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An innovative hybrid control building system of multiple isolation and connection is
proposed and investigated using both time history and input energy responses for
various types of ground motions together with transfer functions. It is concerned that
the seismic displacement response at the base-isolation layer of the existing base-
isolated buildings may extremely increase under long-period and long-duration ground
motions, which are getting great attention recently. In order to enhance the seismic
performance of those base-isolated buildings, a novel hybrid system of multiple isolation
and building connection is proposed and compared with other structural systems such as
an independent multiple isolation system, a hybrid system of base isolation and building
connection. Furthermore, the robustness of seismic responses of the proposed hybrid
system for various types of groundmotion is discussed through the comparison of various
structural systems including non-hybrid systems. Finally, the optimal connection damper
location is investigated using a sensitivity-type optimization approach.

Keywords: multiple isolation, building connection for control, hybrid passive control system, robustness, redun-
dancy, optimal damper location

INTRODUCTION

Recently, the concept of resilience is becoming very popular in the field of earthquake structural
engineering (Bruneau and Reinhorn, 2006; Takewaki et al., 2012). In order to enhance the earth-
quake resilience of building structures, it is desired through advanced designmethodologies tomake
building structures safe for a broader class of earthquake ground motions (Amadio et al., 2003;
Kobori, 2004, Takewaki et al., 2012, 2013; Takewaki, 2013). Since earthquake ground motions seem
highly uncertain, it appears difficult to predict the forthcoming events within an allowable accuracy
in time, space, and character (Takewaki et al., 2011, 2012, 2013; Takewaki, 2013). In addition, because
the building structural properties (especially the properties of advanced buildings systems, such as
base-isolation systems and passive control system) are not deterministic (Ben-Haim, 2006) and the
consideration of their variation is inevitable in the seismic-resistant design of building structures, the
concepts of robustness and redundancy are becoming also very important. In fact, it is mandatory
in Japan to take into account the variability of structural properties of isolators and dampers in the
design of base-isolated buildings and passively controlled buildings. In such design procedure, the
worst combination of structural properties of isolators and dampers is investigated as a key concept
(Ben-Haim, 2006; Elishakoff and Ohsaki, 2010, Takewaki et al., 2012), and all the design conditions
are investigated for this worst case.

While various base-isolated buildings have been developed recently as an effective building system
for pulse-type ground motions with non-resonant frequency contents (Jangid and Datta, 1994;
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Hall et al., 1995, Heaton et al., 1995; Jangid, 1995, Jangid and
Banerji, 1998; Kelly, 1999, Naeim and Kelly, 1999; Jangid and
Kelly, 2001, Morales, 2003; Takewaki, 2005, Li and Wu, 2006;
Hino et al., 2008, Takewaki, 2008; Takewaki and Fujita, 2009),
their resilience for earthquakes is not necessarily proved for long-
period ground motions with the characteristic period of 5–8 s
(Irikura et al., 2004; Kamae et al., 2004, Ariga et al., 2006).
This is because the resonance of the base-isolated buildings to
the long-period ground motions may cause catastrophic out-
comes (Hashimoto et al., 2015). The long-period ground motions
with the characteristic period of 5–8 s were of great interest in
the structural design of base-isolated buildings and super high-
rise buildings since the Tokachi-oki earthquake in 2003 and were
demonstrated as a key critical input for such buildings during the
2011Tohoku earthquake. The resonances of a large oil tank during
the Tokachi-oki earthquake in 2003 and base-isolated buildings
and super high-rise buildings during the 2011 Tohoku earthquake
with long-period ground motions are very famous in the field of
structural design of those structures. On the other hand, it is also
true that, while building structures including passive energy dis-
sipating systems are effective for long-duration and long-period
ground motions (Takewaki, 2007; Patel and Jangid, 2011, Take-
waki et al., 2011, 2012; Kasagi et al., 2015), they are not necessarily
resilient for pulse-type ground motions. The resolution of these
two issues is greatly desired in the field of seismic-resistant and
control design (Koo et al., 2009; Petti et al., 2010, Karabork, 2011).

In this paper, a new hybrid passive control building system is
proposed in which a multiple isolation building model (Pan et al.,
1995; Becker and Ezazi, 2016, Fujita et al., 2016) is connected
to another non-isolated building (free wall) with oil dampers.
A similar type of connected buildings without isolation and
another type of base-isolated buildings with connection have been
designed and constructed by Obayashi Corporation and Shimizu
Corporation in Japan as an apartment house with a car parking
tower (Murase et al., 2013; Kasagi et al., 2016). However, buildings
with such new system (multiple isolation and building connection
model) have never been proposed and constructed so far. It is
demonstrated here that the present hybrid passive building con-
trol system is effective both for pulse-type ground motions and
long-duration, long-period ground motions. It is also made clear
from the energy analysis that although the connecting dampers
in the hybrid system are not effective for a pulse-type wave, those
are effective for a long-duration, long-period wave. Finally, it is
also demonstrated that the present hybrid passive control building
system has high redundancy and robustness for a broad range of
disturbances and an optimal connecting damper location can be
found using a sensitivity-type optimization approach.

HYBRID CONTROL SYSTEM USING
MULTIPLE ISOLATION AND BUILDING
CONNECTION

Proposed Building Model and
Other Comparable Models
Consider a 40-story reinforced concrete building, as shown in
Figure 1, which includes two isolation stories and is connected
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FIGURE 1 | Transformation of base-isolated and building connection
model into multiple isolation and building connection model.

to a reinforced concrete free wall of 26 stories (a RC wall system)
at some floor levels by using oil dampers. The isolators used in
this study are considered to be linear. This hybrid system can be
regarded as an extension of the previously proposed hybrid system
(Murase et al., 2013) consisting of a base-isolated building and a
connected free wall.

The oil dampers for building connection are installed at 4, 8,
12, 16, 18, 20, 22, 24, and 26th floor levels. The floor mass of the
main building is 1.7× 106 kg at each floor and that of the free
wall is 2.2× 105 kg. The base-isolation floor mass (also middle-
isolation story floor mass) is larger than other floor mass and is
set to 5.1× 106 kg. The story height is 3.5m in all the stories.

The superstructure of the main building (base-isolated build-
ing) is designed so as to have the fundamental natural period of
3.0 s and a straight fundamental mode for a fixed base model.
However, the story stiffnesses at several stories near the top
have been modified (slightly increased) so as to restrain the
larger response near the top. On the other hand, the free wall
is designed so as to have the fundamental natural period of
0.63 s and a straight fundamental mode. In the proposed hybrid
model (multiple isolation and building connection model), the
20th story is replaced by the middle-story isolation system. The
stiffness of the middle-story isolation system is designed to have
two-thirds of the base-isolation system so that the deforma-
tion component of the middle-story isolation system has the
same deformation component of the base-isolation system in the
lowest mode.

The fundamental natural periods of the base-isolated model
and the multiple isolation model are 6.79 and 8.36 s, respectively.
On the other hand, the fundamental natural periods of the base-
isolated and building connectionmodel and themultiple isolation
and building connection model are 6.73 and 8.31 s, respectively.
The horizontal stiffness of the isolation story can be regarded as
the equivalent stiffness after consideration of the P-delta effect.
The structural damping ratio of the superstructure (stiffness-
proportional damping) is set to 0.03, and the damping coeffi-
cient of the base-isolation story in the base-isolated and building
connection model has been set so as for the damping ratio of
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FIGURE 2 | Multiple isolation and building connection model (proposed model), base-isolated and building connection model, building connection
model, multiple isolation building model, and base-isolated building model.

the base-isolation story for a rigid superstructure to be 0.15. The
damping coefficient of the middle-isolation story in the multiple
isolation and building connection model is the same as the damp-
ing coefficient of the base-isolation story in the base-isolated
and building connection model. The interconnection oil dampers
are allocated uniformly to the above-mentioned floors (damping
coefficient 2.16× 106 Ns/m), and the approximate lower-mode
damping ratio for a rigid free wall is set to 0.15 under non-modal-
coupling approximation. Therefore, an approximate fundamen-
tal damping ratio of the base-isolated and building connection
model is 0.30.

In this paper, five building models as shown in Figure 2
are considered for the comparison of earthquake responses. The
five models are the multiple isolation and building connection
model (proposed model), the base-isolated and building con-
nection model, the building connection model without isolation,
the multiple isolation model without building connection (Pan
et al., 1995; Becker and Ezazi, 2016, Fujita et al., 2016), and the
base-isolated model without building connection.

Natural Frequencies and Damping Ratios
of Proposed Building Model and
Other Comparable Models
Table 1 shows the first to third natural periods of various building
models to be considered here and the first to third damping ratios
of those models. These values have been computed by the com-
plex eigenvalue analysis. It can be observed that the fundamental
natural period of the proposed building model becomes longer
compared to the comparable base-isolated and building connec-
tionmodel. It can also be found that while the building connection
makes the fundamental natural period slightly shorter than the
corresponding non-connection models, the effect is small.

As for damping ratios, the fundamental damping ratio of the
base-isolated and building connection model becomes 0.28 and
is close to the setting value of 0.30 in the previous section. In
addition, the fundamental damping ratio of the proposed building
model has almost the same value as the base-isolated and building
connectionmodel. A remarkable point is that the second damping

TABLE 1 |Natural period and damping ratio (first, second, and third modes).

Natural period (s) Damping ratio

1st 2nd 3rd 1st 2nd 3rd

Multiple isolation
and building
connection model

8.31 3.25 1.12 0.27 0.43 0.15

Base-isolated and
building connection
model

6.73 1.69 0.91 0.28 0.12 0.14

Building connection
model

2.97 1.16 0.71 0.07 0.11 0.14

Multiple isolation
building model

8.36 3.27 1.18 0.12 0.34 0.14

Base-isolated
building model

6.79 1.68 0.91 0.12 0.10 0.13

ratio of the proposed building model is 0.43 and is increased from
the base-isolated and building connection model.

TRANSFER FUNCTIONS OF ISOLATION
STORY DEFORMATION AND
TOP ACCELERATION

It may be possible to characterize the dynamic properties of a
structural model by using a transfer function to the base input.
Figure 3 shows the transfer function of inter-story drift (base-
isolation layer/base acceleration) for the proposed buildingmodel
(multiple isolation and building connection model), the base-
isolated and building connection model, the multiple isolation
model without interconnection, and the base-isolated building
model without interconnection. On the other hand, Figure 4
presents the transfer function of inter-story drift (middle-story
isolation layer/base acceleration) for the proposed buildingmodel
(multiple isolation and building connection model) and the
multiple isolation model without interconnection. Furthermore,
Figure 5 illustrates the transfer function of top-story acceleration
of the main structure in the proposed building model (multiple
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FIGURE 3 | Transfer function of inter-story drift (base-isolation
layer/base acceleration).
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FIGURE 4 | Transfer function of inter-story drift (middle-story isolation
layer/base acceleration).
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isolation and building connection model), the base-isolated and
building connection model, the multiple isolation model with-
out interconnection, the base-isolated building model without
interconnection, and the building connection model (without
isolation).

It can be observed that the transfer function of the proposed
building system possesses lower values in a broader frequency
range compared to other comparable building systems. In par-
ticular, the inter-story drifts of the base-isolation story and the
middle-isolation story at the fundamental natural frequency have
been reduced greatly together with the top-story acceleration of
the main multiple isolation building at higher natural frequen-
cies. However, compared with both the base-isolated building
model and the base-isolated and building connection model, the

inter-story drift of the base-isolation story has been increased a
little bit in the frequency range slightly larger than the second
natural frequency (0.31Hz).

EARTHQUAKE RESPONSES OF
PROPOSED BUILDING MODEL AND
OTHER COMPARABLE MODELS

In this section, the earthquake responses of the proposed building
model and the other comparable models are shown for the pulse-
type ground motions and long-period, long-duration ground
motions. Based on these results, the robustness of the proposed
building model is demonstrated.

Input Ground Motions
Consider an artificial pulse-type ground motion (He, 2003; Xu
et al., 2007, He and Agrawal, 2008). The velocity wave of the
artificial pulse-type ground motion can be expressed by

u̇P = CPtne−at sin ωPt (1)

where ωP is the input circular frequency corresponding to the
input period Tp. Tp = 1.0 s is used, and n= 1, a= 2.51 1/s, and
CP = 6.7m/s are specified for wave generation in comparisonwith
the JMA Kobe NS (1995).

On the other hand, consider an artificial long-period, long-
duration ground motion (Takewaki and Tsujimoto, 2011). The
velocity wave of the artificial long-period, long-duration ground
motion can be described by

u̇L = −CL cos ωLt (2)

where ωL is the input circular frequency. Two parameters
TL1 = 2π/ωL1 = 6.8 s (corresponding to the fundamental natural
period of the base-isolated building) and TL2 = 2π/ωL2 = 8.4 s
(corresponding to the fundamental natural period of the multiple
isolation building) are specified. The amplitudeCL = 0.2m/s is set
in comparison with the Tomakomai EW (2003).

On the other hand, as the representative recorded ground
motions, the JMAKobeNS (1995) and the Tomakomai EW (2003)
have been chosen. The JMAKobeNS (1995) has been amplified so
that the maximum velocity attains 0.5m/s, which is the specified
level in Japan for an intensive design earthquake ground motion.

The acceleration records of these selected ground motions are
shown in Figure 6 and the displacement, velocity, acceleration
response spectra (damping ratio= 0.3), and the energy spectra are
shown in Figures 7A–D. The energy spectra have been obtained
from the following relation:

VE =
√
2E/M (3)

whereM denotes the total mass and E is the total input energy.

Maximum Response of Proposed Building
Model and Other Comparable Models
under Several Earthquake Ground Motions
Themaximum horizontal displacements under the artificial long-
period, long-duration ground motion (6.8 s), the artificial long-
period, long-duration ground motion (8.4 s), the Tomakomai EW
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(2003), the artificial pulse-type groundmotion, and the JMAKobe
NS (1995) are shown in Figure 8. On the other hand, the max-
imum accelerations under these ground motions are illustrated
in Figure 9. Figures 8A–C and 9A–C in these figures are for the
long-period, long-duration ground motions, and Figures 8D,E
and 9D,E are for the pulse-type ground motions.

It can be observed from Figures 8 and 9 that the proposed
building system is effective both for pulse-type ground motions
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FIGURE 8 | Maximum horizontal displacements under various ground
motions: (A) artificial long-period, long-duration ground motion (6.8 s),
(B) artificial long-period, long-duration ground motion (8.4 s),
(C) Tomakomai EW (2003), (D) artificial pulse-type ground motion,
and (E) JMA Kobe NS (1995).

and long-period, long-duration ground motions. This indicates
the high robustness of the proposed building system for various
kinds of ground motion. In particular, the story drifts of the base-
isolation story and the middle-isolation story exhibit the value
of half or two-thirds of the corresponding values of the com-
parable building systems (base-isolated and building connection
model, multiple-isolation building model) under the long-period,
long-duration ground motions. Furthermore, the acceleration
of the proposed building system can be reduced effectively under
the long-period, long-duration ground motions compared to
the comparable building systems (base-isolated building model,
multiple-isolation building model).

Energy Response of Proposed Building
Model and Other Comparable Models
under Several Earthquake Ground Motions
In this section, the energy responses of the proposed building
model and other comparable models are shown for the pulse-type
ground motions and long-period, long-duration ground motions.
In particular, the effect of the energy consumption at the con-
nected dampers on the response is investigated in detail.

Figure 10 shows the time histories of energy response of
the proposed building model and the building connection
model (without isolation) under the artificial pulse-type ground
motions. The input energy, total damping energy, kinetic energy,
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and damping energy at the connected dampers are plotted in this
figure.

On the other hand, Figure 11 presents the time histories of
energy response of the proposed building model and the multiple
isolation buildingmodel (without connection) under the artificial
long-period, long-duration ground motion (8.4 s).

It can be observed that the proposed building system has a
larger value of the ratio of the energy consumption in the con-
nected dampers to the overall energy consumption compared
to other comparable building systems. This leads to the effec-
tive reduction of the vibration energy in the main building.
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FIGURE 11 | Energy response of the proposed building model and
other comparable model under the artificial long-period,
long-duration earthquake ground motion (8.4 s): (A) proposed building
model and (B) multiple isolation building model (without connection).

The remarkable reduction of the vibration energy in the main
building has also been observed also under the long-period, long-
duration ground motions.

Robustness of Proposed Building Model
and Other Comparable Models under
Several Earthquake Ground Motions
Figure 12 shows the response variability (inter-story drift of base-
isolation layer, inter-story drift of middle-story isolation layer,
inter-story drift of non-isolation story of the main structure, base
shear, overturning moment at the base) in the proposed build-
ing model and other comparable models under various ground
motions.

It can be observed fromFigures 12A,B that the proposed build-
ing system exhibits a good performance in the inter-story drift
of the base-isolation layer and the middle-story isolation layer,
especially for long-period ground motions which are critical to
the base-isolation system. The good performance can be observed
also in the non-isolation story drift, base shear, and overturning
moment at the base (Figures 12C–E). A small response variability
in the proposed building system can also be understood from
Figures 12A–D.

It can be observed from Figures 12F,G that the base shear
and base overturning moment in the free wall of the pro-
posed building system under the pulse-type ground motions
exhibit almost equivalent or smaller values compared to the
other comparable building systems. On the other hand, while
these values become slightly larger under the long-period, long-
duration ground motions, no serious problem occurs because
those response values are relatively small compared to those
response values under the pulse-type ground motions.

Summary of Response and
Robustness Analysis
Table 2 shows the summary of the response characteristics of
the proposed building model and other comparable models
under representative two-type ground motions. As stated above,
the proposed building system exhibits a good performance for
the pulse-type ground motion keeping the allowable response
to the long-period, long-duration ground motions. For long-
period, long-duration ground motions, the largest response was
selected.
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FIGURE 12 | Response variability of proposed building model and other comparable models under various earthquake ground motions: (A) inter-story
drift of base-isolation layer, (B) inter-story drift of middle-story isolation layer, (C) inter-story drift of non-isolation story of the main structure,
(D) base shear of the main structure, (E) base overturning moment of the main structure, (F) base shear of the free wall, and (G) base overturning
moment of the free wall.

OPTIMIZATION OF CONNECTION
DAMPER LOCATION

The effective connection damper location is an interesting issue.
In order to find the optimal location, the maximization of the
area of the energy transfer function (Takewaki, 2007) for the

connection dampers is adopted as the objective function. This
quantity indicates the energy absorbed in the connection dampers
under an ideal white noise-like input. A sensitivity analysis is
employed as the optimization method. The initial design is the
model without connection damper, and the optimization is termi-
nated at the stage where the total quantity of damping coefficients
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FIGURE 13 | Optimal location of connection damper.

TABLE 2 |Response characteristics of variousmodels under representative
two-type ground motions.

Pulse-type ground Long-period, long-duration
motion ground motion

Multiple isolation
and building
connection model

Small (resonance
avoidance= lengthening
of natural period by
multiple isolation)

Medium (large building
connection effect due to large
natural period difference, large
resonance effect)

BID= 0.19, TA= 0.80 BID= 0.27, TA= 0.38

Base-isolated
and building
connection model

Medium (resonance
avoidance= lengthening
of natural period by base
isolation)

Medium (large building
connection effect due to large
natural period difference, large
resonance effect)

BID= 0.19, TA= 1.52 BID= 0.33, TA= 0.43

Building
connection model

Large (small building
connection effect for
pulse-type ground motion)

Small (resonance avoidance)

TA= 9.08 TA= 0.32

Multiple isolation
building model

Small (resonance
avoidance= lengthening
of natural period by
multiple isolation)

Large (large resonance effect)

BID= 0.20, TA= 0.53 BID= 0.60, TA= 0.78

Base-isolated
building model

Medium (resonance
avoidance= lengthening
of natural period by
base isolation)

Large (large resonance effect)

BID= 0.20, TA= 1.86 BID= 0.77, TA= 0.89

BID, base-isolation layer deformation (m); TA, top acceleration (m/s2).

reaches the total quantity for the standard model with a uniform
damping coefficient 2.16× 106 Ns/m.

Figure 13 shows the result of the optimization. It can be found
that the effective dampers are located at several stories above and
below themiddle-isolation story (20th story) and larger quantities
are allocated to the upper side. The objective function (area of the
energy transfer function for connection dampers) was maximized

TABLE 3 | Comparison of the first three natural periods and damping ratios
between the standard model and the optimal design.

1st 2nd 3rd

Standard model Natural period (s) 8.31 3.25 1.12

Damping ratio 0.27 0.43 0.15

Optimal design Natural period (s) 8.03 3.26 1.09

Damping ratio 0.40 0.39 0.17

from 2.12× 107 Ns3/m (standard model) to 2.35× 107 Ns3/m.
Table 3 presents the comparison of the first three natural periods
and damping ratios. It can be observed that the fundamental
natural period of the optimal design is shorter than that of the
standardmodel and the lowestmode damping ratio of the optimal
design is larger than that of the standard model.

The position of themiddle-story isolationmay be an interesting
theme in the response reduction. This will be discussed in the
future.

CONCLUSION

The following conclusions have been derived.

(1) A new hybrid passive control building system has been pro-
posed, in which a multi-isolation (double-isolation) building
is connected to another non-isolated building (free wall) with
oil dampers.

(2) It was demonstrated that the transfer function of the proposed
building system possesses lower values in a broader frequency
range compared to other comparable building systems. In
particular, the story drifts of the base-isolation story and the
middle-isolation story in the fundamental natural frequency
have been reduced greatly together with the top-story accel-
eration of the main multi-isolation building at higher natural
frequencies. However, the story drift of the base-isolation
story at the second natural frequency has been increased a
little bit.
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(3) It has been shown that the proposed building system is
effective both for pulse-type ground motions and long-
period, long-duration ground motions. This indicates the
high robustness of the proposed building system for various
kinds of ground motions. In particular, the story drifts of the
base-isolation story and themiddle-isolation story exhibit the
value of half or two-thirds of the corresponding values of
the comparable building systems (base-isolated and building
connection model, multiple-isolation building model) under
the long-period, long-duration ground motions. Further-
more, the acceleration of the proposed building system can
be reduced effectively under the long-period, long-duration
ground motions compared to the comparable building sys-
tems (base-isolated building model, multiple-isolation build-
ing model).

(4) From the viewpoint of energy response, it has been shown that
the proposed building system has a larger value of the ratio
of the energy consumption in the connected dampers to the
overall energy consumption compared to other comparable
building systems. This leads to the effective reduction of
the vibration energy in the main building. The remarkable
reduction of the vibration energy in the main building has
also been observed also under the long-period, long-duration
ground motions.

(5) The response reduction in the base-isolation story of the
proposed system has been achieved by the distributed place-
ment of dampers in themiddle-isolation story and connection
system. The realization of the larger ratio of the fundamental
natural periods between the main building and the free wall
has made the proposed system effective. On the other hand,
the installation of dampers at the non-isolated inter-stories
is not effective because of the small inter-story drift in the
base-isolated (or multiple-isolation) buildings.

(6) The story shear and overturning moment in the free wall
of the proposed building system under the pulse-type
ground motions exhibit smaller values compared to the other

comparable building systems. While these values become a
slightly larger under the long-period, long-duration ground
motions, no problem occurs because those response values
are relatively small compared to those response values under
the pulse-type ground motions.

(7) The effective connection damper location can be found by
introducing the energy transfer function for the connection
damper as an objective function and using a sensitivity analy-
sis. The effective dampers are located at several stories above
and below the middle-isolation story (20th story), and larger
quantities are allocated to the upper side.

In introducing the proposed system, a cost issue should be
resolved. When base-isolation systems were developed and intro-
duced in 1980s, the cost issue was discussed in detail. However,
the benefits obtained from such new systems resolved that issue.
Furthermore, as the number of constructions of buildings using
such new systems becomes large, the cost is becoming lower grad-
ually. In addition, the property of the proposed system as a highly
robust system for a broad type of earthquake ground motions
seems to be preferred, especially in the current situation that the
properties of earthquake groundmotions are highly uncertain and
unpredictable.
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