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The double impulse is introduced as a substitute of the fling-step near-fault ground 
motion and a critical elastic–plastic response of a two-degree-of-freedom (2DOF) build-
ing structure under the “critical double impulse” is evaluated. Since only the free-vibration 
appears under such double impulse, the energy balance approach plays an important 
and essential role in the derivation of the solution of a complicated elastic–plastic critical 
response. It is shown that the critical timing of the double impulse is characterized by the 
timing of the second impulse at the zero story shear force in the first story. This timing 
guarantees the maximum energy input by the second impulse that causes the maximum 
plastic deformation after the second impulse. Because the response of 2DOF elastic–
plastic building structures is quite complicated due to the phase difference between two 
masses compared to single-degree-of-freedom models for which a closed-form critical 
response can be derived, the upper bound of the critical response is introduced by using 
the convex model.

Keywords: earthquake response, near-fault ground motion, double impulse, critical input, elastic–plastic 
response, resonance, upper bound, convex model

inTrODUcTiOn

The effects of near-fault ground motions on structural response have been investigated extensively 
(Bertero et al., 1978; Singh, 1984; Hall et al., 1995; Iwan, 1997; Sasani and Bertero, 2000; Alavi and 
Krawinkler, 2004; Makris and Black, 2004; Mavroeidis et al., 2004; Kalkan and Kunnath, 2006, 2007; 
Xu et al., 2007; Rupakhety and Sigbjörnsson, 2011; Yamamoto et al., 2011; Minami and Hayashi, 
2013; Vassiliou et  al., 2013; Khaloo et  al., 2015; Vafaei and Eskandari, 2015). The fling-step and 
forward-directivity are widely recognized as special keywords to characterize such near-fault ground 
motions (Mavroeidis and Papageorgiou, 2003; Bray and Rodriguez-Marek, 2004; Makris and Black, 
2004; Kalkan and Kunnath, 2006; Mukhopadhyay and Gupta, 2013a,b; Zhai et al., 2013; Hayden 
et  al., 2014; Yang and Zhou, 2014). Especially, after Northridge earthquake in 1994, Hyogoken-
Nanbu (Kobe) earthquake in 1995 and Chi-Chi (Taiwan) earthquake in1999, a strong interest has 
been taken by many earthquake structural engineers. The fling-step and forward-directivity are 
widely recognized special keywords to characterize such near-fault ground motions. The fling-step 
and forward-directivity inputs have been characterized by two or three wavelets. For this class of 
ground motions, many useful research works have been conducted. Mavroeidis and Papageorgiou 
(2003) investigated the characteristics of this class of ground motions in detail and proposed some 
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simple models (for example, Gabor wavelet and Berlage wavelet). 
Makris and Black (2004) investigated the effects of two or three 
wavelets on structural inelastic responses. Kalkan and Kunnath 
(2006) introduced two or three simple sinusoidal wavelets based 
on the research of Sasani and Bertero (2000) and investigated the 
influence of near-fault ground motions on tall buildings. Xu et al. 
(2007) employed a kind of Berlage wavelet and applied it to the 
performance evaluation of passive energy dissipation systems. 
Takewaki and Tsujimoto (2011) used the Xu’s approach and pro-
posed a method for scaling ground motions from the viewpoints 
of drift and input energy demand. Afterwards, Takewaki et  al. 
(2012) employed a sinusoidal wave for pulse-type waves.

Most of the previous works on the near-fault ground motions 
deal with the elastic response except Mavroeidis et  al. (2004), 
Makris and Black (2004), Kalkan and Kunnath (2006, 2007), 
Vassiliou et  al. (2013), and Khaloo et  al. (2015), because the 
number of parameters (e.g., duration and amplitude of pulse, 
ratio of pulse frequency to structure natural frequency, change 
of equivalent natural frequency for the increased input level) to 
be considered on this topic is many and the computation itself of 
elastic–plastic responses is quite complicated.

Kojima and Takewaki (2015a,b) recently derived some closed-
form solutions of the critical response of single-degree-of-free-
dom (SDOF) elastic–plastic structures under such two or three 
wavelets (double or triple impulses). The amplitude of the double 
impulse was modulated so that its maximum Fourier amplitude 
coincides with that of the corresponding one-cycle sinusoidal 
input (Kojima and Takewaki, 2015a). It was shown that, since only 
the free-vibration appears under such double impulse input, the 
energy approach plays an important role in the derivation of the 
closed-form solution of a complicated elastic–plastic response. 
The extension of the theory for the fling-step near-fault ground 
motion to the forward-directivity near-fault ground motion was 
made by Kojima and Takewaki (2015b). Furthermore, Kojima 
and Takewaki (2015c) extended their approach to long-duration 
ground motions. This approach is based on an innovative con-
cept of transformation of input and unchanged treatment of 
an elastic–plastic structure itself compared to the conventional 
equivalent linearization method for elastic–plastic structures and 
has overcome a difficulty encountered for elastic-perfectly plastic 
structures since 1960 (Caughey, 1960a,b; Iwan, 1961, 1965a,b; 
Liu, 2000).

In the earthquake-resistant design of structures, the resonance 
is a key concept and it has been investigated extensively. While 
the resonant equivalent frequency must be computed for a 
specified input level by changing the excitation frequency in a 
parametric manner for the sinusoidal input (Caughey, 1960a,b; 
Iwan, 1961, 1965a,b; Roberts and Spanos, 1990; Liu, 2000), no 
iteration is needed in the method for the double impulse (Kojima 
and Takewaki, 2015a,c). This is because the resonant equivalent 
frequency can be derived directly without the repetitive proce-
dure. In the double impulse, the analysis can be done without 
the concept of the input frequency (timing of impulses) before 
the second impulse. The resonance can be proved by using 
energy balance and the timing of the second impulse can be 
characterized as the time with zero restoring force. The maximum 
elastic–plastic response after impulse can be obtained by equating 

the initial kinetic energy computed by the initial velocity to the 
sum of hysteretic and elastic strain energies. It should be pointed 
out that only critical response (upper bound) is captured by the 
method and the critical resonant frequency can be obtained 
automatically for the increasing input level of the double impulse.

The double impulse is introduced here as a substitute of the 
fling-step near-fault ground motion and a critical elastic–plastic 
response of a 2DOF building structure under the “critical double 
impulse” is evaluated. The input of impulse is expressed by the 
instantaneous change of velocities of the structural masses. Since 
only the free-vibration appears under such double impulse, the 
energy balance approach plays an important role in the derivation 
of the solution of a complicated elastic–plastic critical response 
as in Kojima and Takewaki (2015a–c). It is shown that the critical 
timing of the double impulse is characterized by the timing of the 
second impulse at the zero story shear force in the first story. This 
criticality is also characterized by the maximization of the sum 
of the momenta of all masses. This timing certainly guarantees 
the maximum energy input by the second impulse that causes 
the maximum plastic deformation after the second impulse. 
Because the response of 2DOF elastic–plastic building structures 
is quite complicated due to the phase difference between two 
masses compared to SDOF models for which a closed-form 
critical response can be derived, the upper bound of the critical 
response is introduced by using the convex model (Ben-Haim 
and Elishakoff, 1990; Ben-Haim et al., 1996). The accuracy of the 
derived upper bound is discussed in comparison with the actual 
response analysis result to the double impulse. The validity and 
accuracy of the proposed theory for the double impulse are also 
investigated through the comparison with the response analysis 
result to the corresponding one-cycle sinusoidal input as a repre-
sentative of the fling-step near-fault ground motion.

DOUBle iMPUlse inPUT

The fling-step input (fault-parallel) of the near-fault ground 
motion can be represented by a one-cycle sinusoidal wave and the 
forward-directivity input (fault-normal) of the near-fault ground 
motion can be expressed by a series of three sinusoidal wavelets 
as pointed out in the reference (Kojima et al., 2015 and Kojima 
and Takewaki, 2015a) (see Figure 1). It has further been pointed 
out (Makris and Black, 2004) that a one-cycle sinusoidal wave 
can also express the forward-directivity input in some cases. In 
this paper, it is aimed at simplifying the typical near-fault ground 
motions by a double impulse (Kojima et al., 2015; Kojima and 
Takewaki, 2015a).

Consider a double impulse ground acceleration u tg ( ) , as 
shown in Figure 1A, expressed by

 
u t V t V t tg ( ) ( ) ( ),= − −δ δ 0  (1)

where V is the given velocity and t0 is the time interval between 
two impulses. The time derivative is denoted by an over-dot. The 
comparison with the corresponding one-cycle sinusoidal wave 
as a representative main part of the near-fault ground motion 
is plotted in Figure  1A (Mavroeidis and Papageorgiou, 2003; 
Makris and Black, 2004; Kalkan and Kunnath, 2006; Kojima and 
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FigUre 2 | Undamped elastic-perfectly plastic 2DOF system 
subjected to double impulse. (a) First impulse. (B) Second impulse.
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FigUre 1 | (a) Fling-step input and double impulse, (B) Forward-directivity 
input and triple impulse (Kojima and Takewaki, 2015a).
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Takewaki, 2015a). The corresponding velocity and displacement 
of such double impulse and sinusoidal wave are also plotted in 
Figure 1A. As pointed out earlier, the double impulse is a good 
approximation of the corresponding sinusoidal wave even in the 
form of velocity and displacement on the condition that the cor-
respondence of the maximum Fourier amplitude is guaranteed 
(see Appendix 1). It may be interesting to note that, since the 
Fourier amplitude is related to the velocity of ground motions (or 
velocity response spectrum), this correspondence is meaningful.

The Fourier transform of u tg ( )  of the double impulse input 
can be expressed as

 

U V t V t t e dt

V t e

g
t

t

( ) ( ) ( )

( )

ω δ δ

δ

ω

ω

= − −{ } −
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2DOF sYsTeM anD nOrMaliZaTiOn 
OF DOUBle iMPUlse

Consider an undamped elastic-perfectly plastic two-degree-of-
freedom (2DOF) system, as shown in Figure 2, subjected to the 
above-mentioned double impulse. Let mi and ki denote the i-th 
story mass and stiffness, respectively. The yield deformation and 
yield force of the i-th story are denoted by dyi and fyi. Let, ω1, ui, 
di, and fi denote the undamped fundamental natural circular 

frequency of the 2DOF system, the displacement of the i-th story 
mass relative to the ground, the interstory drift of the i-th story, 
and the restoring force of the i-th story, respectively. The velocity 
of mass is also denoted by v ui i=  .

The reference value Vy of the velocity of the input double 
impulse is selected so that the input initial kinetic energy is 
transformed into the sum of the elastic limit strain energies.

 

1
2

1
2

1
21 2

2
1 1

2
2 2

2m m V k d k dy y y+( ) = + .  (3)

Although the interstory drifts of the first and second stories do 
not usually attain the elastic limit simultaneously, this state is 
used merely for normalizing the input level. Figure 3 shows an 
example of the time histories of the restoring forces in the first 
and second stories for a model of equal mass, equal story stiffness, 
and equal yield interstory drift subjected to the single impulse at 
t = 0 with V/Vy = 1. The response has been computed by using 
the Newmark-beta method.

DescriPTiOn OF elasTic–PlasTic 
resPOnse PrOcess in TerMs OF 
energY QUanTiTies

It may be convenient to describe the key phases in terms of 
symbols as shown in Figure  4. Let di max

( )1  and di max
( )2  denote the 

maximum interstory drift after the first impulse and that after the 
second impulse, respectively, in the i-th story and let dpi

( )1  and dpi
( )2  

denote the plastic deformation after the first impulse and that 
after the second impulse, respectively, in the i-th story. The phase 
(A) indicates the state in which the first interstory drift attains the 
maximum value in the plastic region after the first impulse. The 
phase (B) presents the state just before the input of the second 
impulse and the phase (C) expresses the state just after the input 
of the second impulse. Furthermore, the phase (D) indicates 
the state in which the first interstory drift attains the maximum 
value in the other-side plastic region after the second impulse. 
The phase (B) with zero first-story restoring force in Figure 4 has 
been introduced because this timing plays an important role in 
Section “Maximization of ΔE (Minimization of ΔE in Addition).”

In the phase (A), the velocity of the first-story mass is 0. Let 
E A

2
( ) denote the sum of the elastic strain energy of the second 

story and the kinetic energy of the second-story mass. Although 
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E A
2
( )  does not necessarily represent the total mechanical energy 

of the second story, it is called the “total mechanical energy of 
the second story” for simplicity. In this case, the total mechanical 
energy Esum

A( )  of the whole system at the phase (A) (the dissipated 
energy in the first story is not included because this is not the 
mechanical energy) can be expressed as

 
E k d Esum

A
y

A( ) ( ).= +
1
2 1 1

2
2  (4)

Since the mechanical energy is conserved from the phase (A) to 
the phase (B) [Esum

B( ) : total mechanical energy at the phase (B)], the 
following relation holds.

 E Esum
B

sum
A( ) ( ) .=  (5)

Let ΔE denote the energy input by the second impulse. In this 
case, the total mechanical energy Esum

C( )  at the phase (C) can be 
related to Esum

B( )  as follows.

 E E Esum
C

sum
B( ) ( ) .= + ∆  (6)

Let E D
2
( )  denote the sum of the elastic strain energy of the second 

story and the kinetic energy of the second-story mass at the phase 
(D). In this case, the total mechanical energy Esum

D( )  at the phase 
(D) can be related to E D

2
( )  as follows:

 
E k d Esum

D
y

D( ) ( ).= +
1
2 1 1

2
2  (7)

The energy balance provides

 E E k d d k d dsum
C

sum
D

y p y p
( ) ( ) ( ) ( ).= + +1 1 1

2
2 2 2

2  (8)

It may be rare that the second story goes into the plastic region after 
the second impulse (this issue will be discussed later in Section 
“Input Level for Loose Upper Bound”). Therefore dp2

2( )  = 0 in most 
cases. Substitution of Eqs. 4, 5, 7, 8 into Eq. 6 yields

 

1
2

1
21 1

2
2 1 1

2
2 1 1 1

2
2 2 2

2k d E E k d E k d d k d dy
A

y
D

y p y p+ + = + + +( ) ( ) ( ) ( ).∆  (9)

From Eq. 9, the normalized plastic deformation of the first story 
after the second impulse can be expressed by

 

d
d k d

E E E k d dp

y y

A D
y p

1
2

1 1 1
2 2 2 2 2 2

21( )
( ) ( ) ( ) .= + − +( ){ }∆  (10)

It can be understood from Eq. 10 that the upper bound of the 
plastic deformation dp1

2( )  of the first story after the second impulse 
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is derived by maximizing E A
2
( )  and ΔE and minimizing E D

2
( )  and 

dp2
2( ) . These manipulations will be discussed in the following. 

Since the 2DOF system includes some uncertain factors for state 
determination different from SDOF systems, the investigation on 
upper bound of responses may be meaningful (Takewaki, 1996, 
1997, 2002).

Only critical response is taken into account by the proposed 
method and the critical resonant frequency can be obtained 
without iteration for the increasing input level as shown in 
Section “Upper Bound of Plastic Deformation in the First Story 
after the Second Impulse.” One of the original points in this paper 
is the introduction of the concept of “critical excitation” in the 
elastic–plastic response for multi-degree-of-freedom (MDOF) 
systems (Drenick, 1970; Abbas and Manohar, 2002; Takewaki, 
2007; Moustafa et al., 2010). Once the frequency and amplitude 
of the critical double impulse are computed, the corresponding 
one-cycle sinusoidal motion can be identified.

UPPer BOUnD OF PlasTic 
DeFOrMaTiOn in The FirsT sTOrY 
aFTer The secOnD iMPUlse

Maximization of E A
2
( )

Consider the situation where the first story is in the plastic load-
ing range and the second story is in the elastic range after the 
first impulse. This case is often encountered in usual situations 
(for example, Bertero et  al., 1978) and some examples will be 
shown for the model of equal mass, equal story stiffness, and 
equal yield interstory drift. In this case, the equations of motion 
after the yielding of the first story, i.e., until phase (A), can be 
described by

 

m u k u u k dy
m u k u u

1 1 2 2 1 1 1

2 2 2 2 1 0





− −( ) =
+ −( ) = .

 (11a,b)

Arrangement of Eqs. 11a,b leads to

 m m u u k m m u u m k dy1 2 2 1 2 1 2 2 1 2 1 1 −( ) + +( ) −( ) = − .  (12)

The general solution of the differential equation, Eq. 12, can be 
expressed by

 u u B t A2 1− = − +( ) −cos ,ω δ  (13)

where B is an undetermined coefficient and

 
ω =

+( )
=

+
m m k

m m
A m k

m m k
dy1 2 2

1 2

2 1

1 2 2
1,

( )
.  (14a,b)

Equation  13 indicates that the second-story interstory drift 
exhibits a simple harmonic vibration around the center of mag-
nitude A as shown in Figure 5. Since the first story goes into the 
plastic range quickly and the second-story interstory drift has a 
zero initial value, the absolute minimum value of the second-story 
interstory drift is nearly 0. It can be shown that this assumption is 
a good approximation.

In this case, the following relation holds.

 B A  (15)

 
u u A t2 1 1− − +( ) +{ } cos ( : ).ω δ δ  phase angle  (16)

Then the condition that the second story does not go into the 
plastic range after the first impulse can be expressed by

 
2 2 2 1

1 2 2
1 2A m k

m m k
dy dy=

+
≤

( )
.  (17)

The model of equal mass, equal story stiffness, and equal yield 
deformation satisfies this condition.

Some examples of the time histories of the restoring forces 
in the first and second stories for a model of equal mass, equal 
story stiffness, equal yield interstory drift subjected to the single 
impulse at t = 0 with V/Vy = 1.15, 1.5, 2, 4 are shown in Figure 6. 
As in the previous numerical example, the response has been 
computed by using the Newmark-beta method. From these 
numerical investigations (Figure  6), the following relation can 
be derived approximately.

 

m k
m m k

dy dy2 1

1 2 2
1 1

1
2( )

.
+

=  (18)

Equation 16 can also be expressed by

 
� � �u u A t2 1− +( )ω ω δsin .  (19)

Since the first-story mass is at rest in the phase (A), the velocity 
of the second-story mass can be described by

 
u A t2 = +( )ω ω δsin .  (20)

Let us introduce the notation μ = m2/m1, κ = k2/k1. The total 
mechanical energy in the second story at the phase (A) can then 
be derived by

 
E k u u m uA

2 2 2 1
2

2 2
21

2
1
2

( ) .= −( ) +   (21)

Substitution of Eqs. 16 and 20 into Eq. 21 leads to

 

E A k t m t

k

A
2

2
2

2

2
2 21

2
1

1
2

( ) cos sin= +( ) +{ } + +( )





=

ω δ ω ω δ

       22
2 2 2

2

1 1

1
2 1

1

A t t

k

cos sinω δ µ ω δ

µ
µ

+( ) +{ } + +( ) +( )





=
+

       
κ

dd ty1

2 2
21 1 1








− +( ) −






+ +( )













µ ω δ
µ µ

µcos .

 
(22)

In Eq. 22, the minimization of {cos (ωt + δ) −  (1/μ)}2 leads to 
the maximization of E2

(A). Since 0 1≤ +( ) ≤cos ω δt , it is neces-
sary to consider two cases μ >  1 and μ ≤  1. In case of μ  >  1,  
cos (ωt + δ) − (1/μ) = 0 minimizes {cos (ωt + δ) − (1/μ)}2. On 
the other hand, in case of μ  ≤  1, cos (ωt  +  δ)  =  1 minimizes  
{cos (ωt + δ) − (1/μ)}2.
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Finally the following relations can be drawn.

 0 2 2£ £E EA A( )
max

( ) , (23)

where E A
2 max
( )  is the upper bound of E A

2
( )  and is given by

 
E k dA

y2 1 1
2

2
1max

( ) ( )= >
µ
κ

µ  (24a)

 
E k dA

y2

2

2 1 1
22

1
1max

( ) ( ).=
+( )

≤
µ

µ κ
µ  (24b)

Maximization of ΔE (Minimization of ΔE 
in addition)
Since the displacements of the masses do not change at once at the 
action of the second impulse, the increment of the total mechani-
cal energy just before and after the second impulse, i.e., the total 
energy input, can be expressed by

 

∆E m v V m v V m v m v

m v m v

= +( ) + +( ) − −

= +(

1
2

1
2

1
2

1
21 1

2
2 2

2
1 1

2
2 2
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1 1 2 2     )) + +( )V m m V1
2 1 2
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 (25)
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Equation 25 indicates that the timing of the second impulse 
at the maximum sum of the momenta P = m1v1 + m2v2 actually 
maximizes ΔE. The time derivative of the sum of the momenta 
is equal to the force f1(t) in the first story (Figure 7) and the fol-
lowing relation holds.

 

dP
dt

f t= ( )1 .  (26)

Therefore, the maximization of the sum of the momenta can be 
characterized by

 f t1 0( ) = .  (27)

By substituting the condition d1  −  dr1  =  0 (dr1: residual 
deformation in the first story), derived from Eq.  27, into the 
expression of the total mechanical energy at the phase (B), the 
equation of the energy conservation between the phase (B) and 
(A) leads to
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2

1
2

1
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1
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2
2 2

2
2 2

2
1 1

2
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Rearrangement of Eq. 28 provides
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2
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Since the left-hand side of Eq.  29 is positive, the following 
inequality can be derived.
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Let introduce the following quantity D.

 
D k d Ey

A= +
1
2 1 1

2
2 max
( ) .  (31)

Equation 29 and the positivity of k d2 2
2 2/  lead to the following 

relation (see Figure 8).
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The tangential line of the ellipse ( / ) ( / )m v m v D1 1
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point (v10, v20) can be expressed by
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Recalling P = m1v1 + m2v2, Eq. 33 provides

 

v
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v
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The first proportionality relation in Eq. 34 leads to v10 = v20. The 
substitution of this relation into Eq. 33 and the other proportion-
ality relation in Eq. 34 yields

 
P m m D= +( )2 1 2 .  (35)

Finally, the upper bound ΔEmax of the input energy at the 
second impulse can be derived as

 
∆E m m V V m m k d Ey
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(36)

This process employs the application of the convex model 
(Ben-Haim and Elishakoff, 1990). It may be interesting to note 
that the property (Eqs. 26 and 27) and the proof shown in this 
section can be extended to MDOF models.

On the other hand, it is meaningful to derive the lower bound 
of the input energy at the second impulse even approximately 
because the upper bound may not be a tight bound.

Assume that the total mechanical energy at the phase (A) is 
transformed into the kinetic energy of the first-story mass and 
that the second story does not have the strain energy and the 
kinetic energy. This assumption can be expressed by

 

1
2

1
21 1

2
1 1

2
2m v k d Ey

A= + ( ).  (37)
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Equation 37 leads to
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Therefore, the approximate lower bound ΔEmin of the input 
energy at the second impulse can be derived as
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Since E D
2
( )  is the sum of the second-story strain energy and the 

second-story kinetic energy, the following relation is derived in 
the minimization of E k d dD

y p2 2 2 2
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On the other hand, the maximization of E D
2
( )  is difficult. 

Because the effect of the second impulse on the second-story 
interstory drift is small, it can be assumed that dp2

2 0max
( )

 . 
Therefore, the following relations can be set approximately.
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Upper Bound of Plastic Deformation  
in the First story after the second  
impulse
Based on the results of Sections “Maximization of  
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( ) ,” “Maximization of ΔE (Minimization of ΔE in Addition),” 
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In case of equal mass (μ = 1), equal story stiffness and equal yield 
interstory drift, Eq. 45b can be reduced to
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On the other hand, an approximate lower bound of dp1
2( )  

can be derived by substituting Eqs. 23 and 40 and 43 and 44 
into Eq. 10.
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In case of equal mass, equal story stiffness and equal yield inter-
story drift, Eq. 47 can be reduced to
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nUMerical eXaMPles OF criTical 
resPOnses

Upper Bound of critical response
Consider a 2DOF model of equal mass (m1 = m2 = 1.0 × 106 kg), 
equal story stiffness (k1 = k2 = 1.0 × 108 N/m) and equal yield 
interstory drift (dy1 = dy2 = 0.1 m) subjected to the double impulse. 
The fundamental natural period is 1.02(s). For comparison, a 
reduced SDOF model as shown in Figure 9 is considered.

Figure 10 shows the maximum interstory drift after the first 
impulse in the first story in which the response of the SDOF 
system as shown in Figure  9 (also upper bound of 2DOF 
system) and the response under the corresponding one-cycle 
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sinusoidal wave are also plotted. It should be remarked that the 
assumption of energy concentration into the first story provides 
the upper bound of the 2DOF system and this assumption is 
equivalent to the modeling into the reduced SDOF system. 
The response has been computed by using the Newmark-beta 
method. It can be observed that the upper bound of the 2DOF 
system can bound the actual critical response tightly. Although 
the response under the corresponding one-cycle sinusoidal 
wave is rather small in a larger input level, the correspondence 
up to about V/Vy  =  3 may be meaningful from the practical 
view point.

Figure  11 presents the maximum interstory drift after the 
second impulse in the first story in which the response of the 
SDOF system and the response under the corresponding one-
cycle sinusoidal wave are also plotted. As stated in Figure 11, 
the correspondence up to about V/Vy = 3 may be meaningful 
from the practical view point. Figure 12 illustrates the critical 
plastic deformation after the second impulse in the first story 
and their upper and lower bounds (Eqs. 46 and 48) in which 
the upper bound of SDOF system and the response under the 

corresponding one-cycle sinusoidal wave are also plotted. It 
should be noted that, in the case of the elastic deformation in 
the first story after the first impulse (rather smaller input level: 
V/Vy ≤ 1.0 in this case), other expressions of the upper and lower 
bounds shown in Appendix 2 have to be employed.

It can be seen that the actual critical plastic deformation after 
the second impulse in the first story corresponds fairly well with 
the response under the corresponding one-cycle sinusoidal wave 
up to about V/Vy = 3. Furthermore, the upper and lower bounds 
can bound the actual critical plastic deformation (although the 
lower bound is approximate due to the uncertain assumption 
of Eq. 44).

Figure 13 shows the critical timing t0c of the second impulse 
with respect to the input level of the double impulse. This criti-
cal timing has been obtained using Eq. 27. For comparison, 
the critical timing for the corresponding SDOF model is also 
plotted. Consider that a structure is given, i.e., the parameters 
of the structure are specified. Then the critical timing t0c can 
be found from Figure 13 (although the critical timing t0c of a 
2DOF model has to be evaluated numerically). The practical 
range of the period of pulses in near-fault ground motions 
may be 0.5–3  s. The fundamental natural period of most of 
buildings is in this range except very flexible high-rise build-
ings and base-isolated buildings. An important matter in the 
seismic design of structures for near-fault ground motions is 
to take into account the most unfavorable situation (resonant 
in elastic and elastic–plastic range). This can be justified 
because earthquake ground motions are highly uncertain 
(Takewaki, 2007).

It may be interesting to demonstrate the correspondence of 
the response to the double impulse with that to the sinusoidal 
wave in the time domain. The comparison of the time histories 
(first-story interstory drift and first-story restoring force) and 
the first-story restoring-force characteristic under the double 
impulse and the corresponding sinusoidal wave is shown in 
Appendix 3.
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input level for Tight Upper Bound
Consider the same 2DOF model subjected to the double impulse 
with V/Vy = 1.11, 3.33, 5.55 at which the upper bound is close 
to the actual critical response in Figure 12. The increment 2.22 
of input level has been analyzed by using the fundamental law 
in dynamics (Newton’s second law) (see Appendix 4). Figure 14 
shows the time histories of the restoring forces in the first and 
second stories for the same 2DOF model subjected to the dou-
ble impulse with V/Vy = 1.11, 3.33, 5.55. The critical timing t0c 
is also shown in the figure captions.

Figure 15 presents the deformation mode and velocity at the 
phase (A). Figure 16 illustrates the time histories of the restoring 
forces in the first and second stories starting from the phase (A) 
(only the first impulse is given: V/Vy = 1.11, 3.33, 5.55). Figure 17 

shows the velocity (first-story mass)-velocity (second-story mass) 
plane for variable motion of masses attaining the maximum sum 
of momenta (tangential line) by the convex model and the actual 
motion of masses starting from the phase (A) (only the first 
impulse is given: V/Vy = 1.11, 3.33, 5.55). It can be observed from 
Figure 17 that the actual motion of masses passes through the 
solution derived by the convex model.

input level for loose Upper Bound
Consider the same 2DOF model subjected to the double impulse 
with V/Vy = 2.22, 4.44 at which the upper bound is far from the 
actual critical response in Figure 12 (the lower bound is close to 
the actual critical one). As stated in Section 6.2, the increment 
2.22 of input level has been analyzed by using the fundamental 
law in dynamics (Newton’s second law). Figure  18 shows the 
time histories of the restoring forces in the first and second sto-
ries for the same 2DOF model subjected to the double impulse 
with V/Vy  =  2.22, 4.44 In this example, dp2

2( )  exists which was 
discussed in Eq.  8. The critical timing t0c is also shown in the 
figure captions.

Figure 19 presents the deformation mode and velocity at the 
phase (A). Figure 20 illustrates the time histories of the restor-
ing forces in the first and second stories starting from the phase 
(A) (only the first impulse is given: V/Vy = 2.22, 4.44). Figure 21 
shows the velocity (first-story mass)-velocity (second-story mass) 
plane for variable motion of masses bounded by shrinked circle 
and the actual motion of masses starting from the phase (A) (only 
the first impulse is given: V/Vy = 2.22, 4.44). It can be observed 
from Figure 21 that the actual motion of masses is far from the 
solution derived by the convex model.

Verification of criticality
In order to demonstrate the criticality of the timing of the 
second impulse defined by Eq. 27, a parametric analysis for 
the varied timing of the second impulse has been performed. 
Figure 22 shows the plot of d dp y1

2
1

( ) /  with respect to the tim-
ing of the second impulse. The restoring force in the first 
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story at the second impulse is also plotted for reference. It 
can be seen that the criterion of the zero restoring force 
in the first story defined by Eq.  27 certainly maximizes 
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d dp y1
2

1
( ) /  in addition to maximizing the input energy at the 

second impulse.

aPPlicaTiOn TO recOrDeD grOUnD 
MOTiOn

To investigate the applicability of the present theory to actual 
recorded pulse-type ground motions, a comparison of the 
proposed upper bound with the corresponding response to a 
recorded ground motion is presented.

Consider the Rinaldi station fault-normal component during 
the Northridge earthquake in 1994 as a representative pulse-type 
ground motion. The structural model is the same as in Section 
“Upper Bound of Critical Response” (equal mass, equal stiffness, 
and equal yield interstory drift in each story). Since the ground 
motion is fixed (V and t0 are fixed), the structural model param-
eters are varied, i.e., Vy (specifically k1 = k2 and dy1 = dy2) is varied. 
Figure  23A illustrates the modeling of a part of the recorded 
ground motion acceleration into a one-cycle sinusoidal input. 
Figure 23B shows the maximum amplitude of plastic deforma-
tion for the recorded ground motion by time-history response 
analysis and the proposed upper bound for the corresponding 
double impulse. As stated before, since the initial velocity V is 
determined in Figure 23A, Vy is changed here. This procedure 
is similar to the well-known elastic–plastic response spectrum 
developed in 1960–1970. The solid line is obtained by changing 
Vy for the specified V using the proposed method for the upper 
bound to the double impulse and the dotted line is drawn by 
conducting the elastic–plastic time-history response analysis on 
each model with varied Vy under the recorded ground motion. It 
can be observed that the result by the proposed method is a fairly 
good upper-bound approximate of the result to the recorded 
pulse-type ground motion.

cOnclUsiOn

The conclusions may be summarized as follows:

 (1) The double impulse has been introduced as a substitute 
of the fling-step near-fault ground motion and a critical 
elastic–plastic response of a 2DOF building structure under 
the “critical double impulse” has been evaluated. The critical 
excitation problem is such that the velocity amplitude of 
the double impulse is fixed and the interval of the double 
impulse is the variable. Since only the free-vibration appears 

http://www.frontiersin.org/Built_Environment/archive
http://www.frontiersin.org/Built_Environment/
http://www.frontiersin.org


February 2016 | Volume 2 | Article 213

Taniguchi et al. Elastic–Plastic Critical Response of 2DOF Model

Frontiers in Built Environment | www.frontiersin.org

2 0v =

1 0v =

FigUre 19 | Deformation mode and velocity at the phase (a) (lower 
bound case).
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under such double impulse, the energy balance approach 
plays an important and essential role in the direct derivation 
of the complicated elastic–plastic critical response.

 (2) The criticality is characterized by the timing of the second 
impulse at the zero story shear force in the first story. This 
timing guarantees the maximum energy input by the second 
impulse that causes the maximum plastic deformation after 
the second impulse in the first story. This critical timing also 
coincides with the state in which the sum of the momenta 
attains the maximum. This property can be extended to 
MDOF models.

 (3) Because the response of 2DOF elastic–plastic building 
structures is quite complicated due to the phase difference 
between two masses compared to SDOF models for which 
a closed-form critical response can be derived, the upper 
bound of the critical response has been introduced. The 
upper bound has been derived by using the convex model 
partially.

 (4) As for the maximum interstory drift in the first story after 
the first impulse, the proposed upper bound is close to the 

actual maximum response. Although the response to the 
corresponding sine wave is rather smaller than that to the 
double impulse in the larger input level, the practical interest 
is up to about the input level V/Vy = 3.

 (5) As for the plastic deformation after the second impulse in 
the first story, the proposed upper bound certainly bounds 
the actual plastic deformation and the devised lower bound 
approximately circumvents the actual response from the 
lower side. As stated above, the practical interest is up to 
about the input level V/Vy = 3.

 (6) The actual critical response of plastic deformation after the 
second impulse in the first story is close to the upper or 
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lower bound at discrete input levels. Such discrete level has 
been analyzed by using the fundamental law in dynamics 
(Newton’s second law).

 (7) It has been demonstrated that the proposed method using 
the double impulse and the upper bound is applicable to 
actual recorded pulse-type ground motions within a reason-
able accuracy.

In this paper, the case has been treated where the second 
story does not go into the plastic range after the first impulse. 
As stated before, this case is often the case when the condi-
tion, Eq. 17, is satisfied. The other case could be discussed in 
the future if necessary. As for damping, it is well recognized 
that the viscous damping is not effective for impulsive ground 
motions like near-fault ground motions. The effect in an elastic 
SDOF model is shown in Appendix 5. The effect of damping on 
the conservativeness of the proposed upper bound should be 
discussed in the future.
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aPPenDiX 1

adjustment of input level of Double 
impulse and corresponding One-cycle 
sinusoidal Wave
The adjustment of the input level of the double impulse and the 
corresponding one-cycle sinusoidal wave is achieved based on 
the equivalence of the maximum value of the Fourier amplitude. 
Figure A1 shows an example.

aPPenDiX 2

Upper Bound and lower Bound of Plastic 
Deformation in the First story after the 
second impulse (case of the elastic 
response in the First story after the First 
impulse)
In the case of the elastic response in the first story after the first 
impulse, another formulation is necessary. At the phase (D), the 
energy balance can be expressed by

 

1
2

1
21 2

2
1 1

2
1 1 1

2
2 2 2 2m m V E k d k d d E k d dy y p

D
y p+( ) + = + + +∆ ( ) ( )

 
(A1)

Eq. A1 corresponds to Eq. 9 for the case of the plastic response in 
the first story after the first impulse and can be rearranged into

 

d
d k d

m m V E E k d dp
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D
y p

1
2

1 1 1
2 1 2

2
2 2 2 2

21 1
2

( )
( ) ( )= +( ) + − +( )
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Upper Bound
In Eq. A2, the upper bound of the plastic deformation dp1

2( ) of the 
first story after the second impulse can be derived by maximizing 

DE  and minimizing E D
2
( ) and dp2

2( ). Then, the upper bound can be 
obtained from the following setting.

 
∆E m m Vmax = +( )3

2 1 2
2  (A3)

 E D
2 0min
( ) =  (A4)

 dp2
2 0min

( )
  (A5)

In this case, the upper bound of the plastic deformation in the 
first story after the second impulse can be expressed as

 

d
d k d

a k d k dp

y y
y y

1
2

1 1 1
2

2
1 1

2
2 2

21 2 1
2

( )

≤ +( ){ }−  (A6)

For the model of equal mass, equal story stiffness and equal 
yield interstory drift, Eq. A6 can be reduced to

A

B

FigUre a2 | comparison of time histories of the first-story interstory 
drift and the first-story restoring force under the double impulse and 
the corresponding sinusoidal wave. (a) First-story interstory drift. (B) 
First-story restoring force.

FigUre a1 | adjustment of input level of double impulse and the 
corresponding one-cycle sinusoidal wave based on Fourier amplitude 
equivalence.
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Lower Bound
In Eq.  A2, the lower bound of the plastic deformation dp1

2( )  
of the first story after the second impulse can be derived by 
minimizing ΔE and maximizing E D

2
( ) and dp2

2( ). It is often the 
case that the second story is in the elastic range even after the 
second impulse in a rather smaller input level considered here. 
Then, the lower bound can be obtained from the following 
setting.

 
∆E m m V V m k dymin = +( ) +
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2  (A8)
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In this case, the lower bound of the plastic deformation in the first 
story after the second impulse can be expressed as
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For the model of equal mass, equal story stiffness and equal 
yield interstory drift, Eq. A6 can be reduced to

 

d
d

a ap

y

1
2

1

22 1
( )

≥ −+  (A12)

aPPenDiX 3

comparison of Time histories Under 
Double impulse and sinusoidal Wave
Consider the 2DOF model of equal mass, equal story stiffness, and 
equal yield interstory drift as treated above. Figures A2 and A3 
show the comparison of the time histories (first-story interstory 
drift and first-story restoring force) and the first-story restoring-
force characteristic, respectively, under the double impulse and 
the corresponding sinusoidal wave.

aPPenDiX 4

input level of Double impulse for 
characterizing critical response close 
to Upper or lower Bound
In Figure 12, the actual critical response of plastic deformation 
after the second impulse in the first story is close to the upper or 
lower bound at discrete input levels. Such discrete input level is 
investigated here.

Consider the deformation phase shown in Figure 15. At the 
phase (A), both masses are at rest and have zero velocities. In this 
case, the impulse (force × time interval) due to the restoring force 
in the first story is equal to the change of the sum of momenta at 
the input level V = V1 (see Figure A4).

 
m m V f t dt

t

1 2 1 1
0

1

+( ) = ( )∫  (A13)

where t1 is the time at the phase (A). The restoring forces after 
the first impulse are treated as positive values in this section. For 
another input level V = V1 + ΔV, a similar relation holds (see 
Figure A4).

 
m m V V f t dt

t t

1 2 1 1
0

1

+( ) + = ( )
+

∫( )∆
∆

 (A14)

where t1  +  Δt is the time at the phase (A) for the input level 
V = V1 + ΔV. Since the time up to the first yielding of the first 
story is quite short, the following relation can be drawn approxi-
mately by subtracting Eq. A13 from Eq. A14.

 
m m V f t dt

t

t t
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1
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+( ) = ( )
+

∫∆
∆

 (A15)

Because Δt = 2π/ω is the period of the second story defined 
by Eq. 14a (circular frequency ω) and f1  =  k1dy1, the following 
relation holds.
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Normalizing Eq. A16 by V k d k d m my y y= + +( ) / ( )1 1
2

2 2
2

1 2  defined 
in Eq. 3, the discrete input level ΔV is derived as
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FigUre a3 | comparison of first-story restoring-force characteristic 
under the double impulse and the corresponding sinusoidal wave.
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In the 2DOF model of equal mass, equal story stiffness and 
equal yield interstory drift as treated above, the following result 
is obtained.

 ∆V Vy/ .= 2 22  (A18)

This certainly corresponds to the discrete interval of input 
level observed in Figures 12 and 13.

aPPenDiX 5

effect of Viscous Damping
In order to investigate the effect of viscous damping on the 
response under impulsive loading, consider an elastic damped 
single degree-of-freedom model. Let ω1, h denote the undamped 
natural circular frequency and the damping ratio. When the 
model is subjected to an initial velocity v0 (0 initial displacement), 
the displacement response can be expressed as

FigUre a4 | Time histories of the restoring forces in the first and second stories up to the phase (a).
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When we consider one-cycle sinusoidal input corresponding 
to the double impulse, the phase ω1t of the first peak corresponds 
to π/2 and the phase of the second peak corresponds to 3π/2.  
In case of the damping ratio h = 0.02, the ratio e hh t− −ω1 1 2/  of the  
displacement amplitude of the damped model to that of the 
undamped model is obtained as follows:

 e h th t− − = =ω ω π1 1 0 22
1/ . /97 for  (A20a)

 e h th t− − = =ω ω π1 1 0 91 3 22
1/ . /for  (A20b)

This indicates that the damping effect is only 3% for the first 
peak and 9% for the second peak. It can be said that the viscous 
damping effect may be small in case of impulsive loading.
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