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Extended Rayleigh Damping Model
Naohiro Nakamura*

Department of Architecture, Graduate School of Engineering, Hiroshima University, Hiroshima, Japan

In dynamic analysis, frequency domain analysis can be used if the entire structure is
linear. However, time history analysis is generally used if non-linear elements are present.
Rayleigh damping has been widely used in time history response analysis. Many articles
have reported the problems associated with this damping and suggested remedies.
A basic problem is that the frequency area across which the damping ratio is almost
constant is too narrow. If the area could be expanded while incurring only a small increase
in computational cost, this would provide an appropriate remedy for this problem. In this
study, a novel damping model capable of expanding the constant frequency area by more
than five times was proposed based on the study of a causal damping model. This model
was constructed by adding two terms to the Rayleigh damping model and can be applied
to the linear elements in the time history analysis of a non-linear structure. The accuracy
and efficiency of the model were confirmed using example analyses.

Keywords: Rayleigh damping, hysteretic damping, frequency independency, time history response analysis

INTRODUCTION

With the recent improvements in computer performance and simulationmethods, a large number of
response analyses using finite element methods (FEM) with a scale of many thousands of elements
have been conducted, including Onimaru et al. (2012) and Nakamura et al. (2012).

Various materials for soil and buildings were used in these analyses. This study investigated the
damping models used for these materials.

In general, the internal damping of a material does not depend on the frequency. A damping
modelwith frequency independence is called a hysteretic damping (or structural damping)model. In
frequency domain analysis, a complex dampingmodel is often used because it satisfies the condition
that the damping is independent of the frequency. The complex stiffness of such amodel is described
as K(1+ 2h·i), where i is an imaginary unit, h is the damping ratio, and K is the stiffness. Therefore,
h is constant with ω, as shown in Figure 1.

However, this method can only be used when the entire structure is linear; it cannot be used if
even a single non-linear element is present. To consider the effects of the non-linearity of a structure,
time history response analyses of complete models must be performed, even if most of the elements
remain in a linear condition. The objective of this study is to propose a novel damping model that
can be applied to the linear elements, which are used with non-linear elements in a model.

The Rayleigh damping model is often used for such cases. This model has a mass proportional
part and a stiffness proportional part. In this model, h can be defined for two frequencies, and
it is approximately constant between these frequencies. This model is therefore able to express
limited frequency independence. Furthermore, the computational cost of the model is small. Other
formulations of damping are able to define a greater range of values of h, e.g., Chopra (2001).
However, these damping matrices [C] are complete, which greatly increase the computational cost,
making them seldom used.
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Nakamura Extended Rayleigh Damping Model

FIGURE 1 | Complex damping model available for frequency domain
analysis only.

Many recent studies have reported the effects of Rayleigh damp-
ing on inelastic response history analysis. Hall (2006) studied
the problems of Rayleigh damping and noted that the damping
force can become unrealistically large and the analysis response
too small when during non-linear analysis softening occurs. He
suggested that the causes lie in both parts. In the mass pro-
portional part, the damping force becomes too large when the
actual resonant frequencies decrease from the initial frequencies
due to a reduction in stiffness. In the stiffness proportional part,
when the restoring force is limited, the damping force becomes
unrealistically large compared with the restoring force.

To address these problems, he proposed a capped viscous
damping model that uses only a stiffness proportional damping
part with an initial stiffness and a force limiter. Tangent stiffness
proportional damping is not recommended because it produces
a large change in the damping force and may cause convergence
difficulties.

Ryan and Polanco (2008) also studied the problems of the
Rayleigh damping model for a base-isolated building and recom-
mended the use of only stiffness proportional damping.

Charney (2008) reported that excessive damping force can be
created when initial stiffness is used in the non-linear condition
and suggested the use of tangent stiffness instead. Zareian and
Medina (2010) pointed out the same problem.

Jehel et al. (2013) compared the effect of using either initial
structural stiffness or updated tangent stiffness and studied the
control and design of a Rayleigh damping model. Erduran (2012)
evaluated the effects of Rayleigh damping on the engineering
parameters.

All these studies proposed remedies for the stiffness propor-
tional part of Rayleigh damping. However, no remedies have
been proposed for the mass proportional part, other than elim-
inating it altogether. This is because the frequency area where
h is almost constant (hereafter referred to as the constant area)
for Rayleigh damping is too narrow. Hall (2006) noted that “A
small Δ (tolerance of h) and a large R (constant area where the
accuracy of h is under the tolerance) are desirable, but competing
goals.” If a new damping model can expand the constant area of
Rayleigh damping while imposing only a small increase in the
computational cost, it will provide a good solution to this problem
(see Figure 2).

In an earlier study, we proposed a range of causal hysteretic
damping models (hereafter referred to as a causal model), which

A B

FIGURE 2 | Damping model. (A) Rayleigh damping. (B) Proposed extended
Rayleigh damping.

can approximately satisfy the requirement of frequency indepen-
dence (Nakamura, 2007).

In this study and based on these earlier studies, a new damping
model is proposed that is able to expand the constant area bymore
than five times by adding two terms to the Rayleigh damping
model. In this paper, the Rayleigh damping model is described,
and its accuracy is discussed. Next, an outline is given of causal
damping. A newmodel called extended Rayleigh damping is then
proposed, the results of a linear analysis using this new model are
reported, and its accuracy and efficiency are assessed.

OUTLINE OF THE RAYLEIGH MODEL

Outline of the Model
The equation of motion can be given by Eq. 1, where [Ms], [Ks],
and {us(t)} are, respectively, the mass matrix, stiffness matrix, and
displacement vector for a structure, and {Ds(t)} is the damping
vector.

[MS] {üS(t)} + {DS(t)} + [KS] {uS(t)} = {0} (1)

The Rayleigh damping model from Eq. 1 can be expressed by
Eq. 2.

{Ds(t)} = (α [MS] + β [KS]) {u̇S(t)} (2)

Coefficients α and β are given by Eq. 3 using (ω1, h1) and (ω2,
h2), where ω is the circular frequency, and h is the damping ratio.

α =
2ω1ω2(h1ω2 − h2ω1)

ω2
2 − ω2

1
, β =

2(h2ω2 − h1ω1)
ω2

2 − ω2
1

(3)

As shown in Eq. 2, the Rayleigh damping model has a mass
proportional part and a stiffness proportional part. The damping
ratio of the former is inversely proportional to ω and that of the
latter is proportional to ω. As this paper is concerned with the
condition in which the damping is independent of the frequency,
only the case of haim = h1 = h2, is considered, where haim is the
target damping ratio. From this, Eq. 3 is changed to the simple
form in Eq. 4.

α =
2haimω1ω2

ω1 + ω2
, β =

2haim
ω1 + ω2

(4)

The resulting damping ratio of the Rayleigh model has the
characteristics shown in Figure 3. Rh(ω) in Eq. 5 gives the accu-
racy of the damping ratio h(ω) to haim. When ω < ω1, Rh(ω)> 1;
when ω1 < ω < ω2, Rh(ω)< 1; and when ω2 < ω, Rh(ω)> 1.
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FIGURE 3 | h(ω) of Rayleigh damping (tolerance of h=±10% and
ω1 = 1).

In Eq. 6, ω* and h* are the circular frequency and the damping
ratio, respectively, when h(ω) is minimized.

Rh(ω) =
h(ω)
haim

, h(ω) =
1
2

( α
ω

+ βω
)

(5)

ω∗ =
√

α
β

, h∗ =
√

αβ (6)

Accuracy of the Rayleigh Model
The goal of this study is to propose a model that is able to realize
a constant damping ratio haim across a wide frequency area in
time history response analysis. However, in the Rayleigh damping
model, only two points of ω1 and ω2 satisfy the requirement that
h(ω) is equal to haim. We therefore studied the frequency area
where the difference of h(ω) is within the tolerance by considering
the tolerance of h(ω) against haim. “Tolerance,” in this case, refers
to the allowable upper and lower limits from haim. Limits of 5 and
10% were used in this study.

Figure 3 shows Rh(ω) at a tolerance of 10%. The values for ω1
and ω2 were set such that the lower limit of Rh(ω) was 0.9. This
figure gives each circular frequency for ω1 as a ratio to ω = 1.
Table 1 shows the values of the constant area at haim tolerances
of 5, 10, and 20%. Here,Wh is the ratio of the maximum circular
frequency ωmax to theminimumcircular frequency ωmin. It can be
seen that the difference in the damping ratio became less than the
tolerance asWh became larger. At tolerances of 5, 10, and 20%, the
values forWh were 2.49, 3.71, and 6.88, respectively. These values
cannot be said to be satisfactory. In Hall (2006), the tolerance and
Wh were notated as Δ and R, respectively, and it was observed that
a small tolerance and a large Wh are desirable. However, they are
competing goals for the Rayleigh model.

The resonant frequency of a structure depends on the damping
ratio h(ω). The resonant frequency ω′

0 with damping is different
from the undamped resonant frequencyω0 and is expressed byEq.
7. When the accuracy of h(ω) for haim is low, the accuracy of the
resonant frequency also decreases. The accuracy of the resonant
frequency is expressed by Rres(ω) in Eq. 8.

ω′
0 = ω0

√
1 − h(ω0)2 (7)

Rres(ω) =

√
1 − h(ω)2

1 − haim2 (8)

TABLE 1 | Tolerance of damping ratio and constant area.

Tolerance of
h (%)

ωωω2/ωωω1 ωωω*/ωωω1 ωωωmin/ωωω1 ωωωmax/ωωω1 Wh

(=ωωωmax/ωωωmin)

5 1.91 1.40 0.88 2.18 2.49
10 2.55 1.60 0.83 3.08 3.71
20 4 2 0.76 5.23 6.88

TABLE 2 | Accuracy of resonant frequency (tolerance is 10%).

haim (%) Rres(ωωω)

0.2ωωω1 0.5ωωω1 ωωωmin

(0.83ωωω1)
ωωω1 ωωω*

(1.60ωωω1)
ωωω2

(2.55ωωω1)
ωωωmax

(3.08ωωω1)
5ωωω1 10ωωω1

3 0.99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
5 0.98 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.99
10 0.94 0.99 1.0 1.0 1.0 1.0 1.0 0.99 0.96

The gray cells mean that the ratio is 1.0 (error is zero).

Table 2 shows the values of Rres(ω) at a tolerance of 10%. These
are the values shown in Figure 3. The values changed as haim
changed; the values shown are for haim = 3, 5, and 10%. All values
for Rres(ω) are 1.0 in the constant areas (ωmin ~ ωmin), so their
accuracy is high.

From the above, although the accuracy of Rres(ω) is high, the
width Wh is small, and the accuracy of the Rayleigh damping
model is unsatisfactory. A simple and practical model with a
wide constant frequency area for the damping ratio is therefore
desirable. This study proposed a new model, by extending the
Rayleigh damping model, to expand the width Wh largely and to
improve effectiveness greatly.

OUTLINE OF THE CAUSAL MODEL

This chapter describes the causal damping model used in this
study. It is well known that the frequency-dependent function
can be expressed as a series of impulses in the time domain.
This Duhamel integral allows the frequency-dependent force
to be expressed as the sum of the current displacement and
the past displacements with each coefficient (Nakamura, 2012).
“Almost frequency independent damping force” is another type
of a frequency-dependent function that can be expressed in the
same form.

Outline of the Model
In the complex damping model used in the frequency domain,
the relationship between the reaction and displacement can be
expressed by Eq. 9 in a frequency independent form, where F(ω)
is the reaction, u(ω) is the displacement, K0 is stiffness, h is
the damping ratio, and i is an imaginary unit. Equation 10 is
obtained by transforming Eq. 9 into the time domain. However,
the calculation of I·u(t) is challenging.

F(ω) = K0(1 + 2h · i) · u(ω) (9)
F(t) = K0(1 + 2h · i) · u(t) (10)

Equations 11 and 12 express the unit imaginary function Z(ω)
with 0 as the real part and 1 (−1 in the case of ω < 0) as the
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imaginary part. However, it is well known that this function is not
causal and cannot be transformed into the time domain (Inaudi
and Kelly, 1995).

Z(ω) = ZR(ω) + ZI(ω) · i (11)

ZR(ω) = 0, ZI(ω) =


1 (ω > 0)
0 (ω = 0)
−1 (ω < 0)

(12)

A number of studies on a hysteretic damping model that sat-
isfies the causality have been carried out. For example, Inaudi
and Kelly (1995) presented a precise hysteretic damping model
in the tine domain based on the Hilbert transform and proposed
a method for applying it to time history analyses by conducting
convergent calculations. Makris (1997) proposed a causal model
that can be placed at the limit of viscoelastic model of Biot (1958)
and showed that this model is closer to the ideal hysteretic damp-
ing than the Biot model. Afterward, Makris and Zhang (2000)
compared the model with the Biot model minutely and showed
that the Biot model is more practical and reliable than the model
for actual time-domain analyses. They also approximated the Biot
model simply by the Prony series and showed the efficiency of the
model by applying it to the response analyses of a soil structure.

Spanos and Tsavachidis (2001) proposed two methods to min-
imize the computational burden of the Biot model used in a time-
domain analysis. One uses a recursive algorithm, and the other
uses digital filters. Muscolino et al. (2005) applied the Laguerre
polynomial approximation method to the Biot model in order
to turn the original integrodifferential equations of motion into
a set of differential equations, and the effect of the method was
confirmed in both deterministic and random excitation analyses.
Chouw (2002) used the causal damping model defined in the
Laplace domain for the non-linear problem.

Nakamura (2007) also proposed a causal hysteretic damping
model using the Hilbert transform pair and showed the high
accuracy and the effectiveness of the model. In this paper, this
model is used as the causal damping model.

In order to make the function causal, the real part and the
imaginary part must be a Hilbert transform pair. Recalculation of
the imaginary part using theHilbert transform allows the real part
[Zk (ω)] to be obtained. It is no longer 0, but it instead becomes
a frequency-dependent value [hereafter referred to as Z′

R (ω)].
Z′(ω) in Eq. 13 is expressed using Z′

R (ω). We call this value, the
causal unit imaginary function (Figure 4).

FIGURE 4 | Calculated causal unit imaginary function Z′(ω).

The area between the upper and the lower limits
(−ωlim < ω < ωlim, ωlim = 2πf lim), where the imaginary part
becomes constant, must be set, allowing Eq. 9 to be approximated
by Eq. 14. This area can also be expressed as 0< f < f lim (Hz)
using f lim (Hz) by bringing the positive frequency part into focus.
Hereafter, this area is called the focused frequency area, and ωlim
and f lim are referred to as the upper limit circular frequency and
the upper limit frequency, respectively.

Z′(ω) = Z′
R(ω) + ZI(ω) · i (13)

F(ω) = K0(1 + 2h · Z′(ω)) · u(ω) (−ωlim < ω < ωlim)
(14)

The causal function Z′(ω) can be transformed into the impulse
response function Z′(t) in the time domain with good accuracy.
This gives an approximate value for the imaginary unit i in the
time domain. Equation 14 is rewritten as Eq. 15, which uses a
convolution integral in the time domain.

F(t) = K0u(t) + 2hK0

∫ t

−∞
Z′(t − τ) · u(τ)dτ (15)

When using the time-domain transform method (Nakamura,
2006), Z′(t) is obtained as a series of discrete values. The integral
from Eq. 15 is expressed by Eq. 16, where u̇(t) is velocity, a0 and
bj are coefficients obtained from the time-domain transform, and
Δt is 1/f lim (s).∫ t

−∞
Z′(t − τ) · u(τ)dτ = a0 · u̇(t)+

N∑
j=1

bj · u(t − j · Δt) (16)

Equation 17 is obtained by substituting Eq. 16 into Eq. 15. This
is the target equation in the time domain. The first term on the
right side of this equation corresponds to the ordinary restoring
force, and the second term corresponds to the damping force. As
a result, the reaction F(t) at the current time t is expressed as the
sum of the coefficient products of the current displacement u(t),
the current velocity u̇(t), and past displacements u(t− j·Δt).

F(t) = K0u(t) + 2hK0

a0 · u̇(t) +
N∑
j=1

bj · u(t − j · Δt)

 (17)

In the frequency domain, Z′(ω) can be expressed by Eq. 18
using a0 and bj. F(ω) can be calculated by substituting Z′(ω) into
Eq. 14.

Z′(ω) = iω · a0 +
N∑
j=1

bj · e−iω·j·Δt (18)

Equation 17 is rewritten as Eq. 19, where {FE(t)}, {uE(t)}, and
[KE] are the element reaction vector, the element displacement
vector, and the element stiffness matrix, respectively. This causal
model is clearly independent of the element type, and different
types of element can be employed in the same way.

{FE(t)} = [KE] {uE(t)}

+ 2h [KE] ·

a0 · {u̇E(t)} +
N∑
j=1

bj · {uE(t − j · Δt)}


(19)

Frontiers in Built Environment | www.frontiersin.org July 2016 | Volume 2 | Article 144

http://www.frontiersin.org/Built_Environment
http://www.frontiersin.org
http://www.frontiersin.org/Built_Environment/archive


Nakamura Extended Rayleigh Damping Model

Nakamura (2008) proposed a method for simultaneously cal-
culating the real part and the impulse response in the time
domain with only the imaginary part of the complex function.
This was done using the Kramers–Kroning relation (Nakamura,
2007). This process also provided a method for obtaining Z′(t)
by carrying out time-domain transform directly, using only the
imaginary part ZI (ω) and without conducting the numerical
Hilbert transform. This method yields a model with higher accu-
racy because the omission of the numerical Hilbert transform
reduces the calculation error. This model was used in the current
study.

Equation 20 was obtained by expressing Eq. 19 as the damping
force vector {DS (t)} of Eq. 1 (the equation of motion). In this
equation, the stiffness proportional model with coefficient β of
the first term is modified by the sum of the coefficient product
terms of the past displacement of the second term (hereafter
referred to as the time delay part term). Equation 21 shows
the corresponding damping vector {DS (ω)} in the frequency
domain.

{Ds(t)} = 2h [KS] ·

a0 · {u̇S(t)} +
N∑
j=1

bj {uS(t − j · Δt)}


= β [KS] {u̇S(t)} + 2h [KS] ·

 N∑
j=1

bj {uS(t − j · Δt)}


(20)

where β = 2ha0 = 4h
ωlim

= 2h
π·flim .

{Ds(ω)} =

iω · β + 2h ·
N∑
j=1

bj · e−iω·j·Δt

 · [KS] {uS(ω)}

(21)
Figure 5A shows an image of the causal damping model. In

the frequency area considered (0 ~ ωlim), the damping ratio h(ω)
is almost constant. However, the characteristics are different at
the two ends of the area, as h(ω) changes from 0 to haim in the
vicinity of ω = 0, and from haim to 2haim near ω = ωlim. This
model is calculated as the sum of the stiffness proportional damp-
ing part with haim at ωlim/2, shown in Figure 5B, and the term
of the time delay part, shown in Figure 5C. The former corre-
sponds to the first term Eq. 20, and the latter corresponds to the
second term.

Figure 6 includes the outside of ωlim. The causal model can
be regarded as being made by changing the stiffness proportional
part of the Rayleigh damping model to a step form.

Coefficients and Characteristics of
Representative Models
Table 3 shows the coefficients (a0 and bj) of representative cases,
where ωlim is the upper limit circular frequency for the 9-term, 4-
term, and 2-term models. The models are identified by the time
delay part bj, and are labeled the C9, C4, and C2 models. Models
with a higher number aremore accurate. The value of a0 for all the
models is the same as 1/(πf lim), and Δt is 1/f lim(s).

A B C

FIGURE 5 | Causal damping model. (A) Total model. (B) Stiffness
proportional part. (C) Time delay part.

FIGURE 6 | Image of causal damping model with the area greater than
ωlim.

TABLE 3 | Coefficients of the causal damping model.

Name C9 C4 C2

N 9 4 2

Δt(s) 2π/ωlim[=1/f lim]

a0 2/ωlim[=1/(πf lim)] or a0b of Eq. 28

b1 −0.63138 −0.61554 −0.55055

b2 −0.30777 −0.27528 −0.12997

b3 −0.19626 −0.14531 –

b4 −0.13764 −0.06498 –

b5 −0.10000 – –

b6 −0.07265 – –

b7 −0.05095 – –

b8 −0.03249 – –

b9 −0.01584 – –

Table 4 describes the condition of each model in the time-
domain transform. The “frequencies used for transform” of each
model are expressed as 0 ~ 1 (normalized with ωlim). In this
frequency area, the time-domain transform requires that the
imaginary part become 1, and the imaginary part is interpolated
smoothly.

Although Δt does not need to agree with the time step ΔT for
a time history response analysis, Δt should be an integer multiple
of ΔT. For example, at values of 0.1 s for Δt and 0.01 s for ΔT, the
values at every 10 steps of the results obtained from the response
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analyses need to be used to derive the past displacement vector
{us(t− jΔt)}. If ΔT is changed in the analysis, it is unnecessary to
change Δt.

Figure 7 compares the Z′(ω) of each model. This figure was
obtained by transforming the coefficients in Table 3, which were
obtained from the transform to the time domain, back to the
frequency domain. The values of the imaginary parts of all mod-
els are 1 at the frequencies used for the transform shown in
Table 4. Accordingly, the area in which the value of the imaginary
part is close to 1 is 0.05ωlim ~ 0.95ωlim for the C9 model and
0.2ωlim ~ 0.8ωlim for the C2 model.

In the real part, the maximum values at ωlim/2 are almost the
same across all models. However, near the ends (0 or ωlim), the
value for the C9 model decreases sharply, while that of the C2
model decreases more slowly.

We next addressed the accuracy of K0 (1+ 2hZ′(ω)), when
this Z′ (ω) was used. Since the target complex stiffness in the
frequency domain was K0 (1+ 2hi), 1+ 2hZ′(ω) was compared
with the target value 1+ 2hi.

The damping ratio of the causal model, h′(ω), was obtained
by Eq. 22 using the ratio of the imaginary part to the real part of
1+ 2hZ′(ω) (Nakamura, 2007).

TABLE 4 | Conditions of time-domain transform.

Name Frequencies used for transform
(×××ωωωlim)

Total number of
used frequencies

C9 0.05, 0.1, 0.15, 0.2, . . ., 0.9, 0.95 19
C4 0.1, 0.2, 0.3, . . ., 0.8, 0.9 9
C2 0.2, 0.4, 0.6, 0.8 4

FIGURE 7 | Comparison of Z′(ω) values.

FIGURE 8 | Accuracy of the damping ratio Rh(ω) when haim = 1, 3, 5, and 10%.

The accuracy Rh(ω) for the target damping ratio haim was
calculated using Eq. 23.

h′(ω) = sin
(
1
2
tan−1 2haim · Z′

I(ω)
1 + 2haim · Z′

R(ω)

)
(22)

Rh(ω) =
h′(ω)
haim

(23)

Figure 8 shows the Rh(ω) of the C9 and C2 models. In this
figure, Rh(ω) when haim = 1, 3, 5, and 10 is shown because it
changes as haim changes.

Overall, the shapes of Rh(ω) resembled those of Z′
I(ω). When

haim was small, the accuracy tended to be high, and Rh(ω) was
therefore close to 1.

Next, a comparison between the C9 and C2models was carried
out, and the accuracy of the C9 model was shown to be higher
overall, with a value of Rh(ω) close to 1 in the area between
0.1ωlim and 0.9ωlim, whereas that of the C2 model was close
to 1 in the area between 0.2ωlim and 0.8ωlim. The accuracy of
Rh(ω) in the C9 model decreased locally at both ends of the
area. This became more notable as the value of haim increased.
In contrast, this tendency was hardly observed in the C2 model.
These characteristics are produced by the shapes of Z′

I (ω) at the
ends of the frequency area.

Furthermore, when the value of haim was large, the accuracy
value was less than 1 across a wide frequency area because
of the comparatively large value of Z′

R (ω) in the central
region.

The accuracy of the resonant frequency Rres(ω) of the causal
model was then investigated. Rres(ω) was calculated using Eq. 24,
obtained by multiplying the value of Eq. 25 by Eq. 8.

Rres(ω) =
ω0(ω)

ω0

√
1 − h′(ω)2

1 − haim2 (24)

ω0(ω)
ω0

=
√
1 + 2haim · Z′

R(ω) (25)

Figure 9 shows the values of Rres(ω) in the C9 and C2 models.
The shapes of Rres(ω) resembled those of Z′

R (ω). The accuracy
became higher as the value of haim decreased. Across all models,
when haim was large, Rres(ω) was greater than 1 in the central part
of the frequency area around ωlim/2. In contrast, Rres(ω) tended to
fall below 1 at both ends of the frequency area. In the C9 model,
this decrease in Rres(ω) was significant, whereas the reduction in
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FIGURE 9 | Accuracy of the resonant frequency Rres(ω) when haim =1, 3, 5, and 10%.

A B C

FIGURE 10 | Modification 2 (addition of stiffness proportional damping). (A) Causal model. (B) Stiffness proportional model. (C) Modified model.

TABLE 5 | Z′
R(ωωωlim/2) for each model.

Model name C9 C4 C2

Z′
R(ωlim/2) 0.437 0.421

accuracy in the C2 model was relatively small. This reflected the
shapes of Z′

R (ω).

Improvement of the Causal Model
This decrease in accuracy Rh(ω) area around ωlim/2 when haim is
large was addressed next.

Figure 10 gives an outline of the modification method.
Figure 10A shows the hollow on the low-frequency side from the
center being supplemented by the stiffness proportional damping.
As a result, the accuracy decreases slightly on the high-frequency
side from the center of the focused frequency area. The damping
ratio h′(ω), which is obtained by a response analysis for the
target damping ratio haim, can be approximated using Eq. 26.
At the central part of the frequency area where the accuracy is
lowest, Z′

I(ωlim/2) becomes a0·(ωlim/2). Then, a0 is increased(
1 + 2haim · Z′

I(ωlim/2)
)
times. A new value for a0 (assuming

a0a) is used in Eq. 27, with a0 = 1/(πf lim). Table 5 shows the
Z′
R(ωlim/2) value in each model. When haim is large, an error

arises from the difference between Eqs 22 and 26.
From a practical point of view, the use of a0 (assuming a0b)

from Eq. 28 is recommended. This equation is obtained by cor-
recting the difference using a quadratic expression for haim. In the
numerical study, cases where haim was less than or equal to 10%
were investigated. From the results, 1.5 and 3.7 were selected as
optimum coefficients.

Figure 11 shows Rh(ω) calculated using a0b for the C9 and C2
models. Since Rh(ωlim/2) was almost 1, the effect of the correction
was confirmed. This correction has little effect on Rres(ω).

h′(ω) ≈ haim · Z′
I(ω)

1 + 2haim · Z′
R(ω)

(26)

a0a =
1 + 2haimZ′

R(ωlim/2)
ωlim/2

= a0 +
4haimZ′

R(ωlim/2)
ωlim

(27)

a0b = a0 +
(
1 + 1.5haim + 3.7h2aim

)
· 4haimZ

′
R(ωlim/2)
ωlim

(28)

PROPOSAL FOR A NEW MODEL

As noted above, the Rayleigh model is simple and effective, but
the frequency area in which the damping ratio can be regarded
as constant is narrow. In this section, we propose a novel model,
which has a wide constant frequency area.

Outline of the Proposed Model
Rayleigh damping is a combination ofmass proportional damping
and stiffness proportional damping, as illustrated in Figure 12.
In our new model, the stiffness proportional damping is replaced
by causal damping (Figure 13). The damping ratio h′(ω) can
be approximated by Eq. 29 using Eqs 5 and 26. This allows
the constant frequency area to be expanded. Therefore, the new
model can be thought of as adding Rayleigh damping to the time
delay term.

h′(ω) ≈ α
2ω

+
haim · Z′

I(ω)
1 + 2haim · Z′

R(ω)
(29)
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FIGURE 11 | Accuracy of the damping ratio Rh(ω).

A B C

FIGURE 12 | Rayleigh damping. (A) Mass proportional part. (B) Stiffness proportional part. (C) Rayleigh damping.

A B C

FIGURE 13 | New damping model. (A) Mass proportional part. (B) Causal damping. (C) New damping model.

The new model was constructed as follows:

1) In the constant frequency area, two models with damping
ratios of 5 and 10% tolerancewere produced. These are referred
to as the Extended Rayleigh High accuracy model (ER-H) and
Extended Rayleigh Middle accuracy model (ER-M).

2) The indicator of the constant frequency area Wh should be
more than five times that of Rayleigh damping.

3) In order to prevent the calculation cost from increasing, the
C2model was used, as it has the smallest number of time delay
part terms. The damping force vector in the time domain was
therefore expressed by Eq. 30, based on Eq. 20.

4) Equation 31 was obtained by setting the coefficients C0, C1,
and C2. These values were obtained by numerical trial and
error maximization ofWh within the damping ratio tolerance.
This equation was used in the time history response analysis.
a0, b1, and b2 are the coefficients of the C2 model in Table 3.
Δt implies 1/f lim(s), and Δt is different from the analysis time
step ΔT.

5) Equation 29 was then rewritten as Eq. 32, and Eq. 32 was
expressed as Eq. 33 using the coefficients C0, C1, and C2.
For the representative damping ratio haim, four values were

selected: 1, 3, 5, and 10%. In each case, the coefficients C0 to
C2 were established by carrying out numerical trials using Eq.
33 such that the value ofWh was maximized.

6) Cases in which haim was placed between these four values were
investigated, and all models were adjusted to obtain favorable
results by performing linear interpolation of these coefficient
values.

{Ds(t)} = (α [MS] + β [KS]) {u̇S(t)} + 2h · [KS]

· (b1 {uS(t − Δt)} + b2 {uS(t − 2Δt)}) (30)

where β = 2h · a0

{Ds(t)} =
(
α′ [MS] + β′ [KS]

)
{u̇S(t)} + [KS]

·
(
γ′
1 {uS(t − Δt)} + γ′

2 {uS(t − 2Δt)}
)

(31)

where α′ = 2haimflimC0, β′= 2haim
πflim (C1 + C2) γ′

1 = 2haimC1b1,
γ′
2 = 2haimC1b2, Δt = 1/flim(s), a0 = 1/(π · flim), b1 =

−0.551, b2 = −0.130

h′(ω) ≈ α′

2ω
+

haimZ′
I2(ω)

1 + 2haimZ′
R2(ω)

(32)
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where Z′
R2 (ω) = C1Z′

R (ω), Z′
I2 (ω) = C1Z′

I (ω) + C2ω
π·flim

h′(ω) ≈ haimflimC0

ω
+

haim
1 + 2haimC1Z′

R(ω)

·
(
C1Z′

I(ω) +
C2ω

π · flim

)
(33)

where Z′
R (ω) = b1 · cos (ωΔt) + b2 · cos (2ωΔt) , Z′

I(ω) =
a0 − b1 · sin(ωΔt) − b2 · sin(2ωΔt)

Recommendation Values of Coefficients
for the Proposed Model
Table 6 shows the recommendation values for C0, C1, and C2 with
regards to each haim of the ER-H model and the ER-M model.
The coefficients in the cases 1 ~ 3%, 3 ~ 5%, and 5 ~ 10% for haim
were obtained using linear interpolation. C0 exhibited a strong
effect in the low-frequency area, C1 in all frequency areas, and
C2 in the high-frequency area. These are independent values from
Δt and ΔT.

Confirmation Using Multiple Mass System
Model
To test the proposedmodel in a time history response analysis, the
case of 1 ~ 100Hz, assuming f lim = 100Hz, was investigated.

Figure 14 shows the analysis model, and Table 7 gives its
properties. One hundred single degree of vibration models were
installed on a rigid beam, which was connected to the fixed end
of a rigid spring. The masses were adjusted so that the value for
each undamped resonant frequency was 1, 2, 3, . . ., 100Hz. A
time history response analysis was conducted by providing a unit
pulse wave as the ground motion acceleration. The Newmark-β
method (β = 1/4) was employed for the time integral. The analysis
time step ΔT was set at 0.0005 s to allow the response in the
high-frequency area to also be evaluated.

The transfer function was calculated by dividing the response
acceleration of each point by the ground motion acceleration in
the frequency area, to examine the peak height of each transfer
function. It is known that the theoretical value p with regards to
the peak height of the transfer function for a one degree of freedom
(DOF) system can be expressed by Eq. 34 as a function of the
damping ratio h. Based on this, the obtained damping ratio h(ω0)
was calculated using Eq. 35 as a function of the peak height of each
single DOF model p(ω0), where ω0 is the undamped resonant
circular frequency. By comparing the result of this equation with
the target damping ratio haim, the accuracy of the damping ratio
Rh(ω0) could be calculated.

p =
√
1 + 4h2
2h (34)

h(ω0) =
1

2
√

p(ω0)2 − 1
(35)

The theoretical value of the resonant circular frequency of
the vibration system with damping ω′

0 is given by Eq. 7 as the
function of the undamped system resonant circular frequency ω0.

TABLE 6 | Recommendation Values for C0, C1, and C2 for the Extended
Rayleigh damping model.

haim ER-H model

(tolerance: 5%)

ER-M model

(tolerance: 10%)

C0 C1 C2 C0 C1 C2

1% 0.266 0.770 0.119

0.205 0.920 0.02% L.I.a

3% 0.262 0.775 0.119

: L.I. L.I.

5% 0.260 0.780 0.126 0.205 0.920 0.0

: L.I. L.I.

10% 0.235 0.790 0.157 0.180 0.930 0.0251
aL.I. means “linear interpolation” between the area.

FIGURE 14 | Multi-DOF model.

TABLE 7 | Properties of the multi-DOF model.

Node no. Weight (t) Stiffness (kN/m) Eigen frequency (Hz)

0 0 1.0×1010 –
1 25.33 1000 1.00
2 6.333 1000 2.00
3 2.814 1000 3.00
: : : :
100 2.533×10−3 1000 100.00

The accuracy of the resonant frequency realized for each model
Rres(ω0) could then be calculated by comparing the circular fre-
quency corresponding to the peak value of each vibration system
computed in the response analysis with this theoretical value.

Figure 15 shows the results from the analyses carried out using
the Rayleigh damping model. The values for haim were set at 3 and
10% forω1 and 10 and 25.5Hz forω2. This corresponds to the case
with 10% tolerance shown inTable 1.White and black circles show
the theoretical values at haim = 3 and 10%, respectively. These
values were calculated for Rh(ω) using Eq. 5 and for Rres(ω) using
Eq. 7. The results calculated by the response analyses are shown
in the figure as solid and dotted lines. These calculated results
corresponded well to the theoretical values. The validity of the
analyses in this section was confirmed. Rh(ω) did not depend on
haim, and there was a large difference between Rh(ω) and haim in
most of the frequency area, with the exception of ω1 and ω2. As a
result, Rres(ω) was consistent with Table 2.
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FIGURE 15 | Damping ratio and damping frequency ratio (Rayleigh).

FIGURE 16 | Damping ratio and damping frequency ratio (C9).

FIGURE 17 | Damping ratio and damping frequency ratio (ER-H).

FIGURE 18 | Damping ratio and damping frequency ratio (ER-M).

Figure 16 shows the results of the analysis of the causal model
improved using Eq. 28. haim were set at 3 and 10%. Rh(ω) cor-
responded to Figure 11 and Rres(ω) to the C9 model shown in
Figure 9. The results for Rh(ω) and Rres(ω) were equivalent to
Figures 9 and 11, respectively.

Figures 17 and 18 show the results of the high accuracy model
(ER-H) and the middle accuracy model (ER-M) with haim at 3 and
10%. In ER-H, all values of Rh(ω) were within 0.95 ~ 1.05 in the
area from 6Hz to ~80Hz, a tolerance within 5%. In ER-M, all the

values of Rh(ω) were within 0.90 ~ 1.10 from 4Hz to the vicinity
of 85Hz, giving a tolerance within 10%. The values of Rres(ω) in
these figures correspond well to those of the C2 model shown in
Figure 9.

Table 8 shows the constant frequency area confirmed in these
analyses. The value ofWh from the ER-H model was greater than
13.0. This is 5.3 ~ 5.5 times larger than the value from the Rayleigh
model with the same tolerance. In the case where haim = 3% and
f lim = 100Hz, for example, the frequency area from 6~ 82Hz was
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TABLE 8 | Comparison of constant area with Rayleigh damping and the
proposed model.

haim (%) High accuracy model
(tolerance=±±±5%)

Middle accuracy model
(tolerance=±±±10%)

ωωωmin/
ωωωlim

ωωωmax/
ωωωlim

Wh
a Ratiob ωωωmin/

ωωωlim

ωωωmax/
ωωωlim

Wh
a Ratiob

1 0.06 0.82 13.7 5.5 0.04 0.85 21.3 5.7
3 0.06 0.82 13.7 5.5 0.04 0.86 21.5 5.8
5 0.06 0.81 13.5 5.5 0.04 0.86 21.5 5.8
10 0.06 0.78 13.0 5.3 0.04 0.85 21.3 5.6

aWh: constant area of proposed model [=(ωmax/ωlim)/ (ωmin/ωlim)].
bRatio of Wh to Rayleigh damping (2.47 for ±5%, 3.71 for ±10%).

within the tolerance. In the ER-M model, the values of Wh were
greater than 21.3, or 5.6 ~ 5.8 times those of the Rayleigh model
with the same tolerance. Using the same haim and f lim, the constant
frequency area was 4 ~ 85Hz.

This demonstrates that the accuracy of the proposed model is
higher than that of the Rayleigh model.

EXAMPLE ANALYSIS

To confirm the applicability of the proposed model to a practical
structure, investigations were carried out using a 3-dimensional
finite element model (hereafter referred to as 3D FEM).

Investigations Using a 3D FEM Model
To confirm the effectiveness of the proposed model as a practical
multiple DOF model, investigations using a 3D FEM model were
carried out. The analysis model was a dome-shaped structure with
a diameter of 44m, a height of 58m, and a weight of 1400 t, as
shown in Figure 19. The model was divided into 672 elements
using shell elements, with 32 divisions in the circumferential
direction. In the vertical direction, there were 10 divisions in the
cylindrical part and 5 divisions in a dome part. The lowest points
of the cylindrical part were fixed. Table 9 shows the principal
properties of the model. Table 10 shows the principal natural fre-
quency obtained from real eigenfrequencies, and the eigenmodes
are given in Figure 20.

The conditions for the time history response analysis were the
same as those in the previous section. The time step ΔT was set at
0.0005 s to estimate the high frequency. The response acceleration
at the nodal point of the top was obtained by providing a unit
impulse in the horizontal direction as groundmotion acceleration.

Transfer functions were calculated by dividing this response
acceleration by the ground motion acceleration in the frequency
area. Values of 3 and 10% were used for the damping ratio haim
of the materials. The transfer functions were horizontal response
outputs for horizontal direction inputs.

A frequency domain analysis (FDA) was carried out. This was
assumed to give the correct answer to the problem, and the results
were compared with those from the proposed model. Constant
damping ratios of 3 and 10%were provided by the complex damp-
ing. The analysis pitch Δf in the frequency area was set to 0.1Hz.

Figure 21 shows the results from the Rayleigh model, in
which Case 1 and Case 2 (corresponding to Rayleigh-1 and -2)

FIGURE 19 | Analysis model.

TABLE 9 | Properties of the analysis model.

Young’s modulus 30.0 (GPa)
Poisson’s ratio 0.20
Density 2.4 (t/m3)
Thickness
(1) Cylinder part 0.8 (m)
(2) Dome part 0.4 (m)

TABLE 10 | Principal eigenfrequencies.

Mode no. Frequency (Hz) Mode type

1 6.0 First for H
10 14.6 First for V
13 15.8 Second for H
20 20.3 Second for V

H, horizontal mode; V, vertical mode.

A B

FIGURE 20 | Principal Eigen Mode. (A) First horizontal (6.0Hz)
(B) First vertical (14.6Hz).

were investigated. In Case 1, a horizontal first-order frequency
of 6Hz was set for ω1, and a vertical first-order frequency of
14.6Hz was set for ω2. In Case 2, the horizontal first-order
frequency was set for ω1, and ω2 was set to 10 times ω1. The
results for Case 1 were very close to the FDA results in the
area from 0 to nearly 20Hz. However, in the area of 20Hz
and above, a large difference from the FDA emerged due to
excessive damping. In Case 2, the results corresponded closely
to FDA in the range 40 ~ 80Hz because the ω2 of this model
was 60Hz. However, a large difference in the peak values at
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FIGURE 21 | Transfer function [frequency response (FDA) vs. Rayleigh damping].

FIGURE 22 | Transfer function [frequency response (FDA) vs. causal 9 term (C9)].

FIGURE 23 | Transfer function [frequency response (FDA) vs. proposed high accuracy (ER-H)].

FIGURE 24 | Transfer function [frequency response (FDA) vs. proposed middle accuracy (ER-M)].

the horizontal second-order frequency was seen in the vicin-
ity of 15Hz. These results confirmed that it is difficult for the
Rayleigh model to express a constant damping ratio across a wide
frequency area.

Figure 22 shows the results obtained using the C9 model
described in Section “Improvement of the Causal Model.” The
value for f lim was set at 100Hz. For the time delay part, nine
terms for the displacement at 0.01, 0.02, 0.03, . . ., 0.09 s before the
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current time were considered. This model closely matched the
response results of FDA in the area from 0 to almost 90Hz when
haim = 3%, and the area from 0 to almost 80Hz when haim = 10%.
However, when haim = 10%, a difference in the peak height of the
horizontal first-order mode in the vicinity of 6Hz was seen. This
was caused by the reduction in the damping accuracy at both ends
of the constant frequency area. It occurredwhen the damping ratio
was large in the C9 model (cf., the results from C9 in Figure 11).

Figures 23 and 24 give the results from the ER-H and ER-
M models. The f lim value for ER-H was set at 100Hz, and the
displacement at 0.01 and 0.02 s before the current time were used
in the time delay term. The f lim value for ER-M was set at 150Hz,
and displacements at 0.0067 and 0.0133 s were used.

The results fromER-Hcorresponded quite closely to those from
the FDA in the area from0 to almost 80Hz. Although the accuracy
of ER-M was slightly lower than that of ER-H in deriving the
height of the peak value, the results from ER-M corresponded well
in general to the results from the FDA in the area from 0 to almost
130Hz. This confirmed the accuracy of the proposed models.

CONCLUSION

When time history response analysis is carried out using FEM,
a Rayleigh damping model is often employed to take account
of the constant damping characteristics for the frequency. How-
ever, the accuracy of this model is unsatisfactory. In this paper,

we proposed a new model in which the stiffness proportional
damping term of the Rayleigh model was replaced by that of
the causal damping model. In this approach, the term of the
coefficient sum for the past two time displacements is added to
the standard Rayleigh model. This greatly improved the accuracy
of the Rayleigh model. The effectiveness of the new models was
confirmed by carrying out a trial analysis.

Future studies will be conducted to investigate the applicability
of the newmodel to a range ofmodel types and to large-scalemod-
els, especially those with tens of thousands of elements. We will
also investigate its applicability to the element Rayleigh damping
model, which is used when a total model has multiple damping
ratios. In this study, the investigations were conducted on a linear
level. Further studies are needed on the applicability of the model
when elements become non-linear and the value of haim increases.
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