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The connection of two building structures with dampers is one of the effective vibration 
control systems. In this vibration control system, both buildings have to possess different 
vibration properties in order to provide a higher vibration reduction performance. In addi-
tion to such condition of different vibration properties of both buildings, the connecting 
dampers also play an important role in the vibration control mechanism. In this paper, 
the effect of non-linearity of connecting dampers on the vibration control of connected 
building structures is investigated in detail. A high-damping rubber damper and an 
oil damper with and without relief mechanism are treated. It is shown that while the 
high-damping rubber damper is effective in a rather small deformation level, the linear oil 
damper is effective in a relatively large deformation level. It is further shown that while the 
oil dampers reduce the response in the same phase as the case without dampers, the 
high-damping rubber dampers change the phase. The merit is that the high-damping 
rubber can reduce the damper deformation and keep the sufficient space between both 
buildings. This can mitigate the risk of building pounding.

Keywords: building connection, passive damper, non-linearity, structural control, high-damping rubber damper, 
oil damper, relief mechanism, smart structure

inTrODUcTiOn

The connection of multiple building structures with dampers is one of the effective vibration control 
systems (for example, Iwanami et  al., 1996; Luco and de Barros, 1998). In the case where these 
building structures have different natural frequencies, each building disturbs the vibration of other 
building structures. Furthermore, it can be assumed that the properties of connecting dampers affect 
strongly the performance of vibration reduction of such connected building structures. It appears 
therefore useful to investigate the effect of the non-linear properties of connecting dampers on the 
vibration reduction mechanisms of connected building structures.

A high-damping rubber damper (Tani et al., 2009) and an oil damper with and without relief 
mechanism (Soong and Dargush, 1997; Hanson and Soong, 2001) are treated in this paper. The 
high-damping rubber dampers have a high performance of energy absorption for a cyclic loading 
and possess not only the large elastic–plastic deformation capacity like metallic hysteretic dampers 
but also the sufficient amount of viscous damping capacity (see Tani et al., 2009). Especially the large 
deformation capacity (almost 300% shear deformation) and the extremely large performance for 
accumulated plastic deformation are two major advantages over other dampers. On the other hand, 
the relief mechanism is usually adopted in the oil dampers in order to decrease the force applied to 
surrounding structural members.
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FigUre 1 | Force–velocity relation of oil damper with relief 
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FigUre 2 | connecting damper properties: (a) oil damper and (B) 
high-damping rubber damper.
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As for the vibration control of buildings with connecting 
dampers, Iwanami et al. (1996) investigated the optimal quantity 
of connecting elements (stiffness and damping). This theory is 
well known as “Fixed-Point Theory.” In this method, the stiff-
ness of the connecting element is used for adjusting the heights 
of the fixed points, and the minimum transmissibility has been 
achieved by the damping of the connecting element. Luco and de 
Barros (1998) derived an optimal interconnecting element loca-
tion in the connected building system. Takewaki (2007, 2015) and 
Fukumuto and Takewaki (2015) introduced the energy approach 
in the design of buildings with the connecting damper system 
in which the energy transfer function plays a key role for assess-
ing the effectiveness of the connecting dampers. Cimellaro and 
Lopez-Garcia (2011) studied the optimal damper distribution in 
the buildings with a connecting damper system. Patel and Jangid 
(2011) investigated the response of two buildings connected by 
friction dampers. Richardson et al. (2013a,b) developed a closed-
form expression of the optimal connecting dampers, which 
minimize the absolute displacement transmissibility.

It is shown in this paper that while the high-damping rub-
ber damper is effective in a rather small deformation level, the 
oil damper is effective in a relatively large deformation level. 
Furthermore, it will be remarked that the response velocity in the 
oil dampers is too large compared to the limit value specifically 
in low-rise buildings and careful attention should be paid in their 
installation to low-rise buildings.

MODeling OF nOn-linear DaMPers 
anD cOnnecTeD BUilDing 
sTrUcTUres

Modeling of non-linear Dampers
The oil damper used in this paper obeys the following damper 
force fv – relative velocity u  relation as shown in Figure 1.
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where κ denotes the ratio of the post-relief damping coefficient to 
the initial value cv and ηV,c is the damping force at 0 velocity in the 
post-relief relation. When the velocity attains the specific value 

ur , the relief mechanism works and goes into the second branch. 
An example of the damping force–relative displacement relation 
of an oil damper without and with the relief mechanism is shown 
in Figure 2A.

The high-damping rubber damper (called high-damping rub-
ber later) used in this paper possesses the hybrid characteristics 
of hysteretic one like metallic dampers and viscoelastic one (Tani 
et al., 2009). The damper is used as a shear deformation type and 
the area and thickness of the high-damping rubber damper are the 
characteristic parameters. An example of the shear stress–shear 
strain relation is presented in Figure 2B.

Modeling of connected Building 
structures
In the usual connecting damper systems, the fundamental natural 
frequency of the main structure is smaller than that of the sub-
structure as shown in Figure 3.

Consider first the single-degree-of-freedom (SDOF) model, 
subjected to the base acceleration xg , of the main structure (build-
ing A) connected with the substructure (building B) using a con-
necting damper as shown in Figure 4. Let mA, kA, and cA denote the 
mass, stiffness, and damping coefficient of the main structure and 
let mB, kB, and cB denote those of the substructure. The damping 
coefficient of the oil damper is denoted by cD and the area of the 
high-damping rubber damper is by AD. The thickness of the high-
damping rubber damper is to be given. The model parameters of 
this system are shown in Table 1 and the properties of the damp-
ers are presented in Table 2. The quantities of oil dampers and 
high-damping rubbers have been determined so that the pre-relief 
damping ratio in the lowest mode due to the added oil damper is 
about 0.07 and the response reduction ratio by the high-damping 
rubber is almost equivalent to that by the oil damper.

nOn-linear resPOnse OF 
cOnnecTeD BUilDings WiTh  
nOn-linear DaMPers: harMOnic 
eXciTaTiOn

input Base acceleration
Figure 5 shows the input base acceleration. The input frequency 
has been determined so that the frequency is resonant to the natural 
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FigUre 5 | input base acceleration.

TaBle 2 | comparison of high-damping rubber and oil damper.

High-damping 
rubber

Area AD 980,000 (mm2)

Thickness 0.015 (m) [limit 
deformation:  
0.045 (m)]

Oil damper 
with relief 
mechanism

Damping coefficient cD 1,200 [kN/(m/s)]
Relief force fr 250 (kN)
Damping coefficient ratio κ 0.05
Limit damping force ratio α (limit 
damping force/relief load)

1.1 [limit damping force 
275 (kN)]

TaBle 1 | Model parameters.

Building A (main structure) Mass mA 3.0 × 105 (kg)

Stiffness kA 147 (kN/mm)

Damping ratio hA 0.02

Natural period TA 0.28 (s)
Building B (substructure) Mass mB 3.0 × 105 (kg)

Stiffness kB 294 (kN/mm)
Damping ratio hB 0.02
Natural period TB 0.20 (s)

Building A
(main structure)

Building B
(sub structure)

,A Ak c ,B Bk c

Am Bm,d dc A

gx&&

FigUre 4 | sDOF model, subjected to the base acceleration xg, of the 
main structure (building a) connected with the substructure (building 
B) using a connecting damper.

Sub structure (stiffness
large)

Connecting damperMain structure (stiffness
small)

FigUre 3 | connecting damper systems in which the fundamental 
natural frequency of the main structure is smaller than that of the 
substructure.
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frequency of the main structure (Takewaki, 2006; Takewaki and 
Tsujimoto, 2011; Murase et  al., 2013; Fukumuto and Takewaki, 
2015). After a transition process, the input goes into a steady state.

response characteristics of connected 
Buildings with Different connecting 
Dampers and response characteristics 
with respect to input level
Figure  6 shows the relative building displacements without 
damper and with high-damping rubbers or oil dampers 
(TB  =  0.20  s, oil dampers with relief mechanism). In order to 
investigate the effect of the separation of building natural periods 
between buildings A and B, two cases (TB  =  0.16, 0.24  s) are 

added to the model shown in Table 1. However, since the input 
frequency is resonant to the natural period of building A, the 
modification of the natural period of building B does not affect so 
much the relative building displacements. Therefore, the figures 
for the cases (TB  =  0.16, 0.24  s) are not shown here. It can be 
observed from Figure  6 that while the oil damper reduces the 
vibration amplitude without the phase change, the high-damping 
rubber modified the vibration phase slightly. Figure 7 illustrates 
the horizontal displacement of building A and building B with 
and without high-damping rubbers. On the other hand, Figure 8 
presents the horizontal displacements of building A and building 
B with and without oil dampers. It can also be seen that while the 
oil damper reduces the vibration amplitude without the phase 
change, the high-damping rubber changes the vibration phase. 
Furthermore, as the separation of building natural periods 
between buildings A and B becomes large, the effect of dampers 
on vibration reduction becomes remarkable.

In order to investigate the effect of building damping ratios 
on the response, the additional models with the damping ratios 
hA = hB = 0.03, 0.04, and 0.05 have been treated. Table 3 shows the 
maximum displacements of buildings A and B. It can be observed 
that as the structural damping increases, the maximum displace-
ment of building A resonant to the input decreases remarkably. 
Furthermore, it can also be found that the vibration reduction 
effect by dampers is retained even for the increased structural 
damping, although the reduction rate is slightly decreased.

Figure 9 shows the maximum displacement and acceleration 
of building A with and without dampers with respect to the input 
acceleration amplitude. The input frequency has been given so as 
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FigUre 8 | horizontal displacement of building a and building B 
with and without oil dampers: (a) TB = 0.2 s, (B) TB = 0.16 s, and 
(c) TB = 0.24 s.
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FigUre 7 | horizontal displacement of building a and building B with 
and without high-damping rubbers: (a) TB = 0.2 s, (B) TB = 0.16 s, and 
(c) TB = 0.24 s.
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to be resonant to the natural frequency of the main structure. It 
can be found that while linear oil dampers without relief mecha-
nism can reduce the vibration of the building A effectively for the 
increasing input level, the performance of the oil dampers with 
relief mechanism and the high-damping rubber deteriorates for 
the increasing input level. In particular, while the deterioration 
rate of the high-damping rubber is gradual, that of the oil damp-
ers with relief mechanism is rapid after a certain limit. Figure 10 
presents the maximum relative displacement and damping force 
with and without dampers with respect to input acceleration 
amplitude. It can be observed that the high-damping rubber 
can reduce the relative displacement clearly compared to the oil 
dampers with relief mechanism.

The following conclusion may be drawn from Figures 9 and 10. 
Since the high-damping rubber has stiffness (especially large stiff-
ness in the small deformation range), the resonant phenomenon 
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TaBle 3 | Maximum displacements of buildings a and B for various 
levels of structural damping (meter).

Damper Damping ratio 0.02 0.03 0.04 0.05

Without damper Building A 0.0510 0.0340 0.0255 0.0204
Building B 0.0023 0.0022 0.0022 0.0022

High-damping 
rubber

Building A 0.0100 0.0091 0.0083 0.0077
Building B 0.0039 0.0038 0.0037 0.0036

Oil damper Building A 0.0100 0.0092 0.0085 0.0080
Building B 0.0037 0.0035 0.0034 0.0033

TaBle 4 | relief load for each input acceleration.

Phase Maximum damping force in linear 
case (kn)

relief load (kn)

El Centro 530 265

Hachinohe 529 264.5
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may be avoided in the small input level. On the other hand, the 
damping force in the high-damping rubber becomes large.

nOn-linear resPOnse OF 
cOnnecTeD BUilDings WiTh  
nOn-linear Oil DaMPers: siMUlaTeD 
earThQUaKe grOUnD MOTiOns

In order to investigate the response characteristics of the con-
nected buildings with the linear and non-linear oil dampers 
for earthquake ground motions, some numerical examples are 
shown in this section.

simulated earthquake ground Motions
In this paper, general design ground motions compatible with a 
specific code-specified design response spectrum in Japan is used. 
Two representative phase properties are employed to represent 
the two types of ground motions, i.e., El Centro NS 1940 for the 
near-field ground motion and Hachinohe NS 1968 for the far-
field ground motion. These simulated ground motions have been 
generated following the method by Gasparini and Vanmarcke 
(1976). Figure  11 shows the acceleration time history and the 
acceleration response spectrum with the code-specified design 
acceleration response spectrum in Japan.

effect of relief Mechanism of Oil Dampers 
on non-linear response
In this section, the effect of relief mechanism of oil dampers on 
non-linear response is investigated. Since it has been reported 

(Adachi et al., 2013a,b) that if the ratio of the relief load to the 
maximum damping force in linear case is approximately equal or 
larger than 0.5, the displacement response of the structure is not 
affected so much by the relief mechanism. Based on this fact, the 
relief load shown in Table 4 is used here.

Figure 12A shows the horizontal displacements of building A 
with and without relief mechanism and energy consumptions by 
oil dampers (phase: El Centro). On the other hand, Figure 12B 
illustrates those for the simulated ground motion with the phase 
of Hachinohe. As pointed out just before, the horizontal displace-
ments of building A is not affected so much by the introduction 
of relief mechanism. However, it can be seen that the energy 
dissipation performance of oil dampers with relief mechanism is 
slightly low compared to the linear oil damper. This performance 
deterioration occurs early in the El Centro-phase motion and at 
the intermediate stage in the Hachinohe-phase motion. This tim-
ing seems to correspond to the stage at which the large response 
displacement occurs.

Table  5 presents the response amplification due to relief 
mechanism. It can be observed that a remarkable response 
increase is seen for the simulated ground motion of Hachinohe.

MUlTi-sTOrY BUilDing MODel

Consider a three-story connected building system as shown 
in Figure  13. Although many researches on optimal damper 
locations have been proposed for linear dampers (for example, 
Tsuji and Nakamura, 1996; Takewaki, 1997, 2009; Trombetti 
and Silvestri, 2004; Lavan and Levy, 2006; Aydin et  al., 2007; 
Cimellaro, 2007; Cimellaro and Retamales, 2007), the research 
on non-linear dampers is very limited (Adachi et al., 2013a). The 
properties of the main structure and the substructure are shown 
in Tables 5 and 6. In case of using the same dampers, those are 
located uniformly at every story.
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TaBle 5 | response amplification due to relief mechanism.

Phase Maximum disp. in 
linear case (m)

Maximum disp. with 
relief mechanism (m)

response 
increase (%)

Hachinohe 0.0200 0.0226 13

El Centro 0.0216 0.0218 0.9

,3Am ,3Bm

,3 ,3,A Ak c ,3 ,3,B Bk c,3 ,3,d dc A

,1 ,1,A Ak c
,1 ,1,B Bk c

,1Am ,1Bm
,1 ,1,d dc A

,2Am ,2Bm

,2 ,2,A Ak c ,2 ,2,B Bk c,2 ,2,d dc A

Building A
(main structure)

Building B
(sub structure)

FigUre 13 | Three-story connected building system.

TaBle 6 | Fundamental natural period and damping ratio of main 
structure and substructure.
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FigUre 14 | input base acceleration.

TaBle 7 | story mass and stiffness.

Main structure substructure

Mass at each node (kg) 3.0 × 105 3.0 × 105

Story stiffness (kN/mm) Third story 147 294
Second story 147 294
First story 147 294
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Figure 14 shows the input base acceleration. As in the pre-
vious case for an SDOF model, the input frequency has been 
determined so that the frequency is resonant to the fundamental 
natural frequency of the main structure (Murase et  al., 2013). 
After a transition process, the input goes into a steady state.

Table 6 presents the fundamental natural period and damp-
ing ratio of the main structure and the substructure, and Table 7 
shows story mass and stiffness of both structures.

In the present section, various damper combinations are con-
sidered. Table 8 indicates the relationship between the damper 
combinations and top-mass displacement. The quantities of the 
dampers are the same as for the SDOF model in the previous sec-
tion. The oil damper is with the relief mechanism. In this case, the 
model with the oil dampers in all the stories exhibits the smallest 
top displacement. However, since this property depends on the 
input amplitude and other parameters, e.g., the quantity of damp-
ers, a careful attention should be paid. Especially the response 
velocity in the oil dampers is too large compared to the limit value 
in low-rise buildings. As for the high-damping rubber dampers, 
there is no limitation on the response velocity.

Figure 15 shows the damping force deformation relation in 
the first, second, and third stories for the model with oil damp-
ers in all stories and the model with high-damping rubber in 
the first story and oil dampers in other stories. Table 9 presents 

the relative building displacement and damping force. It can be 
observed that the high-damping rubber can reduce the relative 
building displacement in the first story compared to the model of 
oil dampers in all stories. Since the high-damping rubber has an 
issue of damper stroke, it should be used in lower stories.

liMiT ValUe OF MaXiMUM VelOciTY 
OF Oil DaMPers

It is important to investigate the feasibility of oil dampers. An 
example of the limit value of the maximum velocity of oil damp-
ers with the limit stroke ±100 (mm) is 150–300 (mm/s).

Table 10 shows the maximum response velocities of the oil 
dampers computed in Section “Effect of Relief Mechanism of 
Oil Dampers on Non-Linear Response.” It should be remarked 
that while the phases of the adopted earthquake ground motions 
are different, the target acceleration response spectrum is the 
same. This condition may lead to a similar maximum velocity 
response of dampers. However, these values are larger than the 
limit value stated above. It may be concluded that the response 
velocity in the oil dampers is too large compared to the limit value 
specifically in low-rise buildings and a special attention should be 
paid in its use.

cOnclUsiOn

The following conclusions have been derived:

(1) The oil damper and the high-damping rubber damper are 
both effective dampers for the building connecting system.

(2) While a high-damping rubber damper is effective in a rather 
small deformation level, an oil damper without relief mecha-
nism is effective in a relatively large deformation level.

http://www.frontiersin.org/Built_Environment/archive
http://www.frontiersin.org/Built_Environment/
http://www.frontiersin.org


TaBle 9 | relative building displacement and damping force.

story Oil damper (all stories) high-damping rubber (1st story); 
oil damper (2nd and 3rd stories)

relative building 
disp. (m)

Damping 
force (kn)

relative building 
disp. (m)

Damping force 
(kn)

3 0.0338 258 0.0353 259

2 0.0272 254 0.0280 254

1 0.0152 176 0.0145 309
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FigUre 15 | Damping force-deformation relation in the first, second, 
and third stories: (a) model of oil dampers in all stories and (B) model 
with high-damping rubber in the first story and oil dampers in other 
stories.

TaBle 10 | Maximum response velocities of oil dampers computed 
in section “effect of relief Mechanism of Oil Dampers on non-linear 
response.”

Without relief mechanism 
(mm/s)

With relief mechanism 
(mm/s)

El Centro-phase 442.5 490.7

Hachinohe-phase 440.7 532.3
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