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A dynamic stability criterion for elastic–plastic structures under near-fault ground motions
is derived in closed form. A negative post-yield stiffness is treated in order to consider
the P-delta effect. The double impulse is used as a substitute of the fling-step near-fault
ground motion. Since only the free vibration appears under such double impulse, the
energy approach plays a critical role in the derivation of the closed-form solution of a
complicated elastic–plastic response of structures with the P-delta effect. It is remarkable
that no iteration is needed in the derivation of the closed-form dynamic stability criterion
on the critical elastic–plastic response. It is shown via the closed-form expression that
several patterns of unstable behaviors exist depending on the ratio of the input level of
the double impulse to the structural strength and on the ratio of the negative post-yield
stiffness to the initial elastic stiffness. The validity of the proposed dynamic stability criterion
is investigated by the numerical response analysis for structures under double impulses
with stable or unstable parameters. Furthermore, the reliability of the proposed theory
is tested through the comparison with the response analysis to the corresponding one-
cycle sinusoidal input as a representative of the fling-step near-fault ground motion. The
applicability of the proposed theory to actual recorded pulse-type ground motions is also
discussed.

Keywords: earthquake response, critical response, elastic–plastic response, P-delta effect, dynamic stability,
dynamic collapse, near-fault ground motion, double impulse

INTRODUCTION

The phenomenon of dynamic instability or dynamic collapse is of principal concern in the field of
earthquake and structural engineering (Jennings and Husid, 1968; Sun et al., 1973; Tanabashi et al.,
1973; Bertero et al., 1978; Takizawa and Jennings, 1980; Bernal, 1987, 1998; Nakajima et al., 1990;
Ger et al., 1993; Challa and Hall, 1994; Hall, 1998; Hjelmstad and Williamson, 1998; Uetani and
Tagawa, 1998; Araki and Hjelmstad, 2000; Sasani and Bertero, 2000; Ibarra and Krawinkler, 2005;
Adam and Jager, 2012). The theoretical investigations from the viewpoint of appliedmechanics have
also been conducted (Herrmann, 1965; Ishida and Morisako, 1985; Maier and Perego, 1992; Araki
and Hjelmstad, 2000; Williamson and Hjelmstad, 2001).

The research on dynamic collapse of structures under earthquake ground motions seems to be
initiated theoretically by Jennings and Husid (1968). They focused on a single-degree-of-freedom
(SDOF) system with an elastic–plastic spring and suggested that the P-delta effect lengthens
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the natural period of the structure and the model exhibits an
exponentially large displacement approximately at the critical
rotation where the coincidence of the resistance and the moment
due to gravity force occurs. They also discussed the post-yield
slope effect on collapse behaviors. Sun et al. (1973) derived a
similar condition by studying the free vibration of the system
under an initial impact and demonstrated the stability boundary
in terms of initial velocity and displacement. Extension of the
SDOF criterion to multi-degree-of-freedom (MDOF) systems has
been tried (Takizawa and Jennings, 1980; Nakajima et al., 1990).

Many investigations have also been conducted on dynamic
response of elastic–plastic structures using the tangent stiffness as
the key for characterizing instability. For SDOF systems, it is well
known that, if the tangent stiffness becomes negative in a dynamic
process, residual displacements increase. For MDOF systems, it
has been shown that a negative eigenvalue of the tangent stiff-
ness matrix leads to either the accumulation of deformation in a
particular mode (Uetani and Tagawa, 1998) or the localization of
deformation (Maier and Perego, 1992). Bernal (1998) indicated
that a negative eigenvalue is a necessary condition of dynamic
collapse. However, the existence of only a negative eigenvalue is
not sufficient to infer dynamic collapse because the sign of the
minimum eigenvalue can recover to be positive due to unloading.
Hence, additional conditions that consider unloading are neces-
sary to predict dynamic collapse (Araki and Hjelmstad, 2000).

Dynamic collapse of realistic frame models has been investi-
gated by several authors (Ger et al., 1993; Challa and Hall, 1994;
Hall, 1998; Sivaselvan et al., 2009). In these studies, various effects,
such as spread of the plastic zone, non-linear material behavior,
and/or non-linear geometric effects, were incorporated in the
numerical methods.

However, it does not seem that a simple dynamic stability
criterion has been proposed even for a rather simple input. In
this paper, a simple closed-form dynamic stability criterion is pro-
posed for the first time for the double impulse as a simplification
of the near-fault ground motion. It is shown via the closed-form
expression that several patterns of unstable behaviors (collapse-
process patterns) exist depending on the ratio of the input level of
the double impulse to the structural strength and on the ratio of
the negative post-yield stiffness to the initial elastic stiffness. The
applicability of the proposed method using the double impulse to
actual recorded pulse-type ground motions is also investigated.

After Parkfield earthquake in 1966 and San Fernando earth-
quake in 1971, various aspects of near-fault ground motions have
been clarified. At the same time, the effects of near-fault ground
motions on structural response have been studied extensively
(Bertero et al., 1978; Hall et al., 1995; Sasani and Bertero, 2000;
Alavi and Krawinkler, 2004; Makris and Black, 2004; Mavroeidis
et al., 2004; Kalkan and Kunnath, 2006; Xu et al., 2007; Rupakhety
and Sigbjörnsson, 2011; Yamamoto et al., 2011; Minami and
Hayashi, 2013; Khaloo et al., 2015; Vafaei and Eskandari, 2015).
These many investigations made clear the characteristics of the
fling-step and forward-directivity inputs (Mavroeidis and Papa-
georgiou, 2003; Bray and Rodriguez-Marek, 2004; Kalkan and
Kunnath, 2006; Mukhopadhyay and Gupta, 2013a,b; Zhai et al.,
2013; Hayden et al., 2014; Yang and Zhou, 2014). It should be
mentioned thatNorthridge earthquake in 1994,Hyogoken-Nanbu

earthquake in 1995, and Chi-Chi earthquake in 1999 brought
strong attention to earthquake structural engineers and designers.

It may be interesting to note that the fling-step and forward-
directivity inputs are modeled by a few wavelets or a series of
harmonic waves. Actually, many useful attempts have been con-
ducted. Mavroeidis and Papageorgiou (2003) summarized the
characteristics of this class of ground motions and proposed some
simple models (Gabor wavelet, Berlage wavelet, etc.). Xu et al.
(2007) made use of the model similar to the Berlage wavelet
for evaluating the performance of passive dampers. Takewaki
and Tsujimoto (2011) employed the Xu’s model and proposed a
method in terms of the drift and input energy demand for scaling
ground motions. Takewaki et al. (2012) used a sinusoidal wave for
pulse-type ground motions.

Historically, the elastic–plastic earthquake responses were
treated for the steady-state response to sinusoidal input or the
transient response to an extremely simple sinusoidal input in
1960–1970s (Caughey, 1960a,b; Iwan, 1961, 1965a,b), and these
methods have been applied to more complex problems. On the
contrary, Kojima and Takewaki (2015a–c, 2016) introduced a
completely different approach and demonstrated that the peak
elastic–plastic response (continuation of free vibrations) can be
derived by an energy approach without solving directly the equa-
tions of motion.

In the earthquake-resistant design, the resonance plays a key
role and it has a strong effect even in case of near-fault ground
motions with short duration. Although the resonant equivalent
frequency had to be computed for a specified input level by chang-
ing the excitation frequency in a parametric manner in the con-
ventional methods (Caughey, 1960a,b; Iwan, 1961, 1965a,b), no
iteration is required in the recently proposed method for the dou-
ble impulse (Kojima and Takewaki, 2015a). They demonstrated
that the resonance can be proved by using energetic investigation
and the critical timing of the second impulse can be characterized
as the time with zero restoring force. This advantageous feature
is retained also in this paper for the structures with negative
post-yield stiffness. They also made clear that the maximum
elastic–plastic response after impulse can be obtained by equating
the initial kinetic energy computed by the initial velocity to the
sumof hysteretic and elastic strain energies. It should be reminded
that, while most of the previous researches on near-fault ground
motions are aimed at disclosing the response characteristics of
elastic or elastic–plastic structures with arbitrary stiffness and
strength parameters and require tremendous amount of numerical
task, the present paper focused on the critical response (resonant
response) and enabled the drastic reduction of computational
works. Once the critical case is made clear, the other non-resonant
case provides a more stable situation.

DOUBLE IMPULSE INPUT

Double Impulse Input
As explained in the previous papers (Kojima and Takewaki,
2015a,b; Kojima et al., 2015), the fling-step input (fault-parallel)
of the near-fault ground motion can be represented effectively by
a one-cycle sinusoidal wave (Mavroeidis and Papageorgiou, 2003;

Frontiers in Built Environment | www.frontiersin.org March 2016 | Volume 2 | Article 62

http://www.frontiersin.org/Built_Environment
http://www.frontiersin.org
http://www.frontiersin.org/Built_Environment/archive


Kojima and Takewaki Dynamic Stability of Inelastic Structure

Kalkan and Kunnath, 2006), and the forward-directivity input
(fault-normal) of the near-fault ground motion can be expressed
by a series of three sinusoidal wavelets with different magnitudes
(see Figure 1). It is explained in the field of seismology that the
fling step is caused by the permanent displacement of the ground
induced by the fault dislocation, and the forward-directivity effect
is governed by the relation of the movement of the rupture front
with the site. In this paper, it is intended to simplify typical near-
fault groundmotions by a double impulse following the references
(Kojima and Takewaki, 2015a; Kojima et al., 2015). This is because
the double impulse in the form of shock has a simple characteristic
and a straightforward expression of the response can be expected
even for elastic–plastic responses based on an energy approach
to free vibrations. Furthermore, the double impulse enables us
to describe directly the critical timing of impulses (resonant fre-
quency), which is not easy for the sinusoidal and other inputs
without a repetitive procedure. Although most of the previous
methods (Caughey, 1960a,b; Iwan, 1961) employ the equivalent
linearization of the structural model for the unchanged input (see
Figure 2A including an equivalent linear stiffness), the method
proposed in the works (Kojima and Takewaki, 2015a,b) and in
this paper transforms the input into the double impulse for the
unchanged structural model (see Figure 2B) It should be noted
that the negative post-yield slope cannot be dealt with by the
equivalent linearization.

Following the reference (Kojima and Takewaki, 2015a), con-
sider a ground acceleration üg(t) as double impulse, as shown in
Figure 1A, expressed by

üg(t) = Vδ(t)− Vδ(t− t0) (1)

where V is the given initial velocity (also the second velocity
with an opposite sign) and t0 is the time interval between two
impulses. The time derivative is denoted by an over-dot. The
comparison with the corresponding one-cycle sinusoidal wave is
plotted in Figure 1A. The corresponding velocity and displace-
ment of such double impulse and sinusoidal wave are also plotted
in Figure 1A. Those for the triple impulse as a substitute of a
forward-directivity input are shown in Figure 1B for reference.
It can be understood that the double impulse is a good approxi-
mation of the corresponding sinusoidal wave even in the form of
velocity and displacement. However, the correspondence in the
response should be discussed carefully. This will be conducted in
Section “Applicability of Critical Double Impulse Timing to the
Corresponding Sinusoidal Wave.”

The Fourier transform of the acceleration üg(t) of the double
impulse can be derived as

Üg(ω) =

∫ ∞

−∞
{Vδ(t)− Vδ(t− t0)} e−iωtdt=V(1 − e−iωt0) (2)

A B

FIGURE 1 | Transformation of acceleration wavelets into a series of impulses, (A) fling-step input (blue) and double impulse (red) and
(B) forward-directivity input (blue) and triple impulse (red) (Kojima and Takewaki, 2015a).
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Previous Work on Closed-Form Critical
Elastic-Perfectly Plastic Response of
SDOF System Subjected to Double Impulse
In the previous work (Kojima and Takewaki, 2015a), a closed-
form expression of the critical elastic-perfectly plastic response of
an SDOF system has been derived for the double impulse. The
critical response exhibiting the largest response under possible
excitations plays a key role in the worst-case analysis (Drenick,
1970; Takewaki, 2002, 2007; Moustafa et al., 2010; Takewaki et al.,
2012). Since a similar classification of response cases is used in this
paper, the essence is shown in this section.

Consider an undamped elastic-perfectly plastic SDOF system
of mass m and stiffness k. The yield deformation and yield force
are denoted by dy and f y (see Figure 3). Let ω1 =

√
k/m,

u and f denote the undamped natural circular frequency, themass
displacement relative to the ground and the restoring force of the
model, respectively. The plastic deformation just after the first
impulse is expressed by up1 and that just after the second impulse
is denoted by up2.

The impulse changes the mass velocity by V instantaneously
and the elastic–plastic response of the SDOF system under the
double impulse can be expressed by the continuation of free
vibrations with different initial conditions. Let umax 1 and umax 2
denote themaximum deformations just after the first impulse and
the second impulse, respectively, as shown in Figure 3. Those
responses can be derived by an energy approach without solving
directly the equation of motion. The kinetic energy given at the
initial stage (the time of the first impulse) and at the time of
the second impulse is transformed into the sum of the hysteretic

A B

FIGURE 2 | Feature of method of input transformation against method of structural model transformation, (A) previous method (equivalent
linearization of structural model for unchanged input), (B) new method (transformation of input into double impulse for unchanged structural model)
(Kojima and Takewaki, 2016).

A B C

FIGURE 3 | Maximum deformation under double impulse based on energy approach: (A) Case 1: elastic response, (B) Case 2: plastic response only
after the second impulse, and (C) Case 3: plastic response even after the first impulse (•: first impulse, N: second impulse).
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energy and the maximum elastic strain energy corresponding to
the yield deformation. It has been made clear that the critical
timing, relative to the first impulse, of the second impulse corre-
sponds to the state with a zero restoring force and only a kinetic
energy exists at this stage as mechanical energies. By using this
rule, the maximum deformation under the double impulse can be
obtained in a simple manner.

The maximum elastic-perfectly plastic response of the SDOF
system under the critical double impulse can be classified into
the three cases depending on the yielding stage (input level).
Let Vy(=ω1dy) denote the input velocity level of the double
impulse at which the SDOF system just attains the yield defor-
mation just after the first impulse. This parameter also presents
a strength parameter of the SDOF system. Case 1 is the case
of elastic response even after the second impulse, and Case 2 is
the case of plastic deformation only after the second impulse.
In addition, Case 3 is the case of plastic deformation after
the first impulse. Figure 3 shows the diagram for these three
cases.

Figure 3A shows the maximum deformation just after the first
impulse and that just after the second impulse, respectively, for
the elastic case (Case 1) during the whole stage. From the energy
balance, umax1 and umax2 can be obtained as follows.

umax 1/dy = V/Vy (3)
umax 2/dy = 2(V/Vy) (4)

Using the similar energy balance, umax1 and umax2 for the
Cases 2 and 3 (Figures 3B,C) can be obtained simply as follows.

umax 1/dy = V/Vy (Case 2) (5)
umax 2/dy = 0.5{1 + (2V/Vy)

2} (Case 2) (6)
umax 1/dy = 0.5{1 + (V/Vy)

2} (Case 3) (7)
umax 2/dy = 0.5(3 + 2V/Vy) (Case 3) (8)

Figure 4 shows the maximum deformation normalized by the
yield deformation with respect to input level.

MAXIMUM ELASTIC–PLASTIC
DEFORMATION AND STABILITY LIMIT
OF STRUCTURES WITH NEGATIVE
POST-YIELD STIFFNESS SUBJECTED
TO CRITICAL DOUBLE IMPULSE

Consider an elastic–plastic SDOF model with negative post-yield
stiffness. The ratio of the post-yield stiffness to the initial elastic
stiffness is expressed by α(<0). Other parameters are the same
as those in the previous section. Let us introduce the notations
shown in Figure 5. The plastic deformation after the first impulse
is expressed by up1 and the plastic deformation after the second
impulse is described by up2 as in the previous section. In this
paper, the collapse of a structure (or stability limit) is characterized
by the phenomenon that the restoring force attains 0 in the second
stiffness range as shown in Figure 5.

FIGURE 4 | Maximum deformation under double impulse with respect
to input level (Kojima and Takewaki, 2015a).

FIGURE 5 | Definition of plastic deformations after the first and second
impulses and characterization of collapse of structure.

Pattern 1: Stability Limit after the Second
Impulse without Plastic Deformation after
the First Impulse
The first collapse pattern is the case where the structure attains
the stability limit after the second impulse without plastic defor-
mation after the first impulse as shown in Figure 6. In order
to derive the stability limit, the maximum elastic–plastic defor-
mation of a structure with negative post-yield stiffness subjected
to the critical double impulse is obtained by using the energy
balance law.

It can be proved that the critical timing of the second impulse to
cause the maximum deformation after the second impulse is the
time when the restoring force becomes 0 after the first impulse.
At this timing, the velocity attains the maximum value V in the
unloading process due to the energy conservation law and the
velocity V is added just after the second impulse.
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FIGURE 6 | Restoring force characteristic corresponding to Pattern 1
(Stability limit after the second impulse without plastic deformation
after the first impulse).

The plastic deformation of the structure just attaining the sta-
bility limit (zero restoring force) after the second impulse can be
obtained from Figure 6.

− αkup2 = kdy(= fy) (9)

Equation 9 leads to

up2 = −(1/α)dy (10)

Then, the energy balance after the second impulse can be
expressed by

m(2V)2/2 = (fydy/2) + fyup2 + (αkup2
2/2) (11)

Substitution of Eq. 10 into Eq. 11 provides

m(2V)2/2 = {1 − (1/α)}kdy
2/2 (12)

Rearrangement of Eq. 12 with the use of ω1dy =Vy provides

(2V)2 = {1 − (1/α)}ω1
2dy

2 = {1 − (1/α)}Vy
2 (13)

FromEq. 13, the input level of the double impulse at the stability
limit can be expressed in terms of the post-yield stiffness ratio α
as follows.

V/Vy = 0.5
√

1 − (1/α) (14)

In this pattern, V/Vy ≤ 1.0 has to be satisfied.
This stability limit corresponds to that by Sun et al. (1973).

Pattern 2: Stability Limit after the Second
Impulse with Plastic Deformation after the
First Impulse
The second collapse pattern is the case where the structure attains
the stability limit after the second impulse with plastic deforma-
tion after the first impulse (see Figure 7). It can also be proved
that the critical timing of the second impulse to cause the maxi-
mum deformation after the second impulse is the time when the
restoring force becomes 0 after the first impulse. At this timing,

FIGURE 7 | Restoring force characteristic corresponding to Pattern 2
(Stability limit after the second impulse with plastic deformation after
the first impulse).

the velocity attains the maximum value vc due to the energy
conservation law in the unloading process and the velocity V is
added just after the second impulse.

From the energy balance law after the first impulse (see
Figure 7), the plastic deformation up1 can be obtained as

up1 = −(1/α)

[
1 −

√
1 − α{1 − (V/Vy)

2}
]
dy (15)

In addition, from the energy balance law just after attaining
up1 after the first impulse, the maximum velocity vc during the
unloading process can be expressed by

vc =
√

1 − α{1 − (V/Vy)
2}Vy (16)

The relation of the plastic deformations up1, up2 of the structure
just attaining the stability limit (zero restoring force) after the
second impulse can be obtained from Figure 7.

− αkup2 = −fy − αkup1 + 2fy = fy − αkup1 (17)

From Eq. 17, the plastic deformation up2 can be expressed as

up2 = −(1/α)dy + up1

= −(1/α)

[
2 −

√
1 − α{1 − (V/Vy)

2}
]
dy (18)

Then, the energy balance after the second impulse (see
Figure 7) can be expressed by

m(vc + V)2/2 = {k(dy − αup1)
2/2}+ (fy − αkup1)up2

+ (αkup2
2/2) (19)

Substitution of Eqs 15, 16, 18 into Eq. 19 provides

m
[√

1 − α{1 − (V/Vy)
2}Vy + V

]2

= kdy
2{1 − (1/α)}

[
2 −

√
1 − α{1 − (V/Vy)

2}
]2

(20)
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Rearrangement of Eq. 20 with the use of ω1dy =Vy and k =

ω1
2m provides√

1 − α{1 − (V/Vy)
2}Vy + V

=
√

−(1 − α)/α
[
2 −

√
1 − α{1 − (V/Vy)

2}
]
Vy (21)

Equation 21 can also be expressed as the following quadratic
equation.{

1 − α −
√

−α(1 − α)
}
(V/Vy)

2 − 4
√

−(1 − α)/α (V/Vy)

− (1 − α)

[
(4/α) +

{
1 +

√
−(1 − α)/α

}2
]
= 0 (22)

FromEq. 22, the input level of the double impulse at the stability
limit can be expressed in terms of the post-yield stiffness ratio α
as follows.

V
Vy

=

−2
√

−(1 − α)/α

±
√

8α2−10α+(2/α)−2(4α+1)(1−α)
√

−(1−α)/α

2
{

α − 1 +
√

−α(1 − α)
}

(23)
In this pattern, V/Vv ≥ 1.0 has to be satisfied. Therefore, one

of two expressions in Eq. 23 is taken and reduced to the follow-
ing form.

V
Vy

=

−2
√

−(1 − α)/α

−
√

8α2−10α+(2/α)−2(4α+1)(1−α)
√

−(1−α)/α

2
{

α − 1 +
√

−α(1 − α)
}

(24)

Pattern 3: Stability Limit after the Second
Impulse with Closed-Loop in Restoring
Force Characteristic
The third collapse pattern is derived here. From Figure 8, the
energy balance during free vibration after attaining the maximum
deformation after the second impulse can be expressed as

1
2k(dy − αup1 + αup2)

2 =
1
2k{dy − (−αup1 + αup2)}2

− 1
2α k{dy − (−αup1 + αup2)}2

(25)

vc and up1 can be obtained from Eqs 16 and 15, respectively, and
up2 can be derived from the energy balance law after the second
impulse.

up2 =
1
α

[(
vc
Vy

− 2
)

+

√√√√(
vc
Vy

− 2
)2

+ α

{(
V
Vy

)2
+

(
2 V
Vy

+ 4
)

vc
Vy

− 4

}
(26)

FIGURE 8 | Restoring force characteristic corresponding to Pattern 3
(Stability limit after the second impulse with closed-loop in restoring
force characteristic).

With the notation −αup1 + αup2 = λdy, Eq. 25 provides

1
2k(dy + λdy)

2
=

1
2k(dy − λdy)

2 − 1
2α k(dy − λdy)

2 (27)

Division of both sides in Eq. 27 by k/2 and rearrangement of the
resulting equation lead to

(1+ 2λ+ λ2
)dy

2 = (1− 2λ+ λ2
)dy

2 − 1
α (1− 2λ+ λ2

)dy
2 (28)

Division again of both sides of Eq. 28 by dy
2 and rearrangement

of the resulting equation yield

λ2 − 2(1 − 2α)λ + 1 = 0 (29)

The solution of Eq. 29 can be obtained as

λ = (1 − 2α)± 2
√

α(α − 1) (30)

It should be noted that, since λ = (1 − 2α) + 2
√

α(α − 1)
provides only complex numbers, this case is eliminated. Then, the
solution is

λ = (1 − 2α)− 2
√

α(α − 1) (31)

Using Eqs 15, 16, 26, 31 and−αup1 + αup2 = λdy, the following
relation is derived.

α
dy

(up2 − up1) = −1

+

√√√√(
vc
Vy

− 2
)2

+ α

{(
V
Vy

)2
+ 2

(
V
Vy

+ 2
)

vc
Vy

− 4

}
= λ

(32)
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After some rearrangement, Eq. 32 provides(
vc
Vy

− 2
)2

+ α

{(
V
Vy

)2
+ 2

(
V
Vy

+ 2
)

vc
Vy

− 4

}
= (λ + 1)2

(33)
Equations 16 and 33 lead to

2α
(

V
Vy

)2
−5α+5−(λ + 1)2 = −2

(
α V
Vy

+ 2α − 2
)

vc
Vy

(34)

After Eq. 34 is squared, the following fourth-order equation is
obtained.

4α2
(

V
Vy

)4
+ 4α

{
−5α + 5 − (λ + 1)2

}(
V
Vy

)2

+
{
−5α + 5 − (λ + 1)2

}2
= 4

(
α V
Vy

+ 2α − 2
)2( vc

Vy

)2

(35)

Substitution of Eq. 16 into Eq. 35 yields

4α2(1 − α)

(
V
Vy

)4
+ 16α2(1 − α)

(
V
Vy

)3

+ 4α
[{

−5α + 5 − (λ + 1)2
}
−α(1 − α)− 4(1 − α)2

](V
Vy

)2

+ 16α(1 − α)2
(
V
Vy

)
+
{
−5α + 5−(λ+1)2

}2
−16(1− α)3 = 0

(36)

Further substitution of Eq. 31 into Eq. 36 and rearrangement of
the resulting equation lead to

4α2
(

V
Vy

)4
+ 16α2

(
V
Vy

)3

− 4α
{
3 − 11α − 8

√
−α(1 − α)

}(
V
Vy

)2
+ 16(1 − α)

(
V
Vy

)
+ (1−α)

{
128α2 − 32α − 15+ 16(8α+1)

√
−α(1− α)

}
= 0
(37)

Equation 37 provides the stability limit in this case which
depends on the parameter α.

Additional Pattern 1: Limit after the
First Impulse
Another possible collapse pattern is the case where the structure
attains the stability limit after the first impulse. Although the
stability limit in this pattern is slightly larger than that for the
above Pattern 3, its limit is explained here for disclosing the overall
property of the stability limit.

The plastic deformation up1 of the structure just attaining the
stability limit (zero restoring force) after the first impulse can be
obtained from Figure 9.

αkup1 = −kdy (38)

FIGURE 9 | Additional Pattern 1: limit after the first impulse.

Equation 38 leads to

up1 = −(1/α)dy (39)

The energy balance after the first impulse can be expressed by

mV2/2 = (fydy/2) + fyup1 + (αkup1
2/2) (40)

Substitution of Eq. 39 into Eq. 40 provides

mV2/2 = {1 − (1/α)} kdy
2/2 (41)

Rearrangement of Eq. 41 with the use of ω1dy =Vy provides

V2 = {1 − (1/α)} ω1
2dy

2 = {1 − (1/α)}Vy
2 (42)

FromEq. 42, the input level of the double impulse at the stability
limit in this case can be expressed in terms of the post-yield
stiffness ratio α as follows.

V/Vy =
√

1 − (1/α) (43)

In this pattern, V/Vy ≥ 1.0 has to be satisfied.

Additional Pattern 2: Limit without Plastic
Deformation after the Second Impulse
As in the previous section “Additional Pattern 1: Limit after the
First Impulse,” since further analysis of the overall behavior may
be beneficial for accurate analysis of the stability limit, another
classification analysis is made for the above-mentioned Pattern 3.
This classification is characterized by the condition whether the
response after the second impulse shown inFigure 10 goes beyond
the yield point.

From Figure 10, the energy balance after the second impulse
in case of the elastic response after the second impulse can be
expressed by

1
2m(vc + V)2 =

1
2k{ue − (dy + αup1)}2 (44)

where ue indicates the elastic deformation during the unloading
process after attaining the maximum deformation umax1. The
maximumdeformation after the second impulse can be derived as

umax 2 = −umax 1 + ue = −dy − up1 + ue (45)
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FIGURE 10 | Additional Pattern 2: limit without plastic deformation
after the second impulse.

vc, up1 have been derived in Eqs 16 and 15. From Eq. 44, ue can be
obtained as

ue
dy

=

(
vc + V
Vy

)
+ 1 + α

up1

dy
(46)

If ue becomes larger than 2dy, the response goes into a plastic
region after the second impulse. Therefore, the boundary can be
characterized by ue = 2dy. Eq. 46 provides such boundary as

ue
dy

=

(
vc + V
Vy

)
+ 1 + α

up1

dy
= 2 (47)

Equation 47 leads to the following quadratic equation.

(1 − 4α)(V/Vy)
2 − 4(V/Vy) + 4α = 0 (48)

The solution can be derived as

V
Vy

=
2 ± 2

√
4α2 − α + 1
1 − 4α (49)

Since V/Vy > 0, V/Vy corresponding to such boundary is
expressed as

V
Vy

=
2 + 2

√
4α2 − α + 1
1 − 4α (50)

It has been confirmed that the structure goes into a plas-
tic region after the second impulse in the case of α <−1/3.
Therefore, the boundary given by Eq. 50 is used in the range of
α >−1/3.

It should be remarked that the present paper deals with the
critical double impulse and the stability limit for such critical

timing plays a principal role for other non-critical cases. Once the
stability limit is derived for a critical timing case, the non-critical
case provides a smaller response and leads to a stable state.

RESULTS ON NUMERICAL EXAMPLE

The dynamic stability limit obtained in Section “Maximum
Elastic–Plastic Deformation and Stability Limit of Structures
with Negative Post-Yield Stiffness Subjected to Critical Double
Impulse” is shown in Figure 11A where Cases 1–3 indicate the
response cases similar to those in Figure 3 for elastic-perfectly
plastic models. For facilitating intuitive understanding, the cor-
responding collapse patters are shown in Figure 11A. In order to
investigate the accuracy of the proposed limit, 15 points slightly
smaller or larger than the limit curve for 3 post-yield stiffness
ratios of −0.1, −1/3, and −0.6 have been chosen. Those 15
points are indicated in Figure 11B. The solid circles represent
the stable models, and the open circles present the unstable
models.

Figure 12 shows the restoring force–deformation relations for
the above 15 models (3 for the post-yield stiffness ratio −0.1, 5
for the post-yield stiffness ratio −1/3, and 7 for the post-yield
stiffness ratio−0.6). The colors correspond to the colors of circles
in Figure 11B. It can be confirmed that the proposed stability limit
certainly divides the region into the stable one and the unstable
one within a reasonable accuracy.

DISCUSSION

Applicability of Critical Double Impulse
Timing to the Corresponding Sinusoidal
Wave
In the previous paper (Kojima and Takewaki, 2015a), it has
been demonstrated that, if the maximum value of the Fourier
amplitude is selected as the key parameter, the responses to
the double impulse and the corresponding sinusoidal input
exhibit a fairly good correspondence. In this section, it is inves-
tigated whether the critical timing derived from the double
impulse is also an approximate critical timing of the sinusoidal
input.

Let t0c denote the critical timing of the double impulse and t0
denote the general timing. The ratio of t0c to the fundamental
natural period T1(=2π/ω1) can be expressed as

t0c
T1

=
1
2π arcsin

(
Vy

V

)

+
1

4π
√
−α

ln

1 +
√

−α
{
(V/Vy)

2 − 1
}

1 −
√

−α
{
(V/Vy)

2 − 1
}
+

1
4 (51)

This relation is plotted inFigure 13A for several post-yield stiff-
ness ratios. It can be observed that the critical timing is delayed due
to plastic deformation as the input level increases and the delaying
rate is high as the post-yield stiffness ratio becomes smaller. The
three vertical lines show the input levels corresponding to the
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A

B

FIGURE 11 | Several patterns of stability limit (patterns of collapse): (A) stability patterns and (B) 15 points to be checked for stability.

additional Pattern 1 where the collapse is defined after the first
impulse. Since the second impulse cannot be acted over this limit,
Figure 13A represents this phenomenon exactly.

Figure 13B shows the maximum deformation of the model
with α =−0.1 under the corresponding sine wave with respect to
t0/t0c where the sine wave has the circular frequency π/t0 and the

velocity amplitude is kept constant in each plot. The first peak for
V/Vy = 2.0 corresponds to umax1 and the second peak indicates
umax2. On the other hand, Figure 13C presents that of the model
with α =−0.6. It can be confirmed that the critical timing derived
from the double impulse is also an approximate critical timing of
the sinusoidal input.
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FIGURE 12 | Restoring force–deformation relations for 15 models in stable and unstable regions.

It has also been clarified from the numerical analysis using the
corresponding one-cycle sinusoidal input that the stable models
of Point (12) and (13) in Figure 11B are difficult to be produced.
This fact may result from the fact that, since the deformation

response after the first impulse under the corresponding one-
cycle sinusoidal input is smaller than the response under the
double impulse, the energy absorption after the first impulse is
small under the corresponding one-cycle sinusoidal input and
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A

B

C

FIGURE 13 | Critical timing of double impulse with respect to input
level and correspondence of critical timing between double impulse
and the corresponding one-cycle sine wave: (A) critical timing of
double impulse with respect to input level, (B) maximum deformation
of model with ααα = –0.1 under sine wave with respect to t000/tc000 , and (C)
maximum deformation of model with ααα = –0.6.

the response after the second impulse under the corresponding
one-cycle sinusoidal input goes easily into the unstable region. In
such case (α <−1/3), the model of Point (9) represents the model

FIGURE 14 | Modeling of part of pulse-type recorded ground motion
into the corresponding one-cycle sinusoidal input (Rinaldi station
fault-normal component during the Northridge earthquake in 1994).

slightly smaller than the stability limit. More detailed examination
should be made in the future.

Applicability to Recorded Ground Motions
It seems important to investigate the applicability of the present
theory to actual recorded pulse-type ground motions.

Consider the Rinaldi station fault-normal component dur-
ing the Northridge earthquake in 1994 as a representative
pulse-type ground motion. Since the ground motion is fixed,
the structural model parameters are selected appropriately, i.e.,
ω1 or dy in Vy = ω1dy is selected in an appropriate manner.
Figure 14 illustrates the modeling of the part of the recorded
ground motion acceleration into a one-cycle sinusoidal input.
This one-cycle sinusoidal wave is transformed into the dou-
ble impulse following the method shown in the references
(Kojima and Takewaki, 2015a, 2016). In the transformation, the
maximum values of Fourier amplitude have been coincided, and
the interval of the double impulse is half the sinusoidal wave
period. Since the initial velocity V is determined in Figure 14,
Vy is selected here. Because ω1 is closely related to the resonance
condition, dy is selected principally. This procedure is similar to
the well-known elastic–plastic response spectrum developed in
1960–1970.

Figure 15A shows the maximum deformation with respect to
V/Vy under the Rinaldi station fault-normal component and the
corresponding double impulse. The solid line has been drawn
by using the response estimation method shown in Appendix.
On the other hand, the dotted line has been obtained from
the time–history response analysis for many models with differ-
ent values of Vy. It can be found that about V/Vy = 0.8 is the
approximate limit. From the detailed investigation, V/Vy = 0.78
and V/Vy = 0.79 are selected for candidates to be investigated.
These two models corresponds approximately to Point (9) and
(10) in Figure 11B. Figure 15B demonstrates the restoring
force–deformation relation for the stable case (V/Vy = 0.78)
and the unstable case (V/Vy = 0.79) under the Rinaldi sta-
tion fault-normal component. In addition, Figure 15C presents
the deformation time–history for the stable case (V/Vy = 0.78)
and the unstable case (V/Vy = 0.79) under the Rinaldi station
fault-normal component. On the other hand, Figure 15D shows
the corresponding restoring force time–history for stable case
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A C

B D

FIGURE 15 | Stable model (V/Vy =0.78) and unstable model (V/Vy =0.79) under Rinaldi station fault-normal component. (A) Maximum deformation with
respect to V/Vy under Rinaldi station fault-normal component and the corresponding double impulse, (B) restoring force–deformation relation for stable case and
unstable case, (C) deformation time–history for stable case and unstable case, and (D) restoring force time–history for stable case and unstable case.

(V/Vy = 0.78) and the unstable case (V/Vy = 0.79). It can be con-
firmed that the proposed stability limit using the double impulse
is fairly accurate.

It should be remarked that, although Vy was varied in this
section for a fixed set of V and t0, the result can also be regarded
to correspond to the case where Vy is fixed and a set of V and t0
is varied.

CONCLUSION

A dynamic stability criterion for elastic–plastic structures under
double impulse as a substitute of a near-fault ground motion has
been derived in closed form. The detailed conclusions may be
summarized as follows:

(1) The expression for a closed-form solution of the elastic-
perfectly plastic response of an SDOF model by the critical
double impulse has been extended to a dynamic stability
problem of elastic–plastic structures with negative post-yield
stiffness in the restoring force characteristic. A negative post-
yield stiffness is treated in order to consider the P-delta effect.
The double impulse is used as a substitute of the fling-step
near-fault ground motion.

(2) It has been shown that, since only the free vibration appears
under the double impulse, the energy approach plays a crit-
ical role in the derivation of the closed-form solution of an
elastic–plastic response of structures with the P-delta effect.
It is remarkable that no iteration is needed in the derivation
of the closed-form dynamic stability criterion on the critical
elastic–plastic response.

(3) It has been shown via the closed-form expression that sev-
eral patterns of unstable behaviors (collapse-process pat-
terns) exist depending on the ratio of the input level of
the double impulse to the structural strength and on the
ratio of the negative post-yield stiffness to the initial elastic
stiffness. The first pattern is the case where the structure
attains the stability limit after the second impulse with-
out plastic deformation after the first impulse. The second
pattern is the case where the structure attains the stabil-
ity limit after the second impulse with plastic deformation
also after the first impulse. The third pattern is the case
where the structure attains the stability limit after the second
impulse with closed loop in restoring force characteristic (the
final movement direction is the same as the first movement
direction).

(4) The validity of the proposed dynamic stability criterion
has been investigated by the numerical response analysis for
structures under double impulses with stable or unstable
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parameters. It has been confirmed that the proposed criterion
has a reasonable accuracy.

(5) The reliability of the proposed theory has been tested through
the comparison with the response analysis to the correspond-
ing one-cycle sinusoidal input as a representative of the fling-
step near-fault ground motion.

(6) It has been demonstrated that the proposed criterion using
the double impulse is applicable to actual recorded pulse-type
ground motions within a reasonable accuracy.

The present theory may be applicable to an MDOF structure
once the MDOF structure is transformed into the corresponding
SDOF system using the push-over analysis.
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APPENDIX

Maximum Elastic–Plastic Deformation of
SDOF Model with Negative Post-Yield
Stiffness under Double Impulse
The maximum elastic–plastic deformation of an SDOF model
with negative post-yield stiffness can be obtained based on the
energy approach.

[Case 1] Since the overall response is elastic as shown in
Figure A1A in Appendix, the maximum deformation
had been obtained in the reference (Kojima and Take-
waki, 2015a).

[Case 2] The maximum deformation umax occurs after the sec-
ond impulse (umax = umax2) as shown in Figure A1B in
Appendix. The maximum plastic deformation up2 after
the second impulse can be derived from the energy
balance after the second impulse.

m(2V)2/2 = fydy/2 + fyup2

+ αkup2
2/2 (umax 2 = dy + up2) (A1)

[Case 3] The maximum plastic deformation up1 after the first
impulse can be obtained from the following energy
balance after the first impulse (see Figure A1C in
Appendix).

mV2/2 = fydy/2+fyup1+αkup1
2/2 (umax 1 = dy+up1)

(A2)

On the other hand, the maximum plastic deformation
up2 after the second impulse can be derived from the
following energy balance after the second impulse (see
Figure A1C in Appendix).

m(vc + V)2/2 = k(dy − αup1)
2/2 + (fy − αkup1)up2

+ αkup2
2/2 (umax 2 = −umax 1 + 2dy + up2) (A3)

where vc is the velocity at the zero restoring force state
and can be obtained from the following energy balance
after the starting point of the unloading process.

mvc2/2 = k(dy + αup1)
2/2 (A4)

The maximum deformation umax can be obtained as the
larger value among umax1 derived from Eq. A2 and umax2
derived from Eq. A3.

A B C

FIGURE A1 | Maximum elastic–plastic deformation of SDOF model with negative post-yield stiffness under double impulse: (A) Case 1: elastic
response, (B) Case 2: plastic response after the second impulse, and (C) Case 3: plastic response after the first impulse (•: first impulse, N: second
impulse).
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