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closed-Form Overturning limit of 
rigid Block under critical near-Fault 
ground Motions
Kunihiko Nabeshima , Ryo Taniguchi , Kotaro Kojima and Izuru Takewaki*

Department of Architecture and Architectural Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan

A closed-form limit on the input level of the double impulse as a substitute of a near-fault 
ground motion is derived for the overturning of a rigid block. The rocking vibration of the 
rigid block is formulated by using the conservation law of angular momentum and the 
conservation law of mechanical energy. The initial rotational velocity after the first impulse 
and the rotational velocity after the impact are determined by the conservation law of 
angular momentum. The velocity change after the second impulse is also characterized 
by the conservation law of angular momentum. The maximum angles of rotation of the 
rigid block in both the clockwise and anti-clockwise directions, which are needed for the 
computation of the overturning limit, are derived by the conservation law of mechanical 
energy. This enables us to avoid the computation of complicated non-linear time-history 
responses. The critical timing of the second impulse to the first impulse is characterized 
by the time of impact after the first impulse. It is clarified that the action of the second 
impulse just after the impact corresponds to the critical timing. It is derived from the 
closed-form expression of the critical velocity amplitude limit of the double impulse that 
its limit is proportional to the square root of size, i.e., the scale effect.

Keywords: earthquake response, near-fault ground motion, double impulse, rigid block, rocking, critical response, 
overturning, scale effect

inTrODUcTiOn

The rocking response of rigid blocks is important in the evaluation of earthquake response of 
monuments, slender buildings, and furniture (or box on rack stores). In the seismic risk analysis of 
base-isolated high-rise buildings in Japan, this investigation is critical because most isolators do not 
have tensile resistance and overturning of such buildings should be prohibited at all. Historically, in 
the earthquake structural engineering, the overturning rate of tombstones during an earthquake has 
often been used in estimating the peak ground accelerations and velocities.

The research on rocking response of rigid blocks under earthquake ground motions has been 
investigated extensively since the pioneering work by Milne (1885) and Housner (1963). Yim et al. 
(1980) conducted extensive investigation for many recorded ground motions based on the work by 
Housner (1963). Ishiyama (1982) studied various types of non-linearity of the overturning response 
of a rigid block in detail. After these works, many investigations have been conducted so far (Priestley 
et al., 1978; Spanos and Koh, 1984; Hogan, 1989, 1990; Shenton and Jones, 1991; Pompei et al., 1998; 
Andreaus and Casini, 1999; Anooshehpoor et al., 1999; Zhang and Makris, 2001; Prieto et al., 2004; 
Yilmaz et al., 2009; ElGawady et al., 2010; DeJong, 2012; Dimitrakopoulos and DeJong, 2012a,b). 
Recently, DeJong (2012) and Dimitrakopoulos and DeJong (2012a,b) investigated the rocking motion 

http://www.frontiersin.org/Built_Environment/
http://crossmark.crossref.org/dialog/?doi=10.3389/fbuil.2016.00009&domain=pdf&date_stamp=2016-05-06
http://www.frontiersin.org/Built_Environment/archive
http://www.frontiersin.org/Built_Environment/editorialboard
http://www.frontiersin.org/Built_Environment/editorialboard
http://dx.doi.org/10.3389/fbuil.2016.00009
http://www.frontiersin.org/Built_Environment/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:takewaki@archi.kyoto-u.ac.jp
http://dx.doi.org/10.3389/fbuil.2016.00009
http://www.frontiersin.org/Journal/10.3389/fbuil.2016.00009/abstract
http://www.frontiersin.org/Journal/10.3389/fbuil.2016.00009/abstract
http://www.frontiersin.org/Journal/10.3389/fbuil.2016.00009/abstract
http://loop.frontiersin.org/people/340891/overview
http://loop.frontiersin.org/people/314790/overview
http://loop.frontiersin.org/people/232353/overview
http://loop.frontiersin.org/people/166204/overview


2

Nabeshima et al. Rocking Response of Rigid Block

Frontiers in Built Environment | www.frontiersin.org May 2016 | Volume 2 | Article 9

and overturning of a rigid block in detail and derived important 
results. Furthermore, Makris and Kampas (2016) investigated the 
scale effect of blocks on the overturning limit level of sinusoidal 
inputs and earthquake ground motions.

It appears that active discussions on the property of near-
fault ground motions started since Parkfield earthquake in 1966 
and San Fernando earthquake in 1971. The peculiar influences 
of near-fault ground motions on structural response have been 
investigated extensively and in detail (Bertero et al., 1978; Hall 
et  al., 1995; Sasani and Bertero, 2000; Alavi and Krawinkler, 
2004; Makris and Black, 2004; Mavroeidis et al., 2004; Kalkan 
and Kunnath, 2006; Xu et al., 2007; Rupakhety and Sigbjörnsson, 
2011; Yamamoto et  al., 2011; Minami and Hayashi, 2013; 
Khaloo et al., 2015; Vafaei and Eskandari, 2015). These inves-
tigations paid attention to the principal part of such ground 
motions and clarified the essential features of near-fault ground 
motions. Then, such investigations made clear the existence of 
the fling-step and forward-directivity inputs (Mavroeidis and 
Papageorgiou, 2003; Bray and Rodriguez-Marek, 2004; Kalkan 
and Kunnath, 2006; Mukhopadhyay and Gupta, 2013a,b; Zhai 
et  al., 2013; Hayden et  al., 2014; Yang and Zhou, 2014). In 
particular, Northridge earthquake in 1994, Hyogoken-Nanbu 
earthquake in 1995, and Chi-Chi earthquake in 1999 alerted 
many earthquake structural engineers and designers for the 
need of consideration of such effects in the structural design of 
buildings and infrastructures.

It is noteworthy that the principal parts of the fling-step and 
forward-directivity inputs can be substituted by a few wavelets 
or a series of harmonic waves. Actually, many useful attempts 
have been made. As a milestone in this field, Mavroeidis and 
Papageorgiou (2003) summarized the characteristics of this class 
of ground motions and proposed some simple models.

It is also important to note the history of non-linear response 
analysis of structures. In an early stage of structural dynamics, the 
resources of computers are quite limited and the elastic–plastic 
earthquake responses were investigated primarily for the steady-
state response to harmonic input or the transient response to 
an extremely simple sinusoidal input in 1960–1970s (Caughey, 
1960a,b; Iwan, 1961, 1965a,b). After development of methods for 
sophisticated mathematical description of those responses, such 
simple techniques have been applied to more complex problems. 
On the other hand, although applicable only for simplified inputs, 
Kojima and Takewaki (2015a,b,c, 2016a,b) proposed recently a 
completely different approach using a double impulse and dem-
onstrated that the peak elastic–plastic response can be derived by 
using an energy approach without solving directly the equations 
of motion even for models with negative post-yield stiffness.

In the earthquake-resistant design, the resonance plays 
a key role (Drenick, 1970; Takewaki, 2007; Moustafa et  al., 
2010; Takewaki et al., 2012), and it has a strong effect even in 
case of near-fault ground motions with short duration. While 
the resonant equivalent frequency had to be computed for a 
specified input level by changing the excitation frequency in 
a parametric manner in the conventional methods (Caughey, 
1960a,b; Iwan, 1961, 1965a,b), no iteration is required in the 
recently proposed method for the double impulse (Kojima 
and Takewaki, 2015a). They demonstrated that the resonance 

can be proved by using energetic investigation and the critical 
timing of the second impulse can be characterized as the time 
with zero restoring force. This advantageous feature is retained 
also in this paper for the structures with negative second slope, 
although the present model has a non-linear elastic restoring-
force characteristic. They also made clear that the maximum 
elastic–plastic response after impulse can be obtained by equat-
ing the initial kinetic energy computed by the initial velocity 
to the sum of hysteretic and elastic strain energies. It should 
be reminded that while most of the previous researches on 
near-fault ground motions are aimed at disclosing the response 
characteristics of elastic or elastic–plastic structures with arbi-
trary stiffness and strength parameters and require tremendous 
amount of numerical task, the present paper focused on the 
critical response (resonant response) and enabled the drastic 
reduction of computational works. Once the critical case is 
made clear, it is expected that the other non-resonant case 
provides a more stable situation.

In the present paper, not only a closed-form expression of 
the critical velocity amplitude limit of the double impulse for 
overturning of a rigid block is obtained but also the scale effect 
in the overturning limit is made clear. It is concluded from such 
closed-form expression that its limit is proportional to the square 
root of size.

DOUBle iMPUlse inPUT

In this paper, it is intended to model a principal part of a near-
fault ground motion into a one-cycle sinusoidal wave (Kalkan and 
Kunnath, 2006) and then simplify such one-cycle sinusoidal wave 
into a double impulse following Kojima and Takewaki (2015a,c, 
2016a,b), Kojima et  al. (2015), and Taniguchi et  al. (2016), as 
shown in Figure  1. This is because the double impulse in the 
form of shock has a simple characteristic and a straightforward 
expression of the response can be expected even for non-linear 
elastic responses based on an energy approach to free vibrations.

Following Kojima and Takewaki (2015a), consider a ground 
acceleration u tg ( ) as double impulse, as shown in Figure  1, 
expressed by

 
u t V t V t tg ( ) ( ) ( )= − −δ δ 0  (1)

where V is the given initial velocity (also the second velocity with 
an opposite sign) and t0 is the time interval between two impulses. 
The time derivative is denoted by an over-dot. The comparison 
with the corresponding one-cycle sinusoidal wave is plotted in 
Figure 1. The corresponding velocity and displacement of such 
double impulse and sinusoidal wave can also be found in Kojima 
and Takewaki (2015a). It has been confirmed that the double 
impulse is a good approximation of the corresponding sinusoidal 
wave even in the form of velocity and displacement. However, 
the correspondence in the response should be discussed carefully.

The Fourier transform of the acceleration u tg ( ) of the double 
impulse can be derived as

 
U V t V t t e V eg

i t i td = ( 0( ) ( ) ( ) )ω δ δ ω ω= − −{ } −−

−∞

∞ −∫ 0 1t  (2)
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FigUre 3 | Modeling of rocking rigid block by rigid bar supported by 
non-linear elastic rotational spring with rigid initial stiffness and 
negative second slope.

FigUre 1 | Modeling of principal part of near-fault ground motion into one-cycle sinusoidal wave and modeling of such one-cycle sinusoidal wave 
into double impulse.
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Input: sinusoidal input (unchanged) Input: double impulse (transformed)

Structure: equivalent linear model 
(transformed)

Structure: original model 
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FigUre 2 | Feature of method of input transformation against method 
of structural model transformation: (a) previous method (equivalent 
linearization of structural model for unchanged input) and (B) new 
method (transformation of input into double impulse for unchanged 
structural model).
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As a comparative approach, an equivalent linearization method 
exists. While most of the previous methods (Caughey, 1960a,b; 
Iwan, 1961) employ the equivalent linearization of the structural 
model for the unchanged input (see Figure  2A including an 
equivalent linear stiffness), the method proposed in the works 
(Kojima and Takewaki, 2015a) and in this paper transforms the 
input into the double impulse for the unchanged structural model 
(see Figure 2B). It should be noted that the negative second slope 
cannot be dealt with by the equivalent linearization.

MaXiMUM rOTaTiOn OF rigiD BlOcK 
sUBJecTeD TO criTical DOUBle 
iMPUlse

Consider the rocking response of a rigid block of mass m with 
width 2b and height 2h under a base horizontal acceleration 
input u tg ( ) as shown in Figure 3 (input of −u tg ( ) does not cause 

any problem). The geometrical properties can be expressed by 
the length R b h= +2 2  and angle α as shown in Figure 3. Let I 
[=(4/3)mR2] and g denote the mass moment of inertia around the 
edge of bottom right (also bottom left) and the acceleration of grav-
ity, respectively. It is well known that this model can be substituted 
by a rigid bar, as shown in Figure 3, with the same mass moment of 
inertia supported by a non-linear elastic rotational spring with rigid 
initial stiffness and negative second slope. The moment-rotation 
relation of the non-linear elastic rotational spring with rigid initial 
stiffness and negative second slope is shown in Figure 4.

It is assumed here that slipping of the block is ignored for sim-
plicity. In addition, a scenario that the overturning occurs after 
the second impulse is employed in this paper. This scenario seems 
valid because the input limit on the overturning corresponding 
to this scenario provides a lower limit in general. As for more 
detailed scenarios, see Ishiyama (1982) and Dimitrakopoulos and 
DeJong (2012b).

The critical timing of the second impulse is at the impact 
where the rotational velocity attains the maximum [see Kojima 
and Takewaki (2015a)]. Furthermore, it can be shown that critical 
timing is just after the impact because the rotational velocity is 
reduced greatly at the impact. More detailed verification of the 
critical timing of the second impulse is shown in Appendix.

Let θ(t) denote the angle of rotation of the rigid block (clock-
wise direction is positive). The equation of motion for this rigid 
block can be expressed by

 

I t mgR t
mu t R t t





θ α θ
α θ θ

( ) sin{ ( )}
( ) cos{ ( )} ( )

+ − −
= − − − <g     0

 (3a)
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FigUre 4 | Moment-rotation relation for rocking response of rigid 
block and timing of double impulse.

FigUre 5 | rocking response of rigid block and governing law (conservation of angular momentum, conservation of energy, and energy dissipation).
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I t mgR t mu t R t t

θ α θ α θ θ( ) sin{ ( )} ( ) cos{ ( )} ( )+ − = − − >g    0  (3b)

The maximum angle of rotation after the first impulse is 
expressed by θ1max and that after the second impulse is described 
by θ2max.

The first conservation law of angular momentum [conserva-
tion of angular momentum (1) in Figure 5] can be given by

 mVR Icosα θ= 

1
 (4)

From Eq.  4, the initial rotational velocity θ1 after the first 
impulse can be obtained as

 
θ α1 =mVR Icos /  (5)

The first conservation law of mechanical energy [conser-
vation of energy (1) in Figure 5] after substitution of Eq. 5 
yields

 ( / ) ( / ) ( cos / )1 2 1 22
1

2
1I I mVR I Aθ α= =  (6)

A1 is the area of near trapezoid corresponding to θ1max shown in 
Figure 4. From Eq. 6, once the velocity amplitude V of the double 
impulse is given, θ1max can be obtained.

The second conservation law of angular momentum 
 [conservation of angular momentum (2) in Figure 5] at the impact 
( θ1: rotational velocity just before the impact) can be given by

 I mRb I  θ θ α θ1 1 2
12− =sin ( )  (7)

This conservation law is applied at the pivot point. Since the 
rotation occurs around the bottom right before the impact, two 
terms appear in the left side of Eq. 7. Following Housner (1963), 
the rotational velocity θ2

1( )  just after the impact may be expressed 
by

 
 θ θ

α
2
1

1
( ) cos
= = 






r r mVR

I
 (8)

where r can be obtained from Eq. 7 as

 r mRb I= −{ ( sin / )}1 2 2α  (9)

This parameter r was introduced by Housner (1963). When 
the boundary condition between the block and the base is 
necessary to consider, e.g., the surface material properties 
(ElGawady et al., 2010) or the rocking of tall buildings (lim-
ited contact area), another coefficient should be added on the 
parameter r.

Using the conservation law of angular momentum [conserva-
tion of angular momentum (3) in Figure 5] just after the second 
impulse, the rotational velocity change θ2

2( )  by the second impulse 
can be expressed by

 I mVRθ α2
2( ) cos=  (10)

In this case, the rotational velocity θ2
 just after the second 

impulse can be obtained as

 
  θ θ θ2 2

1
2
2= +( ) ( )  (11)

The rotation angle θ2
1( )  is obtained based on the Housner’s 

formulation (conservation law of angular momentum at the 
impact), and θ2

2( )  is derived from the transformation of the 
horizontal impulse into rotation [the same treatment is made 
in Eq. 4]. Since these two phenomena occur in time sequence, 
summation of the angles of rotation can be verified.
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FigUre 6 | Moment-rotation relation for rocking response of rigid 
block and limit of overturning.
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The second conservation law of mechanical energy [conserva-
tion of energy (2) in Figure 5] can then be expressed by

 ( / )1 2 2
2

2I Aθ =  (12)

A2 is the area of near trapezoid corresponding to θ2max shown 
in Figure 4.

It may be interesting to note the quantity of energy dissipation 
during the rocking response. The energy dissipation [energy dis-
sipation (1) in Figure 5] can be understood by

 ( / ) ( / ) ( / ) ( / )cos1 2 1 2 1 2 3 42
1

2 2 2mV I mV→ = ×θ α  (13)

The energy dissipation [energy dissipation (2) in Figure 5] can 
be expressed by

 ( / ) ( / ) ( / )( )1 2 1 2 1 21
2

2
1 2

1
2I I I r  θ θ θ→ = ×  (14)

The critical timing t0 can be obtained approximately [for linear 
approximation: see Housner (1963)] by solving the equation of 
free-rocking motion from the first impulse to the second impulse.

 
t

p0
1

1

2 1
1

=
−












−cosh

( / )maxθ α
 (15)

where p2 = mgR/I. It should be noted that θ1max has been obtained 
in Eq. 6.

liMiT inPUT leVel OF criTical 
DOUBle iMPUlse characTeriZing 
OVerTUrning OF rigiD BlOcK

The overturning of the rigid block can be characterized by the 
coincidence of θ2max with −α as shown in Figure 6.

 θ α2 max = −  (16)

In this case, the near trapezoid corresponding to the area A2 
in Figure 4 is reduced to the near triangle. Eq. 12 can then be 
expressed as follows:

 
( / ) sin( )1 2 2

2 0
I mgRθ α θ θ

α
= −∫ d  (17)

By substituting Eqs 8 and 10 into Eq. 11 and then the resulting 
expression into Eq. 17, Eq. 17 can be reduced to

1
2

4
3

3
4

1 12
2

2

mR hV
R

r mgR mg R h





 +






= − = −( ) ( cos ) ( )α  (18)

The critical velocity amplitude of the double impulse can then 
be obtained as follows:

 
V R

r h
R h gc = +
−2

1
2

3( )
( )  (19)

It can be observed that the critical velocity amplitude of the 
double impulse is proportional to the square root of size. This 
finding is an important instruction for structural design of 

monuments and tall buildings, i.e., as the structure becomes 
larger, it becomes more stable.

The critical timing t0 can be computed as the time between 
the first impulse and the second impulse. This quantity can be 
obtained by solving the linearized equation of motion in the 
positive rotation range. When the critical condition is substituted 
and linearization is introduced in the evaluation of θ1max, Eq. 15 is 
reduced to the following form.

 
t

p
r

r r
0

12 1

2
=

+

+













−cosh  (20)

The flowchart for finding the critical velocity amplitude of the 
double impulse is shown in Figure 7.

When we deal with the equivalent one-cycle sinusoidal wave 
(period Tp  =  2t0), it can be shown that the velocity amplitude 
Vp of the equivalent one-cycle sinusoidal wave [the maximum 
Fourier amplitude is equivalent (Kojima and Takewaki, 2015a)] is 
proportional to V of the double impulse (Vp/V = 1.22218898 …). 
In this case, the acceleration amplitude Ap can be obtained from 
Ap = ωpVp/2, where ωp = 2π/Tp.

nUMerical eXaMPles anD 
DiscUssiOn

In order to demonstrate the accuracy and reliability of the pro-
posed method, numerical examples are introduced. Consider 
three numerical examples of rectangular columns with width 
2b = 1, 2, and 4 m corresponding to Makris and Kampas (2016). 
The column height is changed parametrically.

Figure 8 shows the plot of the limit velocity amplitude Vc of the 
critical double impulse with respect to R for the abovementioned 
three models computed by Eq. 19. The limit of velocity amplitude 
by the numerical simulation of time-history response is also plot-
ted in Figure 8. This numerical simulation limit has been obtained 
by changing the velocity amplitude to the overturning together 
with the corresponding critical impulse timing, which has been 
derived by the present formulation, i.e., Eq.  20. The numerical 
integration has been conducted by the fourth-order Runge–Kutta 
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FigUre 7 | Flowchart for finding critical velocity amplitude of double 
impulse.

FigUre 8 | limit velocity amplitude of critical double impulse with respect to R for 2b = 1, 2, and 4 m (closed-form expression and numerical 
simulation).
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method (the time increment = 0.001 s). It can be understood that 
the proposed closed-form limit velocity amplitude of the critical 
double impulse coincides fairly well with the numerical simula-
tion result and is quite reliable.

Figure  9 presents the critical timing given by Eq.  20 with 
respect to R for the abovementioned three models together with 
the plot by the numerical simulation for the non-linear model. In 
the numerical simulation, the equation of free-rocking motion 
has been solved numerically (numerically integrated), and the 
time interval between the first impulse and the second impulse 
has been employed as the critical timing. It should be remarked 
that the closed-form critical timing is based on linear approxi-
mation of the equation of motion as in Housner (1963), and a 
slight difference with the result by the numerical simulation for 
the non-linear case can be seen in the range of smaller height. 
However, it appears that this difference is negligible.

Figure 10 illustrates the limit acceleration amplitude divided 
by the acceleration of gravity of the equivalent one-cycle sinusoi-
dal input. The amplitude is evaluated by the transformation men-
tioned above, i.e., Ap = ωpVp/2, Vp/Vc = 1.22218898 …, ωp = 2π/Tp, 
and Tp = 2t0. In addition, Figure 10 shows the magnified plot with 
the factor 1.53. This factor has been introduced from the viewpoint 
of the equivalence of response between the double impulse (also 
one-cycle maximum-Fourier-amplitude equivalent sinusoidal 
wave) and the one-cycle rocking-response-equivalent sinusoidal 

wave. This magnification will be discussed in Figure 11. Other 
data from Makris and Kampas (2016) and Dimitrakopoulos and 
DeJong (2012b) (coefficient of restitution = 0.8) and the West’s 
formula (Milne, 1885) have also been plotted for comparison. 
The plots from Makris and Kampas (2016) and Dimitrakopoulos 
and DeJong (2012b) are limited because only the resonant one is 
picked up. It can be observed that the proposed magnified expres-
sion correspond fairly well to other results for resonance.

Figure 11 shows several comparisons (2b = 1, 2, and 4 m) of 
time-history responses θ(t)/α at the overturning limit between 
the double impulse and the corresponding equivalent one-cycle 
sinusoidal wave magnified by a certain coefficient (Asine: amplitude 
of magnified sine wave). It has been found that when the ampli-
tude of the equivalent one-cycle sinusoidal wave is magnified by 
a coefficient about 1.53–1.54, both response amplitudes coincide 
fairly well. This phenomenon may come from the fact that while 
the resonance is guaranteed for the double impulse, that is not for 
the equivalent one-cycle sinusoidal wave. The difference of θ1 just 
before the impact may be another cause.

The introduction of two-step transformation of the magnitude 
of the equivalent sinusoidal waves (introduction of the one-cycle 
sinusoidal wave equivalent to the double impulse in Section 
“Limit Input Level of Critical Double Impulse Characterizing 
Overturning of Rigid Block” and magnification of the equivalent 
one-cycle sinusoidal wave in this section) is due to the viewpoint 
of the equivalence of the maximum Fourier amplitude and from 
the viewpoint of connection to the previous related works by the 
present authors. If the readers prefer the correction factor, they 
can multiply Vp/V = 1.22218898 … and Asine/Ap = 1.53–1.54.

cOnclUsiOn

A closed-form limit on the input level of the double impulse as a 
representative of the principal part of a near-fault ground motion 
has been derived for the overturning of a rigid block. The conclu-
sions may be summarized as follows:

 (1) The rocking vibration of a rigid block has been formulated 
by using the conservation law of angular momentum and the 
conservation law of mechanical energy. On the one hand, 
the conservation law of angular momentum has been used 
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FigUre 10 | critical acceleration amplitude ratio of equivalent one-cycle sinusoidal input to acceleration of gravity for 2b = 1, 2, and 4 m and 
comparison with other results.

FigUre 9 | critical timing with respect to R for 2b = 1, 2, and 4 m (closed-form expression for linearized model and numerical simulation for 
non-linear model).

7

Nabeshima et al. Rocking Response of Rigid Block

Frontiers in Built Environment | www.frontiersin.org May 2016 | Volume 2 | Article 9

in determining the initial rotational velocity just after the 
first impulse and the rotational velocity change at the impact 
and the second impulse. On the other hand, the conserva-
tion law of energy has been used in obtaining the maximum 
rotational angle after the first impulse and that after the 
second impulse, which are needed for the computation of the 
overturning limit. This enabled us to avoid the computation 
of complicated non-linear time-history responses.

 (2) The critical timing of the second impulse has been character-
ized by the time of impact after the first impulse. It has been 
clarified that the action of the second impulse just after the 
impact corresponds to the critical timing.

 (3) The overturning of the rigid block can be characterized by the 
coincidence of the maximum rotational angle θ2max after the 
second impulse with the limit value −α of rotation. This condi-
tion gives the critical velocity amplitude of the double impulse 
just inducing the overturning of the rigid block. Since the area 
A2 in the restoring-force characteristic in the negative side can 
be obtained in closed form in terms of the velocity amplitude 
of the double impulse by using the conservation law of energy 
(Eq. 12) in which the initial velocity of rotational angle has 
been derived in closed form in Eq.  11, the critical velocity 
amplitude limit of the double impulse can be obtained.

 (4) It has been found from the closed-form expression of the 
critical velocity amplitude limit of the double impulse that 
it is proportional to the square root of size of the rigid 

block. This finding is an important instruction for structural 
design of monuments and tall buildings, i.e., as the structure 
becomes larger, it becomes more stable.

 (5) Numerical examples, including the comparison with the 
numerical simulation results by the Runge–Kutta method, 
demonstrated the accuracy and reliability of the proposed 
method. However, as for the comparison of the response to the 
double impulse with that to the equivalent sinusoidal wave, a 
magnification coefficient (about 1.53–1.54 in this case) should 
be introduced for guaranteeing the correspondence of the 
responses to the double impulse and to the equivalent one-cycle 
sinusoidal wave. The introduction of two-step transformation of 
the magnitude of the equivalent sinusoidal waves (introduction 
of the one-cycle sinusoidal wave equivalent to the double impulse 
and magnification of the equivalent one-cycle sinusoidal wave) 
is due to the viewpoint of the equivalence of the maximum 
Fourier amplitude and from the viewpoint of connection to the 
previously related works by the present authors.

 (6) The proposed magnified overturning limit exhibits a 
fairly good correspondence to the other available data for 
resonance (Makris and Kampas, 2016; Dimitrakopoulos and 
DeJong, 2012b).

Although only the critical input was dealt with in this paper, it 
gives the lowest level of the limit input. If the input timing is not 
critical, it gives smaller responses.
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FigUre 11 | comparison of time-history responses θ(t)/α at overturning limit between the double impulse, and the corresponding equivalent 
one-cycle sinusoidal wave magnified by a coefficient about 1.53–1.54.
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FigUre a1 | Verification of critical timing: plot of θ2max/α 
with respect to t0/t0C.
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aPPenDiX

Verification of critical Timing of Double 
impulse for Various input levels

In order to verify the critical timing of the double impulse, 
time-history response analysis has been conducted for various 
input levels. By using the relation between the area A1 and A2 in 
Figures 4 and 6 with the help of Eqs. 5, 6, 8, 10–12, and 15, the 
critical timing can be expressed by
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In Eq. A1, V is an arbitrary input velocity and a linear approxi-
mation sin α θ α θ−( ) −( )  is used.

Figure  A1 shows the plot of θ2max/α with respect to t0/t0C, 
where t0C is given by Eq.  20 and t0 is an arbitrary timing of 
the second impulse. It can be confirmed that the assumption 

introduced in Section “Maximum Rotation of Rigid Block 
Subjected to Critical Double Impulse” (critical timing is just 
after the impact) is valid.
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