, sensor configuration is selected such 
that the entropy of the set of model predictions is the maximum. 
A greedy algorithm is adopted in which sensors are added one 
at a time based on maximum entropy. This is a variation of the 
joint entropy algorithm used by Papadopoulou et al. (2014). The 
algorithm is described in pseudocode below:

Step 1: Initialize a list to store the sensor locations that have 
been selected. To start with, this list is empty. Initialize a list to 
store sets of model instances that cannot be separated further 
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TaBle 2 | summary of input loading for analysis of transmission tower.

Variable normal/broken 
condition

loads for all load cases (kg)

Transverse Vertical longitudinal

V-max V-min

15 – Deg – DeV – reliability condition (100% wind)

Earth wire NC 940 277 −276 0

Conductor NC 2652 1640 −739 0

15 – Deg – DeV – security condition (100% wind)

Earth wire NC 940 277 −276 0

BWC 510 166 −166 2084

Conductor NC 2652 1640 −739 0

BWC 1536 1224 −324 5627

15 – Deg – DeV – safety normal condition (nil wind)

Earth wire NC 285 706 −552 0

Conductor NC 926 3942 −1478 0

15 – Deg – DeV – safety broken condition (nil wind)

Earth wire Intact 285 706 −552 819

Broken 143 485 −332 1091

Conductor Intact 926 3942 −1478 2658

Broken 463 3111 −648 3544

15 – Deg – DeV – anti cascading condition (nil wind)

Earth wire NC 285 277 −277 1091

Conductor NC 926 1640 −740 3544

TaBle 3 | Variables and their values for generating models.

Joint and support 
fixity

support settlements 
(mm)

Young’s modulus 
(gPa)

0.0 (Pinned) 1 180

0.5 1.5 220

0.75 2

1.0 (Rigid) 2.5
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using the sensors that are currently selected. Remove the parent 
set from the list and add the subsets into the list if the number of 
model instances in the subset is more than one.

Step 5: If there is any more sensor location that has not been 
selected, repeat from Step 2.

Additional details about these steps are provided in the fol-
lowing sections.

Creating Histograms of Predictions
In order to compute the entropy of predictions at a given loca-
tion, a histogram needs to be created. The interval width of the 
histogram is chosen based on this principle: when the measured 
value is at the midpoint of an interval, all the model predictions 
that are within the threshold of errors should lie within that 
interval. Thus, the half width of the interval is equal to the error 
threshold. There are errors in modeling as well as measurements. 
Finite element analysis does not give accurate results because of 
effects that are not modeled and the assumptions involved in 
formulating the mathematical model. Similarly, there are errors 
in measurements because of the precision and resolution of 
sensors. Hence, the error threshold is computed as the sum of 
the measurement and modeling errors. This is taken as the half 
width of the histogram.

In order to create the histogram, the range of predictions 
(ymin, ymax) of all the model instances at the current location is 
computed. This range is divided into a number of intervals using 
the error threshold (e) as follows:

 
w

y y
e

=
−max min  (2)

with the current sensor configuration. To start with, the list 
contains a single element, which is the initial set of model 
instances.

Step 2: Loop over each model set i in the list of non-separable 
model sets.

Step 2.1: Loop over each sensor location j that has not been 
selected so far.

Step 2.1.1: Compute the histogram of predictions of all the models 
in the current set at the current sensor location.

Step 2.1.2: Compute the entropy of E(i, j) of the ith model set for 
the jth location.

Step 2.1.3: Move to the next sensor location and continue the loop 
2.1.1.

Step 2.2: Select the next model set and continue the loop 2.1.

Step 3: Select the sensor location j with the highest entropy E(i⋅j) 
among all the model subsets i. Add this location to the list of 
selected sensor locations.

Step 4: Loop over all the sets in the list of non-separable model 
sets. Divide each set into subsets that cannot be separated further 
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FigUre 2 | Frequency histogram for location 38. The prediction range at 
this location is divided into intervals of equal width according to the estimate 
of error threshold. The horizontal axis represents the interval number and the 
vertical axis the number of models lying in the interval.
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where w is the width of the interval. The range (ymin, ymax) is 
divided into intervals of equal width w. Then, each model 
instances is assigned to one interval according to the predicted 
value at this location. The number of model instances that lie 
within an interval (Ni) is divided by the total number model 
instances (N) to compute the probability of the interval Pi(x) 
as follows:

 
P x N

Ni
i( ) =  (3)

The probability Pi(x) is used to compute entropy as given by 
Eq. 1.

In order to estimate modeling errors, effects due to eccen-
tricity and P-Delta effect are considered. Separate analysis was 
conducted with and without these effects and a rough estimate 
of modeling errors was made. Mean variation due to eccentric 
connections was found to be 6.73% and that due to P-Delta 
effect was found to be 7.05%. Measurement errors depend on 
the accuracy of sensors used. Here, HBM strain gage sensors 
are used with an accuracy of 0.1%. The total error is estimated 
as the sum of the absolute values of modeling and measurement 
errors (Vernay et  al., 2015). Therefore, the error threshold 
is taken as 13.88%. It is emphasized that this is only a rough 
estimate and there are other sources of errors which have not 
been included. For example, there are inherent errors in the 
mathematical model based on Bernoulli beam hypothesis that 
is used to calculate the strain due to eccentric connections. Since 
the interval width of the histogram depends on the estimate of 
errors, the results are likely to be affected by the errors that are 
not considered. For example, if the errors are underestimated, 
the candidate models which are placed in adjacent intervals 
might be wrongly classified as separable. On the other hand, 
if the errors are overestimated, many candidates will be placed 
in the same interval and more sensors are required to separate 
them. The sensitivity to the error threshold is a limitation of the 
present work.

Dividing Model Instances into Subsets
After a sensor is chosen, the measurement from that sensor 
can be used to eliminate model instances whose predictions 
lie within other intervals. The model instances whose predic-
tions lie within the same interval as the measurement cannot 
be separated with this sensor. Therefore, each set of model 
instances is further subdivided after a sensor is selected. Since 
the measured value could be within any interval, one new 
subset is created for each interval which contains more than 
one model instance. Since the initial set of model instances 
is hierarchically divided after each new sensor is added, this 
procedure automatically takes care of redundant sensor infor-
mation (mutual information between sensors). That is, only 
those model instances that cannot be separated by the previ-
ous sensor configuration are subdivided by the new sensor. 
Since the entropy is calculated separately for each subset, it is 
conceptually the same as the joint entropy calculation used in 
Papadopoulou et al. (2014).

computation of the Performance Metric
There are many possible ways of evaluating the performance 
of a sensor configuration. Here, the objective is to identify the 
state of the system. Hence, the metric chosen is the number 
of models that cannot be separated with the sensor configura-
tion. An ideal configuration should be able to separate all the 
models and the number of non-separable models should be 
0. However, this may not be possible in practice because of 
the low accuracy of sensors and uncertainties in modeling. In 
general, the number of non-separable models decreases with 
the addition of a new sensor. Hence, the performance of the 
sensor configuration can be compared only for a fixed number 
of sensors. The lower the number of non-separable models 
with a specified number of sensors, the better is the sensor 
configuration.

In practice, there are many other criteria that are important for 
selecting sensor types and their locations. Cost and feasibility of 
installation are important considerations. These criteria are not 
included in the present work.

Validation of results
Proposed optimal sensor placement methodology is compared 
with the intuitive method of sensor placement, that is, by locating 
members having maximum stress. This comparison is performed 
as follows:

 1. Sensors are added one by one according to the optimal sensor 
placement algorithm. For each configuration, the number of 
non-separable models is computed.

 2. The locations having maximum stress are selected one by 
one. By placing a sensor on each of these members, the 
number of non-separable models using the intuitive method 
is computed.

 3. The number of non-separable models using the two methods 
is compared for the same number of sensors selected.
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TaBle 4 | locations in order of decreasing entropy function.

locations entropy

38 2.774

32 2.773

31 2.754

284 2.739

FigUre 3 | Frequency histogram for location 84. The prediction range at 
this location is divided into intervals of equal width according to the estimate 
of error threshold. The horizontal axis represents the interval number and the 
vertical axis the number of models lying in the interval.

FigUre 4 | locations showing first the four highest values of entropy.
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resUlTs

The histograms for the two locations 38 and 84 are shown in 
Figures 2 and 3 in order to illustrate the advantage of entropy 
calculations. The location 38 has the highest entropy value of 
2.77 among all the locations. It can be seen that the models are 
fairly uniformly distributed among all the intervals. It means 
that once a measurement is taken, all the models in other inter-
vals can be falsified, and it results in better identification. In 
contrast, at location 84 (Figure 3), most models lie within one 
interval. If the measured value lies within this interval (which 
has the highest probability), it is able to falsify only six models 
which are in the other intervals. The entropy at this location is 
close to 0, and it means that it is not a good location to place 
the sensor.

In the first iteration of optimal sensor placement, the entropy 
is computed for all the locations. The first 10 locations in decreas-
ing order of entropy are shown in Table 4.

In Table 4, location 38 has the highest entropy value of 2.774. 
Hence, this location is chosen as the first optimal sensor location. 
The above four locations are represented in the transmission 
tower as shown in Figure 4. All the four locations appear to be 
below the waist of transmission tower.

Repeating the steps, the best locations selected subsequently 
are the members 253, 257, 201, 34, and 1. The maximum number 
of non-separable models decreases to two, after selecting six 
sensors. It does not decrease further after adding more sensors. 
This is summarized in Table 5 and the locations are shown in 
Figure 5.

The first three sensor locations are on the second segment 
of the transmission tower from the bottom. The first sensor 
is on a transverse bracing and the other two on a K-bracing. 
The fourth sensor location is at the top of the tower, where the 
wires are supported. The fifth sensor location is again on the 
second segment, where the first three sensors are located. The 
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Beam axial force (kn)

2 334.49

215 333.89

22 302.19

248 301.73

214 287.31

4 286.54

254 259.18

24 258.54

410 254.62

44 220.71
FigUre 5 | Optimal sensor locations.

TaBle 5 | Optimal sensor locations.

location Max non-separable model instances

38 121

253 68

257 21

201 10

34 3

1 2

2 2
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sixth sensor is on a leg that is connected to the foundation. 
This configuration of six sensors is able to separate out the 
model instances in the initial set such that there are at most 
two model instances in a subset. It should be noted that all 
the locations in Table 4 having highest entropy values are not 
selected. This is because the second location with the highest 
entropy duplicates information contained in the first location. 
The process of hierarchical separation of models automati-
cally eliminates sensor locations with duplicate information 
content.

Generally, engineers would choose sensor locations by consid-
ering either maximum forces or stress values or both. Table 6 lists 
out the members in the ascending order of axial forces.

The heavily loaded members in a transmission tower are 
generally leg members. Hence, when we place sensors based 
on maximum forces, possible locations will be at leg mem-
bers as shown in Figure  6. This is completely different from 
the locations identified by the proposed sensor placement 
methodology.

The performance of the intuitive method is evaluated using 
the metric of the maximum number of model instances that can-
not be separated. It is compared with that of the optimal sensor 
placement methodology. For each selected number of sensors, 
the metrics for the two algorithms are plotted in Figure 7. It can 
be seen that the maximum number of non-separable models 
is much higher using the intuitive method compared to the 
optimal method. For example, with five sensors, the intuitive 
method results in a maximum of 13 non-separable models, 
while the optimal algorithm results in just three. This shows 
that the optimal algorithm has superior performance over the 
intuitive method. The gap between the two methods seems 
to reduce as more sensors are added. This is because some of 
the sensors in the optimal configuration having high model 
separation potential get selected at later stages of the intuitive 
method. However, since the intuitive method has no mecha-
nism to detect duplicate and redundant information provided 
by sensors, it will require more sensors to achieve the same level 
of model separation.

The conclusion related to the superiority of the optimal 
sensor placement algorithm is based on a single case study. 
By repeating the study using towers with different geometries 
and loading conditions, the generality of the conclusion could 
be verified. However, it is expected that the present sensor 
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sensor placement methods.
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placement strategy will have superior performance since it 
has firm foundations on information theory, whereas the 
intuitive method lacks scientific basis. Future work involves 
comparing the performance of other sensor placement strat-
egies and conducting full-scale experiments to validate the 
results.

sUMMarY anD cOnclUsiOn

This paper presented a methodology for the placement of sensors on 
transmission line towers for explaining its actual structural behavior. 
The methodology is based on the concepts of entropy and model fal-
sification. Sensor locations are selected based on maximum entropy 
such that there is maximum separation of model instances that 
represent different possible combinations of parameter values that are 
uncertain. Thus, the optimal combination of sensor locations helps to 
narrow down to a few possible explanations of structural behavior.

The performance of the proposed algorithm is compared to 
that of an intuitive method in which sensor locations are selected 
where the forces are maximum. It is shown that the intuitive 
method results in much higher number of non-separable models 
compared to the optimal sensor placement algorithm, especially 
when fewer sensors are used. The following are the specific con-
clusions made from the present study:

•	 Shannon’s entropy function is a useful tool which can identify 
the variability between the candidate models at possible sensor 
locations.

•	 The methodology using the entropy function provides support 
for sensor placement in the condition assessment of transmis-
sion towers.

•	 The part below the waist of the transmission tower is prone 
to significant variations under the considered modeling 
assumptions, which is evident from the fact that the top sensor 
locations are almost always below the waist of the tower.

•	 Proposed method of placing sensors helps to identify behavior 
models that can explain the real behavior of transmission tow-
ers, which cannot be expected from the conventional method.

•	 This methodology can minimize unnecessary data collection 
and interpretation by avoiding redundant sensors that provide 
no additional information.

The limitations of the present study are summarized as follows:

•	 Factors such as cost and ease of installation have not been 
included.

•	 The interval width of the histogram depends on estimates 
of  modeling and measurement errors; hence, the optimal-
ity of the proposed sensor network is sensitive to the accuracy 
of these estimates.

•	 The conclusions are drawn using a single case study.
•	 Other sensor placement algorithms have not been compared.
•	 Actual experiments have not been carried out and the results 

are based purely on theoretical analysis.

Despite these limitations, the proposed methodology is 
expected to be a valuable tool to engineers in their decision-
making process.
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