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The ever-increasing demand for heating in different sectors, along with more preventative
regulations on greenhouse emissions, has forced different countries to seek new alter-
natives to heat buildings such as district heating system (DHS). Although rudiments of
DHSs can be observed over the centuries, it was not widely implemented until last two
decades when the DHS became a strategy to design more energy-efficient way of heating
the buildings. This paper suggests a new approach in categorizing DHSs based on
their geographical location, scale, heat density, and end-user demand. Furthermore, this
paper reviews system and component modeling approaches with a focus on DHS load
prediction. Main limitations of the existingmethods are also addressed and discussedwith
a comprehensive review of the recent studies. Finally, the state of the art in optimization of
the different DHSs has been reviewed and categorized based on their objective functions
and the techniques used for solving optimization problems (deterministic and heuristic).
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INTRODUCTION

The global population will exceed 9.7 billion by 2050 (United Nations, 2013), which will lead to
approximately 70% increase in the number of households from 1.9 billion in 2010 to 3.2 billion
in 2050 (I.E. Agency, 2012). Residential and commercial buildings account for about 40% and
26%, respectively, of total energy consumption in U.S. and European households (Mertens, 2013;
I.E. Agency, 2012). About 38% and 36% of U.S. and EU carbon dioxide (CO2) emissions are also
associated with these buildings. Moreover, several unwanted side effects, such as urban heat island,
are associated with the drastic increase in urbanization (Mirzaei, 2015; Mirzaei et al., 2015). Thus,
these statistics emphasize the necessity of a global objective to reduce the CO2 emission by half by
2050, which is described as the goal of the Energy Technology Perspectives 2012 roadmap (EIA,
2011). This calls for increased efforts and market uptake from the building sector to reach the
ambitious goal of net-zero energy buildings (NZEB) by 2050 given the 50% rise in energy demand
predicted by the current consumption trajectory. Another example is European Union obligation in
9% reduction in energy use by 2016 based on 2006/32/EC directive (European Parliament, 2006).
The European countries are also committed to increase the share of renewable energy sources to
20% by 2020 (P.H.A.F.S. Committee on Environment, 2011).

Different strategies in energy production, conversion, and user-side demand have been proposed
to conserve energy in the building sector, i.e., increasing the energy efficiency of buildings with
refurbishment technologies such as thermal insulation, double and triple glazing, solar shadings,
cavity wall, reflective coating windows, efficiency enhancement, the functionality performance of
HVAC equipment, integrating renewable strategies such as BIPV and solar collectors, utilizing
natural ventilation. In addition to these technologies, one of the viable solutions is to improve the
energy efficiency in buildings, which can be accomplished by using district heating system (DHS)
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(International District Energy Association, 2014; http://www.
districtenergy.org/what-is-district-energy).

Traditional DHSs are generally used for residential space heat-
ing and domestic hot water, which are accounting for the largest
share of energy consumption in buildings (International Dis-
trict Energy Association, 2014; http://www.districtenergy.org/
what-is-district-energy). Other advantages of DH are known as
the improvement of resource and energy management and also
reduction in the user-side costs, including operation, mainte-
nance, and safety expenses (Rezaie and Rosen, 2012). Moreover,
flexibility and safety in selection of the energy source such as
biomass and geothermal energy instead of fossil fuels, which
dominates the current heat market, is another attractive option of
the DHSs (Hepbasli, 2010; Akhtari et al., 2014).

Despite the well-known advantages of DHS, its market share
around theworld is still very lowwhile only about 6000DHSs exist
in EuropeanUnionwith themarket share of about 13% (Figure 1).
Besidesmany social, economic, and technological issues revolving
around worldwide implementation of DHSs, the predominant
reason for neglecting such systems is the lack of suitable tools to
design, analyze, and optimize them (Connolly et al., 2014).

Apart from such issues, one of the major limitations of DHS is
lower thermal comfort, especially in older DHSs where occupants
have very little control over the water temperature (International
District Energy Association, 2014; http://www.districtenergy.
org/what-is-district-energy). In denser urban regions, which
expanding the DHS distribution network should follow the
rules of the municipality, existing infrastructure, such as roads,
water/sewage distribution networks, and city layout in some
cases, are the common barriers against the optimal expansion
of DHSs.

The discussed advantages and limitation in DHSs has per-
suaded the communities to move toward the implementation of

novel ideas and strategies in energy sharing and management
of DHSs. The new strategies are mainly focused on combining
renewable energy, use of storage technologies, and establishing
a linkage between heating and electricity systems to significantly
reduce the dependency on the fossil fuel resources (International
District Energy Association, 2014; http://www.districtenergy.org/
what-is-district-energy). One of the major challenges toward the
design of such systems is associated with lack of available tools,
which can effectively model and optimize DHSs.

To shedmore light on the recent achievements inmodeling and
optimization of DHSs, this paper aims to summarize the current
state of the art. Thus, various definitions of DHS are first provided
followed by the molding approaches utilized to investigate the
performance of these systems. Eventually, modeling and opti-
mization ofDHS studies based ondifferent climates, scales, energy
sources, and implemented tools are further summarized in this
paper.

COMPLEXITY LEVEL OF DISTRICT
HEATING SYSTEMS

In general, a DHS consists of a heat source, a network of users,
and a distribution network. The complexity of a DHS varies in
accordance with various parameters as stated below (Sakawa et al.,
2002; Weber et al., 2007):

(a) Number of utilized technologies: one of the complexities of
design and optimization of the DHSs is the number of tech-
nologies available to be utilized in addition to the type of the
heat source system. For example, in DHSs with geothermal
energy source, the system could operate with the organic fluid
instead of water (Weber et al., 2007), while in case of having
heat sink close to the DHS, the heat pump is more favorable.

FIGURE 1 | (Left) CHP % generation of gross electricity generation (EUStat).
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Moreover, a combination of sources can be used in DHS,
while other renewable source of energies can be integrated to
the system (Sakawa et al., 2002; Weber et al., 2007).

(b) Number of end-users: one of the main concerns in designing
a district heating is the number and variety of the users
connected to the system. A DHS located in a municipal area
serves a variety of residential, commercial, and industrial
buildings with different demand levels (Pirouti et al., 2013).

(c) Temporal profile: different types of users connected to a system
demand their own operating temperature and profiles (Weber
et al., 2007). For example, the heat demand profile for indus-
trial users will be effected less by seasonal changes during
a year, meaning that their required end-use temperature is
higher compared with residential users (Buoro et al., 2014).

(d) Spatial concerns: in addition to the coordinate of all users, the
layout of a city, in which a DHS is planned, plays a key role
in design of distribution network. For example, interception
withmunicipal infrastructures should be avoided when a net-
work is designed. Other factors such as soil quality, topology
of the region, and type of the users could similarly affect the
design of a DHS (Weber et al., 2007; Ben Hassine and Eicker,
2013).

CLASSIFICATION OF DISTRICT HEATING
SYSTEMS

In general, a DHS can be categorized based on five main param-
eters including geographical conditions, scale of the DHS, heat

1European Wind Atlas. Copyright © 1989 by Risø National Laboratory, Roskilde,
Denmark. http://www.wasp.dk/dataandtools#wind-atlas__european-wind-atlas

density of the DHS, the level of end-user demands, and type of
heat sources.

Geographical Conditions
Geographical considerations, namely climatic conditions and
energy source accessibility, will impact the overall design of a
DHS. In particular, a DHS close to Northern latitudes with a
colder climate requires higher rate of heat transfer per unit area
compared to the DHS closer to the equatorial line with a warmer
climate for similar types of buildings (Dalla Rosa andChristensen,
2011). This higher amount of heat transfer inDHSs can be reached
either by increasing themass flow rate of the fluid or by increasing
the operational temperature of the system, which consequently
increases the distribution heat loss of the system due to the higher
operational fluid temperature (Hassine and Eicker, 2011).

Energy sources accessibility is a function of geographical and
geological variation and, therefore, impacts the design considera-
tions of a DHS. Investigating the distribution of different energy
resources for different geographical locations addresses the acces-
sibility of at least one of the main sources of renewable energy
at any region. For example, comparison of the solar (Huld and
Pinedo-Pascua, 2012) and wind map of Europe (see text footnote
1) shows that region with lower solar intensity have higher wind
speeds and vice versa (Figure 2). Specifically, Scandinavian region
has one of the lowest solar intensities while it is exposed to the
highest wind speed in Europe.

Scale
Scale of a DHS plays a significant role in performance of such
systems as the influential parameter in design stage varies in
accordance with the scale. From the spatial point of view, DHS
can be designed as a small, medium, or large system (Figure 3).

FIGURE 2 | (Left) solar map of Europe (right) wind map of Europe1 (Huld and Pinedo-Pascua, 2012).
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FIGURE 3 | Schematic plan of the DHS based on the distance from
heat source.

Small-scale DHS is referred to a network of users in which
the distance from the heat source is in the order of magnitude
of less than few hundreds of meter (Weber et al., 2007). In fact,
the associated temperature and pressure drops are relatively low
due to the short length of the pipelines in the distribution system
(Hurtig, 2010). DHSs in the level of multi-residential buildings
are more likely known as small systems with a relatively low
temperature drop.

The distance between the heat source and the users is mainly
assumed to be from 200 to 300m in the medium-scale DHS
(Weber et al., 2007; Dalla Rosa and Christensen, 2011; Ancona
et al., 2014). In general, these systems are formed as a close-loop
network of buildings linked together with a piping system. Similar
to the small-scale DHSs, pressure drop is a significant element in
design of such systems, whereas for older generation or higher
operating fluid temperature systems, the heat loss is substantial
and should be considered at the design stage (Hassine and Eicker,
2011; Nuytten et al., 2013).

Large-scale DHS,mostly known as community size DHSs, con-
sists of many users and a longer pipeline network compared with
the latter groups. Due to longer length of the pipes in distribution
network, the heat loss is considerably significant and accounts for
up to 15% of the total energy delivered by the system (Hassine and
Eicker, 2011; Xing et al., 2012).

Heat Density
Linear heating density of a network (LHD) is defined based on
the ratio of its total annual heating demand over trench length
(Reidhav and Werner, 2008):

LHD =
Qtotal
L (1)

whereQtotal is the total annual heating demand of the DHS, and L
is the total trench length of the distribution network.

Based on this definition, higher LHDmeans higher heat density
of the network or users with a higher annual demand. In sys-
tems with higher heat density, the importance of the heat loss
is less significant (Nuytten et al., 2013), and thus the system is
designed only based on the hydraulic equilibrium. The economic
and environmental threshold for the LHD of different networks
are varied from 1MWh/m for DHSs with biomass heat source to
0.2MWh/m for combined heat and power (CHP)-based systems
(Reidhav and Werner, 2008; Nuytten et al., 2013).

End-User Demand
Residential buildings utilize lower end-use temperatures for heat-
ing while industrial users require higher fluid temperatures. This

FIGURE 4 | Schematic plan of the DHS with primary and secondary
loops.

means that the demand level of users in a network results in
different arrangement of the DHS (Buoro et al., 2014). One
arrangement is to design a network based on the maximum
demanded temperature (Pirouti et al., 2013), while another option
is to use a multi-loop network with different operational tem-
peratures associated with each of them. Multi-loop networks fur-
ther interact with each other through sets of heat exchangers
(Figure 4). This implies that the main loop operates with the
maximum temperature while secondary loops operate at lower
temperatures in order to satisfy the temperature requirements
of all users (Hassine and Eicker, 2011; Ben Hassine and Eicker,
2013).

Heat Source Type
In general, heat sources are categorized as permanent and non-
permanent types. In the permanent heat sources, the heat genera-
tion continuously exceeds the heat demand of the network where
in the non-permanent sources the generation profile fluctuates
during the time. In the latter scenarios, the generationmainly does
not match with the user demand profile, and therefore another
energy source is mostly integrated to meet the peak demand of
the system.

Combined heat and power, geothermal, and biomass sources
are known as permanent source (Hlebnikov and Siirde, 2009;
Noussan et al., 2014; Sartor et al., 2014). On the other hand,
convertible renewable sources into thermal energy such as wind
and solar energy with high rate of fluctuations are categorized
as non-permanent sources. Moreover, heat storage systems can
be integrated into DHSs to store the surplus of generated heat at
their off-peak time to be later utilized at the peak time of the DHS
(Avila-Marin et al., 2013; Nuytten et al., 2013).

COMPONENT MODELING OF DISTRICT
HEATING SYSTEM

Accurate modeling and design of each DHS’s component
plays an important role in its efficacy and efficiency. This
section investigates various techniques employed to model DHS’s
components.

Heat Source
In general, heat sources in DHSs are modeled based on their
efficiency and heat generation output. A minimum efficiency
index has been defined depending on the type of the heat source.
For example, the primary energy saving index (PES) has been
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defined to evaluate the efficiency of a CHP heat source (Noussan
et al., 2014):

PES =

(
1 − 1

CHP Hη
Ref Hη + CHP Eη

Ref Hη

)
× 100% (2)

where CHPHη is the heat efficiency in cogeneration production,
Ref Hη is the efficiency in separated heat generation, CHP Eη is
the electricity efficiency in cogeneration production, and Ref Hη
is the efficiency in separated electricity generation.

The minimum value of the PES for CHP heat sources with the
nominal size of smaller than 1MW should be a positive value
while this value ismore than 0.1 for sources above 1MW(Noussan
et al., 2014). Same types of indices have been defined for other type
of heat sources (Hepbasli, 2005).

End-User Profile
Accurate prediction of the energy demand profile of users in
smaller time interval such as hourly basis can affect the efficiency
of a network as well as its optimization procedure (Ortiga et al.,
2007). The DHS modeling of the users’ network consists of two
levels: understanding of the heating demand profiles of the users
in order to define the total load required for the network and
calculation of a heat exchanger for each user.

Since building heterogeneity in each district system is elevated,
particularly in the urban setting, and each building has its own
properties and corresponding demand profile, determining the
model which could predict the demand profile of the entire dis-
trict with acceptable accuracy, is essential. In general, there are
different methods suggested to model and predict this demand.
Many of these methods predict the energy demand of a building
in terms of its maximum energy demand, while others predict the
actual profile of the building in smaller intervals such as an hourly
basis.

Regardless of the method used, the heating demand profile of
each user consists of three major parts, including physical and
environmental characteristics of a building (i.e., R-value, infiltra-
tion rate, ambient air temperature, solar radiation, and humidity),
human-related factors or social behavior of the occupants, and
random factors that account for uncertainties. Different tech-
niques have been suggested in the literature in order to predict
the demand profile of the users considering one or all of the above
factors including historical approaches (Dotzauer, 2002; Ortiga
et al., 2007), deterministic, and times series predictive methods
(Eriksson, 2012).

Historical Methods
These methods use historical data obtained from both demand
and supply sides to model the demand profile of the system.

Heating Degree Day
Heat loss in buildings is proportional to the difference between
indoor and outdoor ambient temperature. This concept is used in
the development of theHeatingDegree Daymethod (HDD) (Day,
2006):

Heat Loss (kW) = Overal Heat Loss Coefficient
(
kW.K−1

)
× HDD (K) (3)

Here, the overall heat loss coefficient is determined based on
the infiltration rate and the summation of the UA value for all
different envelope assemblies of the building. The infiltration rate
can be defined either as an average or hourly rate (Day, 2006).

Online and free historical weather data are mainly assumed as
reliable sources to obtain the HDD method (Verda et al., 2012;
Pirouti et al., 2013).2,3 This method is widely used for modeling
of small buildings in which the main source of heat loss is unclear
in their envelope. Al-Homoud (2001) compares this method with
another historical method known as the Bin method. Unlike the
degree day method, the bin method is mainly used for larger scale
buildings in which the internal load generation has a higher effect,
rendering the degree day method unfeasible. In both cases, the
main concern in modeling is the outdoor air condition of the
buildings and the average envelope thermal resistance. The fact
that factors such as the social behavior of occupants and the ther-
mal mass of the buildings have not been taken into account result
in predominantly poorly accurate findings (Dotzauer, 2002). Fur-
thermore, the low frequency of available data results in inaccurate
outcomes.

Energy Use Intensity and Load Factor
Energy use intensity (EUI) and load factor (LF) is another tech-
nique to estimate the users demand profile, whereby the historical
supply data are provided. EUI is the rate of energy use per unit
area (Sharp, 1996), and LF is the ratio of energy consumption over
themaximumpossible energy generation of the supply side (Dalla
Rosa and Christensen, 2011; Dalla Rosa et al., 2012):

LF = Consumption (kWh)/Peak Demand (kW) × Time (h)
(4)

Knowing the EUI and LF of different users4 results in cal-
culation of the total energy and peak heating demand required
for each consumer. The supply energy demand calculates the
annual average LF per area of different users. Mainly, the val-
ues are accessible based on region or reference archetype (see
text footnotes 3 and 4). Barnaby and Spitler (2005) used this
method for load prediction based on different users’ sector of
the DHS and added them together to predict the users’ heating
demand profile. One of the main problems with this method is
associated with non-existence of separated factors for ambient
conditions.

Measurements
Measurement campaigns can provide reliable inputs to be inserted
as the end-user demand profile of DHS (Sanaei and Nakata, 2012;
Nuytten et al., 2013; Wang et al., 2013; Noussan et al., 2014).
Achieving a high frequency dataset, however, is not always a
feasible option due to the extensive cost of the equipment and
time-consuming procedure.

2Degree Days Weather Data for Energy Professionals. Available at: http://www.
degreedays.net/
3Energy Use Data Handbook. (2013). Available at: http://oee.nrcan.gc.ca/
publications/statistics/handbook2010/handbook2013.pdf
4Commercial & institutional consumption of energy survey summary. (2008). Avail-
able from: http://oee.nrcan.gc.ca/publications/statistics/cices08/pdf/cices08.pdf
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Archetype Building
Another type of the widely used historical methods is prototype
or archetype buildings. In this method, buildings with a same
occupancy type are divided into subcategories, while a reference
building is defined for each building. The demand profile of
other buildings located in each category is later defined based
on the reference building with some adjustment. The number
of building categories used in this method and the number of
adjustments required for modeling the demand profiles are the
key parameters of the prototype method. The most commonly
utilized technique is the regression method. Lara et al. (2015)
used the linear regression method in order to define the useful
parameter that can be employed as an input data for modeling of
school buildings, whereas Filippin et al. (2013) used amultivariate
regression method in evaluating the heating demand profile of a
residential sector.

Deterministic Methods
Deterministic methods, also referred as simulation-basedmodels,
use the mathematical representation of the physical behavior of
the buildings. Based on the volume of the used information, deter-
ministic methods can be categorized into two major subdivisions,
such as complex or software-based simulation models, which
use different simulation software that takes into account all the
different parameters affecting the demand profile of a building
and simplified models, which basically simplify the level of the
calculations taken into the account.

Complex Models
Energy simulation software, such as Energy Plus (Crawley et al.,
2001) and TRNSYS (University of Wisconsin—Madison, Solar
Energy Laboratory and Klein, 1979), is broadly used for modeling
various type of buildings. Although they yield highly accurate
demand profiles, the main disadvantage of these models is their
dependency on data quantity and high computational cost for
modeling each building (Ortiga et al., 2007; de Guadalfajara et al.,
2012; Guadalfajara et al., 2014). For small-scale systems consist-
ing of a limited number of buildings, using the comprehensive
method can increase the accuracy of the simulation. Nonethe-
less, providing the data and time required for modeling of many
buildings in a city-wide scale is very extensive. The example of
complex modeling is a work by Zhang et al. (2015, 2014) where a
comprehensive method was utilized to model the demand profile
of 95,817 buildings in Westminster, UK.

Simplified Models
Simplifiedmethods are adapted when the adaption of the compre-
hensivemethod is relatively extensive for a large-scale community.
These methods simplify physical characteristics of the buildings
in order to predict their demand profile. For example, Kim et al.
(2014) considered the parameters including shape, orientation,
and occupancy type in the modeling of the end-users’ profile.
They used the average energy required per square meter of a
dwelling area of a building based on its monthly/yearly outdoor
design temperature. In order to take into account the shape and
orientation of the building, new sets of coefficients were intro-
duced: (1) the ratio of the outdoor surface to volume of the build-
ing (the shape factor) and (2) the orientation relative to the south

(orientation factor) (de Guadalfajara et al., 2012). Wang and Xu
(2006) used a simplified physical method to predict the demand
profile load within which they also included the effect of thermal
mass on load prediction by means of a genetic algorithm. Results
obtained from their simulations illustrate a good correlation with
actual data for a residential building, which has a lower internal
heat gain density. Inversely, this method is unsuitable for larger
buildings with higher internal heat gain density.

Predictive Time-Series Methods
The predictive time-series methods rely on the mathematical
curve fitting relations in order to predict the demand profile of
the users.

Predictive Models
Different predictive models have been suggested for modeling the
demand profile, including classical approaches [i.e., time-series
ARMA models, regression (Lei and Hu, 2009; Yun and Steemers,
2011; Guadalfajara et al., 2014), Kalman filter] and artificial intel-
ligence (AI) methods [i.e., artificial neural network algorithms
(ANN) (Hippert et al., 2001) and fuzzy neural network (FNN)]
(Gross and Galiana, 1987).

ARMA Type. ARMA time-series predict the profile of the end-
user by implementation of a linear combination between the
previous value of the demand along with previous and current
values of the noise (Gross and Galiana, 1987):

z(t) = Yp(t) + Y(t) (5)

where Yp(t) represents the day and the normal weather condition
for the design day, and Y(t) indicates the effect of deviation from
the normal weather pattern.

With slight difference from the general form, different kinds
of ARMA-type models can be developed, e.g., Box-Jenkins (Tang
et al., 1991), time series (Amjady, 2001), andARIMA (Lee andKo,
2011).

Kalman Filter. Similar to other predictive methods, this technique
estimates the value of the variables for future time steps (t+ Δt)
based on the values of the variables at its current time step (t).
In order to make the best estimation, Kalman filter determine
the best variable set, which minimizes the source function using
the residual sequence method. In each step, the Kalman filter will
check the difference between the measurements and the model
output and chose the variable set tominimize the difference. Since
the deviation from the measurement can be positive or negative,
two different sets of residual sequences could be assumed for the
system, such as residual for the hot side and residual for the cold
side of the profile (Palsson, 1993).

Artificial Intelligence
Using predictivemethods, such as artificial intelligence, is another
approach to predict the demand profiles of the building. The
most common artificial intelligence methods used in the field
of load prediction are ANN, FNN, and Support Vector Machine
(SVM). The ANN has been widely used in research for predicting
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the load particularly in forecasting the electricity consumption of
buildings (Zhang et al., 1998). In most of the cases, ANN shows
higher prediction performance compared with other simulation-
based methods. This higher accuracy with the ANN method is
usually due to its higher adaptability, as it considers the social
parameters in load prediction due to the integration of real case
data into the system training (Zhang et al., 1998; Hippert et al.,
2001). Despite the high accuracy of the predictive methods, their
main drawbacks are the over-fitting problem as well as the data
requirements for the training proposes. Providing accurate, com-
prehensive archives of data for ANN is one of the main drawbacks
of this method. In cases where the data archive used for train-
ing the system is small, using the SVM methods (Chen et al.,
2004) shows a better performance. However, only a scarce num-
ber of studies were conducted using SVM in the last few years;
hence, the information regarding the utilization of this model is
limited.

Limitations of the Current Models
Themain limitations of the methods have been used in prediction
of the demand profile of the DHS could be addressed as below:

• Feasibility of expanding one model to the entire district level:
the first limitation of the presented methods is related to the
limitation of these models in prediction of the total energy
consumption of the entire district. Especially, in case of a
larger district system that the heterogeneity of the buildings is
elevated, this problem becomes more amplified. For instance,
HDD should be only used for prediction of the small residential

buildings while the Bin method is more suitable for larger
buildings with much higher internal heat generation density.
As a result, an archetype method with a combination of these
methods should be used to predict the total energy load of the
entire network.

• Type of prediction: another limitation of the presented works
is the type of prediction. Most of the presented methods have
been adapted to predict the total energy consumption. Even
though at the design stage, DHSs are designed based on the
total energy consumption and the maximum peak demand of
the system, detail profile of the network is further required in
order to improve the efficiency of the system and enhancing
the energy distribution management. Table 1 summarizes dif-
ferent prediction methods that have been used to predict the
consumption load of DHSs.

As illustrated in Table 1most of the works that have been done
only focused on the total energy consumption of the networks and
not the detail profile.

• Accuracy: accuracy of the prediction is the next limitation of
the previous models. In case of load prediction for district
systems, two different types of errors could be defined; the first
type is the error associated with the entire district model, while
the second one is associated with the modeling at the building
level. As illustrated in Table 2 the simulation error is mainly
much lower at the district level in comparison with the building
level 1, which is mainly related to behavior of the users.

• Computational time: the computational time of the stock mod-
eling is one of themajor limitations of the current DHSmodels.

TABLE 1 | Summary of the method has been used for load prediction in DHS and type of building stocks.

Simulation

Reference Country Method Scaling Building type Output

Shimoda et al. (2004) Japan Archetype/survey No/archetype Residential Total EUI
Heiple and Sailor (2008) USA eQuest/comprehensive modeling/archetype Area weighted Mixed Hourly/total consumption
Dall et al. (2012) Italy Regression analysis of measured data Area weighted Residential Total consumption
Tuominen et al. (2014) Finland Archetype/linear development using REMA No/archetype Mixed Total consumption
Caputo et al. (2013) Italy Archetype/comprehensive modeling Area weighted Mixed Total consumption
Filogamo et al. (2014) Italy Simplified/equivalent resistance Area weighted Residential Total consumption
Theodoridou et al. (2011) Greece Archetype/comprehensive modeling Area weighted Residential Hourly/total consumption
Eicker (2004) Germany Simplified/equivalent resistance/DD Bldg. by Bldg. Mixed Total consumption
Fonseca and Schlueter (2015) Simplified/HDD adjusted/archetype Area weighted Residential Total consumption

TABLE 2 | Summary of the accuracy level of the previous works.

Prediction error for district Prediction error for individual buildings

Reference Country Error (%) Reference Country Error (%)

Shimoda et al. (2004) Japan 18 Sehrawat and Kensek (2014) USA 11–23
Heiple and Sailor (2008) USA 10–13 Theodoridou et al. (2011) Greece 12–55
Galante and Torri (2012) Italy 10 Nouvel et al. (2013) Germany 5–50
Caputo et al. (2013) Italy 4 Nouvel et al. (2013) Germany 18–31
Filogamo et al. (2014) Italy 8 Koene et al. (2014) Germany 1–60
Nouvel et al. (2013) Germany 21 Orehounig et al. (2014) Switzerland 6–88
Nouvel et al. (2013) Germany 7 Fonseca and Schlueter (2015) Switzerland 8–99
Orehounig et al. (2014) Switzerland 8
Fonseca and Schlueter (2015) Switzerland 9–66
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Energy Distribution Network
Adistribution network of a DHS ismainly designed in accordance
with the scale of the system, geographical considerations, type of
the users, and utilized heat generations sources. Besides the role
of the distribution network in linking the generation side with the
demand side of the cycle and defining the inter communication
between different components of the system, the distribution
network has an effect on the energy consumption of the system as
well. In general, the total energy required to be fed to the system
is equal to:

Q = Qloss +

n∫
1

Qi (6)

where Q is the total energy consumption of the DHS, Qi is the
demand profile of each user, andQloss is the heat loss of the system.
Since most distribution networks work within a specific temper-
ature range, the heat loss from the system could be considered as
a function of the size of the network and not a function of time.
As a result, the total energy requirement of the system is equal to
the summation of the profiles of different users in addition to the
heat loss per network length. Since theDHS is type of the hydronic
system, the modeling technique to design the distribution system
can be either based on hydraulic or thermal equilibrium.

Hydraulic Equilibrium
The distribution system in the DHS works based on the trans-
ferring of heat through a heated fluid, and therefore, it should
be designed based on the requirements of the hydraulic system
regardless of the flow rate and energy level of the fluid.

Mass Flow Balance
The mass flow balance could be written for each point of the
system as follows (Ben Hassine and Eicker, 2013; Kuosa et al.,
2014): ∑

in
Qin −

∑
out

Qout −
∑
user

Quser = 0 (7)

where Qin is the mass flow rate enter the point, Qout is the mass
flow rate exit the point, andQuser is the mass flow rate required by
the utility. Depending on the type of the system, such as an open or
closed loop, Quser could be considered as 0. It is important to note
that the system and network are assumed to be leak free without
any loss of the fluid mass.

Energy Balance
In the mass flow balance techniques, the energy balance could be
written between any two points in the system as below (Ancona
et al., 2014):

ΔHij − (Hi − Hj) = 0 (8)
where ΔHij represents the energy loss between points i and j; Hi
and Hj are, respectively, the energy content of the fluid at points
i and j. Considering the DHS as a closed system and without
any loss in the liquid mass, the energy loss in the system could
be written as a correlation to the pressure loss in the system
represented in two different ways:

ΔH = f. LD .ρ.
ν2

2
Distribution Pressure Drop (9)

ΔH = β.ρ.
ν2

2
Concentrated Pressure Drop (10)

In the distribution pressure loss, the friction loss due to viscous
effect, generated by the pipe surface, is the governing parameter.
The hydraulic diameter of the pipe, mass flow rate of the system,
and roughness of the pipe surface are the parameters affecting the
distribution pressure loss of the system (Kuosa et al., 2014). Addi-
tionally, in concentrated pressure loss, head loss due to fittings and
changes in diameter of the pipe are taken into the account (Ancona
et al., 2014).

Thermal Equilibrium
Thermal equilibrium can be represented as either a steady-state or
dynamic equation. DHS with operational temperature lower than
70°C or with low heat propagation (well insulated) can be rep-
resented as a steady-state system. Inversely, DHS operating with
higher temperatures than 110°C or with high heat propagation
can be considered as dynamic system (Madsen et al., 1994; Lund
et al., 2014). The thermal model could be written based on two
major sources of the temperature drop in the system, including
temperature drop across the users and due to the heat loss in the
system. The temperature drop across the users can be modeled
based on a simple convection heat transfer equation (Dahm, 1999;
Wang et al., 2013):

Q = U. ΔT (11)

where Q is the amount of the energy required by the system, U
is the heat transfer coefficient, and ΔT is the temperature drop
across the users.

On the other side, the temperature drop due to heat loss in the
system occurs in both longitudinal and radial directions. Longi-
tudinal heat loss is along the system between different locations,
whereas radial heat loss occurs in the surrounding environment.
Both types of the heat transfer in the system could simply be
modeled by using the enthalpy balance between any two points
(Hassine and Eicker, 2011; Kuosa et al., 2013):

∂(mh)
∂t =

∑
in

hin −
∑
out

hout −
∑
loss

hloss (12)

∂(mh)
∂t = Q̇c(x) − Q̇c(x + dx) − dQ̇1 (13)

where Q̇c is the convective heat flow, dQ̇1 is the radial heat flow
and could be expressed as below:

dQ̇l = k.dx.(T − Tearth) (14)

Q̇c(x) = qmx.Tx.Cp (15)

where k is the radial heat transmission coefficient and qm is
the flow rate. By replacing the dQ̇l and Q̇c(x) in the Eq. 12,
the temperature at any point can be calculated as follows
(Figure 5):

Tn+1
i = Tn

i + Δt/mi.Cp
(
qmi−1 .Cp.Tn

i−1 − qmi .Cp.Tn
i − dQ̇l

)
(16)

where Cp is heat capacity, Tn is the temperature, Δt is the time
step, andmi is the mass of the water.

Based on the definition of the dQ̇l, one of the main factors
influencing the amount of heat loss is the earth’s temperature. In
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FIGURE 5 | Heat flow in the piping system.

systemswith a higher operating temperature, higher differences in
temperature could result in higher amounts of the heat loss in the
system. Similarly, increased heat losses in a system could result in
increased surrounding temperatures over time, and consequently
decreasing the heat loss over time.

HOLISTIC MODELING OF DISTRICT
HEATING SYSTEM

Physical and black box models are the approaches conducted in
holistic modeling of the DHS (Palsson, 2000). The network has
been considered as a whole package in the black boxmodels where
individual design of the components is disregarded. The whole
system is thenmodeled by techniques such as the transfer function
or ANN (Yabanova and Keçebas, 2013). One the other hand, in
physical models, each component of the DHS has been designed
separately and as a set of equations describing the flow and
pressure losses of that element. Arsene et al. (2004) categorized
the physical modeling as the link flow (Q), the loop corrective
flow (ΔQ), the nodal heads (H), and finally the mixed node-loop
approaches.

Due to a high number of the elements that need to be taken
into consideration, solving such a system can be computationally
expensive. Therefore, numerical approaches have been widely
developed for solving the system of equations of the hydraulic
distribution networks. Some of these approaches are categorized
by Arsene as:

• Numerical minimization method, finding the minimum value
of the non-linear function subjected to linear constrained;

• Hardy-Cross method, solving the system of non-linear
equations (Chenoweth and Crawford, 1974);

• Newton–Raphson method, solving the system of non-linear
equations (Donachie, 1974);

• Linear theory method, solving the system of non-linear equa-
tions (Collins and Johnson, 1975).

Based on the simplicity of the input data, the number of equa-
tions and size of thematrix of the equations (Calí and Borchiellini,
2002; Hassine and Eicker, 2011) as well as the accuracy of the
results, the most frequent used method is a combination of New-
ton–Raphson and nodal head methods (Arsene et al., 2004; Has-
sine and Eicker, 2011). Due to weak convergence of the nodal
equation algorithm for networks with low flow rate, another
approach has been suggested by Arsene et al. (2004) called the

loop equation method, which is again a combination of a loop
corrective and Newton–Raphson methods.

Further to the above mentioned studies, several commercial
software have been developed based on the loop equationmethod
using the graph theory, such as TERMIS5 or SpHeat (Eicker,
2004). Table 3 summarizes some of the current DHS modeling
studies.

OPTIMIZATION OF DISTRICT HEATING
SYSTEM

Different optimization methods have been developed in order to
decrease the heat loss as well as the cost associated with operation
and construction of the DHSs. Among various used methods,
mathematical methods based on continuous or discrete variables,
generic algorithm, neural network, and fuzzy logic systems are
widely implemented techniques. Based on the defined type of
the objective function, the DHS optimization is mainly formed
on the basis of a single objective function or multi-objective
functions. While most single variable function will be solved
using the deterministic numerical methods, the multi-objective
functions use either weighted factors or pareto-front approaches.
In the weighted factor approach, importance factor is fitted to
different objectives of the optimization problem, based on the
trial-and-error approach, to convert the multi-objective function
to single objective problem, which provides a numerical solution
for the problem. The following chart shows different deterministic
methods for the numerical optimization approaches.

Discrete Variable:


Mixed-Integer Linear

Programing (MILP)
Mixed-Integer Non-Linear

Programing (MINLP)

Continuouse Variable:



Linear Programing (LP): Linear
complementarity problem (LCP)

Non-Linear Programing (NLP):{
Quadratic Programing (QP)
Semi-Difinite Programing (SP)

(17)
where the optimization problem can be defined as (Caputo et al.,
2013):

minZ = f(x, y) s.t.


h(x, y) = 0
g(x, y) ≤ 0
x ∈ X, y ∈ {0, 1}m

(18)

where the objective function f (x, y) is subjected to the set of
constraints. h(x, y) = 0 defines performance of the system, and
g(x, y)≤ 0 stands for feasible plan of the system. Moreover, two
different types of variables could be defined for MIP problems;
the continuous variable (x), representing the state variable and the
discrete variable (y) with the value of 0 and 1, representing the
assignment of the equipment of a sequential task to the system.

5Termis District Energy Optimization Software. Available at: http://software.
schneider-electric.com/products/termis/
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TABLE 3 | Summary of the recent DHS modeling studies.

No. Case study Description Country/
climate

Modeling level Scale Energy
source

Utilized
tools

Validation

Source Building System

1 Ancona et al. (2014) 34 Users Italy GD P M CHP ODS TERMIS

2 Gopalakrishnan
and Kosanovic
(2014)

Combined sources SM M Combined UC

3 Wang et al. (2013) Multi-unit
apartment building

GD P S CHP UC

4 Weber et al. (2007) 8U with different
supply temperature

Geneva SM GD M CHP UC

5 Hassine and Eicker
(2011)

7 users with
Lp >13.5 km

Germany GD P/T L Biomass ODS

6 Dalla Rosa et al.
(2012)

Compares HT and
LT supply

Ottawa LF P/T L CHP Logster TERMIS

7 Dalla Rosa and
Christensen (2011)

Effect of human
behavior

Denmark LF P M HP IDA-ICE TERMIS

8 Ben Hassine and
Eicker (2013)

Thermal storage Stuttgart GD P/T L CHP/
biomass

spHeat

9 Buoro et al. (2014) Solar district
heating

SM GD M Solar/CHP UC

10 Hassine and Eicker
(2014)

Solar thermal
heating network

Sonnenberg SM Software P/T M Geothermal/
solar

spHeat

11 Nuytten et al.
(2013)

CHP with thermal
storage for 100U

Flanders SM Measurement P M CHP UC

12 Noussan et al.
(2014)

Biomass-fired CHP
with storage

Leini/Turin SM Measurement L CHP/
biomass

UC

13 Guadalfajara et al.
(2014)

For 50% heating
load calculation

Zaragoza SM TRNSYS L Solar UC

14 Hlebnikov and
Siirde (2009)

Source optimization Estonia SM L CHP UC

15 Kuosa et al. (2013) Different flow
control strategy

GD P/T M CHP/HP UC

16 Pirouti et al. (2013) Different control
strategy

Wales HDD TPL M CGP PSS
SINCAL

17 Sanaei and Nakata
(2012)

City level Yazd SM GD L Combine EMD

18 Verda et al. (2012) Neighborhood Turin HDD

SM, source modeling; GD, given data; LF, load factor; HDD, heating degree day; P, pressure model; T, thermal model; ODS, own developed software; UC, user code; L, large; M,
medium.

Optimization algorithms consist of both continuous and
discrete variables where they furthermore characterized asmixed-
integer linear programing (MILP) if all the equations are linear
or mixed-integer non-linear programing (MINLP) if one of the
equations is non-linear. In the cases of having no discrete vari-
able, the optimization algorithm can be addressed with linear
programing and non-linear programing (Biegler and Grossmann,
2004).

The schematic of the optimization process, presented in Eq.
17, serves as a basis of several optimization tools, which have
been developed for optimization of the DHSs, e.g., general opti-
mization toolboxes such as MATLAB or GenOpt (Attia et al.,
2013), customized DHS optimization tools such as FreeOpt

(Akhtari et al., 2014), cost-associated optimization tools with the
thermal electrical load of the system such as STEFaN (Connolly
et al., 2014), network pipe size and routing optimization tool such
as MODEST(Model for Optimization of Dynamic Energy Sys-
tem with Time-Dependent and Boundary Condition), the system
investment, and operational cost optimization at both supply and
demand level (Henning, 1999).

Regardless of the type of optimizing algorithm, the main objec-
tive of suchmodels is tominimize the operational cost, investment
cost, and heat demand of the system in addition to minimiz-
ing the environmental impacts such as CO2 emission (Lu et al.,
2014). Table 4 summarizes some of the recent DHSs optimization
studies.
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TABLE 4 | Summary of the recent DHS optimization studies.

No. Reference Type of objective function Objectives Solving method

1 Falke et al. (2016) Multi-objectives optimization Cost and CO2 emission Evolutionary algorithm/Perato front
2 Li et al. (2016b) Multi-objectives optimization Cost and CO2 emission Weighted factor/MILP
3 Li et al. (2016a) Single objective Pressure drop Deterministic/MINLP
4 Mertz et al. (2016) Multi-objectives optimization Global cost, operation, and investment Weighted factor/MINLP
5 Wang et al. (2016) Multi-objectives optimization Accumulated error GA/non-linear objectives
6 Lu et al. (2014) Multi-objectives optimization Exergy efficiency and life cycle global warming GA/multi-objectives
7 Gopalakrishnan and Kosanovic (2014) Single objective Hourly cost GA/MINLP
8 Buoro et al. (2013) Multi-objectives optimization Global cost and CO2 emission Weighted factor/MILP
9 Wang et al. (2013) Single objective Mass flow rate/thermal conductance Newtown method
10 Keçebas et al. (2013) Multi-objectives optimization Total cost ANN
11 Keçebaşand Yabanova (2012) Single objective Mass flow rate ANN
12 Verda et al. (2012) Multi-objectives optimization Average unit cost of heat supplied to all users GA
13 Sanaei and Nakata (2012) Single objective Exergy efficiency Non-linear GRC
14 Åberg and Henning (2011) Single objective Operational cost MODEST optimization model
15 Dobersek and Goricanec (2009) Single objective Capitalized cost NLP
16 Söderman (2007) Multi-objectives optimization Total cost Weighted factor/MILP
17 Henning et al. (2006) Single objective Operational cost MODEST optimization model
18 Wright et al. (2002) Multi-objectives optimization Operational cost and thermal comfort GA/multi-objectives

MILP, mixed-integer linear programing; MINLP, mixed-integer non-linear programing; GRG, generalized reduced gradient.

CONCLUSION

In this paper, the state of the art of modeling and optimization
of DHSs is reviewed and limitations of the previous works have
been summarized. One of the major limitations of the existing
works is addressed as the procedure that could be used in pre-
dicting the demand load of the entire district network. In general,
there are different methods suggested to model and predict the
demand profile in DHSs. Many of these methods predict the
energy demand of a building in terms of its maximum value, while
others predict the actual profile of the system in a smaller interval
such as an hourly basis. This limitation becomes more important
in case of larger DHSs in which building heterogeneity is elevated.
Table 1 summarizes the different approaches that have been used
in predicting the load of the DHSs. It was concluded that most of
the utilized approaches are only applicable to one type of building.

Also, the accuracy of the predictions of previous works has
been addressed in Table 2. Since most of the existing models do
not take into consideration the effect of the occupants’ behavior
in their modeling, the accuracy of the prediction, particularly
at the building level, is much lower in the previous works. In
contrast, the accuracy significantly increases when the entire DHS
is considered. This phenomenon can be observed in previous
works focused on DHSs with similar building types. Since more
than one building is involved in the profile prediction of an entire

district network, their demandprofiles overlap and therefore com-
pensate the accumulated error in the load prediction; this process
significantly increases prediction accuracy.

In terms of the distribution network, the existing works has
been categorized in three levels, small size, mid-size, and large
systems. This categorization has been summarized in Table 3.
Even though in the mid-size and large size networks, there is
a higher heat loss ratios, thermal insulation of the distribution
network is suggested to be a major drawback; however, for the
newer DHS generations, working with lower temperature, this
loss can be embedded as an into the demand load. Regarding the
state of the art of the optimization methods, Table 4 provides a
summary on the basis of their objective functions.
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