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Few studies have been conducted to systematically assess post-earthquake condition 
of structures using vibration measurements. This paper presents system identification 
and finite element (FE) modeling of an 18-story apartment building that was damaged 
during the 2015 Gorkha earthquake and its aftershocks in Nepal. In June 2015, a few 
months after the earthquake, the authors visited the building and recorded the building’s 
ambient acceleration response. The recorded data are analyzed, and the modal param-
eters of the structure are identified using an output-only system identification method. 
A linear FE model of the building is also developed to estimate numerically its dynamic 
properties. The identified modal parameters are compared to those of the model to 
identify possible shortcomings of the modeling and identification approaches. The iden-
tified natural frequencies and mode shapes for two of the three closely spaced vibration 
modes in the lower frequency range of interest (0.2–1.0 Hz) are in good agreement with 
the numerical model. The model is used to estimate the response of the building to 
the nearby recorded ground motion due to earthquake and the main aftershock. The 
maximum drift ratios are compared to the observed damage in the building and surface 
defects detected and quantified by the lidar scans as the research team performed 
a series of light detection and ranging (lidar) scans from interior of selected floors to 
document the damage patterns along the height of the building.

Keywords: system identification, modal analysis, 2015 gorkha earthquake, post-earthquake performance 
assessment, finite element modeling, lidar, point cloud analysis

inTrODUcTiOn

This paper presents data collection, structural identification, and finite element (FE) modeling of 
an 18-story reinforced concrete (RC) building in Kathmandu that was damaged during the Gorkha 
earthquake. The Gorkha earthquake, with a moment magnitude of 7.8, struck Nepal on April 25, 
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2015. Several strong aftershocks followed the main shock, includ-
ing a magnitude 7.3 aftershock that occurred on May 12, 2015, 
17 days after the main shock (Rai et al., 2015). More than 8,000 
people died, and nearly half a million buildings were damaged. 
The capital of Nepal, Kathmandu, has a high population density 
and is highly urbanized. It is also one of the worst affected 
regions, likely due to the basin effects of the Kathmandu valley. 
Information on the performance of structures during the 2015 
Gorkha Earthquake can be found in Brando et al. (2015).

In this study, post-earthquake ambient response of the building 
is collected using a course array of accelerometers. For structural 
identification, modal parameters (natural frequencies, damping 
ratios, and mode shapes) of the building are estimated using an 
operational modal analysis (OMA) approach from ambient accel-
eration response of the building collected at selected floors. The 
Natural Excitation Technique (James et al., 1992) combined with 
the Eigensystem Realization Algorithm (Juang and Pappa, 1985) 
(NExT-ERA) is used for system identification. Experimental 
modal analysis methods extract modal parameters of a structural 
system based on measurements of both the dynamic response 
and the input excitation. On the other hand, output-only or OMA 
methods are used when the ambient response of a structure is 
the only measurement with the input excitation unknown and/
or unmeasured. These system identification methods provide 
accurate results when the unmeasured input excitation can be 
assumed as a broadband random signal such as wind loads on 
a building or vehicular traffic on a bridge and are often used for 
large-scale civil structures, which are difficult to excite experi-
mentally (Brincker and Kirkegaard, 2010). Several OMA methods 
have been introduced in the literature and can be classified into 
two groups based on the type of data they use: frequency-domain 
methods and time-domain methods (Peeters and De Roeck, 
2001). Among the frequency domain methods, peak-picking 
method is the most common approach for estimating the modal 
parameters. However, the accuracy of estimated modal param-
eter degrades when the vibration modes are closely spaces and/
or highly damped. To address this shortcoming, Brincker et al. 
(2001) proposed the frequency domain decomposition method 
where peak-picking is enhanced with singular value decomposi-
tion. More recently, a probabilistic version of frequency domain 
decomposition method is proposed by Au et  al. (2013), which 
allow estimating the probability density function of modal param-
eters instead of a single estimate. Building on this, a two-stage 
Bayesian system identification has been developed to determine 
the structural parameters such as mass and stiffness from ambient 
vibration data (Au and Zhang, 2016; Zhang and Au, 2016).

One of the most commonly used time-domain system iden-
tification methods includes the NExT-ERA method, also known 
as covariance-driven stochastic subspace identification (SSI), 
which is used in this study, as well as the data-driven SSI method 
(Van Overschee and de Moore, 1996). These methods have been 
successfully applied for system identification of large-scale civil 
structures. In an earlier study, Feng et  al. (1998) successfully 
identified the modal parameters of the Nanjing TV Tower using 
sparsely measured ambient acceleration response. Brownjohn 
(2003) applied the NExT-ERA and peak-picking methods for 

OMA of two tall buildings. Antonacci et al. (2012) evaluated the 
performance of four output-only modal identification methods 
using experimental data extracted from the ambient vibration 
response of a three-dimensional frame. Cunha et  al. (2013) 
reviewed dynamic testing and system identification of four 
case study bridges in Europe. Moaveni et  al. (2014) compared 
the performance of three OMA methods (SSI, NExT-ERA, and 
frequency domain decomposition) for system identification of a 
seven-story shear wall structure using experimental and numeri-
cal data. Belleri et al. (2014) estimated the modal parameters of a 
three-story precast concrete parking structure at different dam-
age states and identified the location of damage from the changes 
in modal parameters.

In addition to the vibration measurements, a total of 16 lidar 
scans from the building’s interior were collected at selected floors. 
Then, a damage detection algorithm uses these lidar-derived 
point clouds to explore the damage evolution for two common 
members based on the agreement of two distinct methods that 
evaluate surface geometry. Previous researchers have used the 
lidar-derived point clouds for structural assessment and detect-
ing damage. Examples include Kim et  al. (2014) and Guldur 
and Hajjar (2014) who investigated the variations of the surface 
normals to detect damaged regions of a member. Kim et al. (2014) 
used Principal Component Analysis (PCA) of each vertex and 
its eight nearest neighboring vertices to estimate surface normals 
and then compared each surface normal to a normal vector of the 
plane fitted to the entire data set. This proposed workflow could 
successfully detect the damaged areas; however, the method is 
limited to detection of shallow defects in small-sized planar sur-
faces. Similarly, Guldur and Hajjar (2014) performed the damage 
detection of point clouds by using various methods including the 
variation of surface normals. Although, this method can detect 
defects, construction of the reference vectors requires numerous 
lengthy processes (segmentation, curvature computation, and 
identifying the member geometry). In the study discussed here, a 
damage detection algorithm is developed to detect and quantify 
the surface defect percentage from both singular and multi-
planar surfaces through direct computation of surface normals 
and comparing them to a corresponding local reference vector 
and estimating the surface variation of each vertex with respect 
to its nearest vertices.

Finally, a linear FE model of the building is developed using 
the available geometry and material properties. Dynamic proper-
ties of the model are compared to those obtained from system 
identification. The validated model is then used to predict the 
response of the structure when subjected to the Gorkha earth-
quake and one of the main aftershocks. The predicted inter-story 
drift ratios are compared with level of observed damage and lidar 
data at different stories along the height of the building.

TesT sTrUcTUre anD cOllecTeD 
DaTa

The structure considered in this study, also referred to as the 
CityScape #1 building, is an 18-story (basement plus 17 stories 
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FigUre 1 | Building details and instrumentation setup. (a) Front view of Cityscape #1 building. (B) Typical floor plan (units in millimeter).
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above ground) RC building located in Hattiban, Katmandu, 
Nepal. The building is shown in Figure 1A, while a typical floor 
plan is shown in Figure 1B. The building was designed for shaking 
intensities larger than those experienced in this seismic sequence 
[IS 13920, 1993; IS 1893 (part 1), 2002]; hence, it maintained 
life-safety despite the extensive damage, mainly in non-structural 
elements such as masonry walls. These walls in some cases were 
infills within RC frames, while in other cases they were only 
connected to the slabs above and below without being confined 
by beams and columns. As a result they separated from the RC 
members and developed extensive cracks in a number of stories. 
Moderate non-structural and slight structural damage was also 
observed as beam-column joint cracks, and shear cracks were 
visible in coupling beams and short beams. Additionally, flexural 
cracks on beams propagated to the 125-mm thick slabs at a few 
locations.

The observed damage is repairable, although the repair cost can 
be very high. Figure 2 shows examples of the observed damage on 
different components of the building including (a) non-structural 
damage in exterior walls, (b) beam-column joint cracking, (c) 
non-structural damage in interior infill walls, and (d) separation 
between column and infill. The visual inspection together with 
surface defect detection (from the lidar data) provides a basis 
for stiffness reduction of section properties discussed in the FE 
modeling section.

Vibration Measurements
The ambient vibration response of the building was measured 
using 15 uniaxial accelerometers that were installed in two 

distinct configurations due to the number of stories, the length 
of cables, and the number of available sensors. In the first setup 
(Setup 1), accelerometers were installed on floors 9, 12, and 
15; while in the second setup (Setup 2), floors 3, 6, and 9 were 
instrumented. Table 1 reports the location and direction of the 
eight available accelerometers in each setup. The data measured 
by each setup includes approximately 1 h of ambient vibration 
recordings. On each instrumented floor, five or six accelerometers 
were installed in the center, as well as in the north-west (NW) 
and south-east (SE) corners of the building. Figure 3A shows the 
location of sensors at each floor and along the height of building. 
The arrows on Figure 1B also indicate the location and direction 
of accelerometers. The location of sensors was selected such that 
the torsional motion of the building can be captured. The accel-
erometers were mounted on brackets, which were then attached 
to the floors using double-sided tape. The sensors were wired to 
a National Instruments compact DAQ through BNC cables, and 
the data were saved locally on a laptop. Figure 4 shows the used 
compact DAQ and an in situ sensor installation.

Data from seven sensors were found too noisy; therefore, only 
eight are considered in the analysis. Low signal-to-noise ratio at 
these sensors could be due to the poor quality of BNC cables 
and/or their end connectors which were connected on site. It is 
worth noting that in general, it is not possible to completely char-
acterize the dynamic properties of a complex tall building with 
eight uniaxial accelerometers. However, the performed system 
identification allows accurate estimation of natural frequencies 
and damping ratios of the dominant vibration modes as well as 
the mode shape estimates of the lower vibration modes with a 
course resolution. To calibrate the used sensors and evaluate the 
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TaBle 1 | location and direction of sensors in first setup (setup 1) and 
second setup (setup 2) (se, south-east; nW, north-west; M, middle).

setup 1 setup 2

no. Floor corner Direction no. Floor corner Direction

1 9 SE N 1 9 SE N
2 12 SE N 2 6 SE S
3 12 SE E 3 6 SE E
4 9 NW N 4 9 NW N
5 15 SE E 5 3 SE S
6 15 NW S 6 3 NW S
7 12 M N 7 6 M N
8 12 M E 8 6 M E

FigUre 2 | Observed damage on different components of the building. (a) Exterior damage. (B) Beam-column joint. (c) Interior infill wall. (D) Separation 
between column and infill.
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sensor mounting, a shaker test was carried out at Tufts University 
after the completion of in situ tests. The results show that (1) the 
calibration factors of sensors have not changed from their nomi-
nal values except for one sensor, which appears to be damaged 
in its return transit to the US, and (2) the mounting tape does 
not affect the recorded signal properties in the frequency range 
of interest. More details about the shaker tests can be found in 
Yu (2016).

lidar Data collection
To perform a reconnaissance survey of the damage, the team used 
a Faro Focus X-130 lidar scanner. This scanner can capture up 
to nearly one million points per second with an effective range 
of 130  m and a tabulated error of ±2  mm (FARO, 2011). The 
team performed a total of 16 scans from the building’s interior 
on the third, sixth, ninth, twelfth, and fifteenth floors (same as 
the ambient vibration floor levels) to document the variation of 
damage the building sustained. As anticipated, the level of dam-
age to structural and non-structural components at lower floors 
was notably higher than to those of upper levels due to their drift 
sensitivity. Figure 3B illustrates the typical scanner location for 
each floor where a total of four scans were conducted per floor 
level. In addition, the location for the common members, the 
coupling beam, and an example wall are highlighted in Figure 3B 
for the third floor.

sUrFace DeFecT DeTecTiOn FrOM 
liDar POinT clOUDs

To investigate and quantify the damage pattern as a function of 
story level, a portion of the point cloud is extracted for a single 
beam at the selected levels and analyzed using a damage detec-
tion algorithm as shown in Figure  5A. The selected member 
is a coupling beam, which contains dual planar surfaces which 
sustained notable varying damage at select levels. In addition, 
point cloud of a common wall, a singular or flat planar surface 
where the FE model results predicts large damage, is explored for 
damage detection and quantification (Figure 5B).

To detect damage and quantify surface defect percentage of the 
extracted point clouds, the algorithm investigates the variation of 
surface normal and variations of each vertex with respect to local 
reference vector and nearest neighboring vertices, respectively. The 
algorithm initiates the analysis by performing a down-sampling 
process based on a voxel-grid filter with a point-to-point spacing, 
set equal to 0.5 cm in this case. Then, the algorithm directly com-
putes the surface normals using a weighted-average method for n 
nearest neighbors (Jin et al., 2005). Once the surface normals are 
computed, the reference vector for each vertex is calculated using 
a least square plane over n′ nearest neighbors (Shakarji, 1998). 
These two vectors are compared in terms of a relative angle for each 
vertex via a dot product. To find the surface variation, initially the 
PCA is performed for each vertex and its selected nearest vertices 
to find the eigenvalues of the covariance matrix corresponding to 
each vertex and its nearest vertices. Then, the surface variation of 
each vertex is calculated through computing the ratio of small-
est eigenvalue with respect to the summation of all eigenvalues 
(Pauly et al., 2002). Within this study, the neighboring sizes of 
8, 8, and 24 were found via a kd-tree search algorithm and used 
for the computation of surface normal, surface variation, and the 
local reference planes, respectively. To locate and identify poten-
tial defects, the probability distribution for change in surface 
variation and the relative angle are constructed based on Kernel 
distributions. The Kernel distributions were selected due to its 
minimal assumptions of the underlying distribution. In the final 
step, a damage verification algorithm classifies a vertex as possible 
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TaBle 2 | surface defect percentage values of selected members at 
various levels.

Member story location surface defect (%)

Coupling beam 3rd 50
6th 47
9th 30
12th 15
15th 9

Wall 3rd 15
6th 32
9th 11
12th 7

FigUre 5 | The members selected to investigate the damage 
evolution. (a) Coupling beam. (B) Infill wall.

FigUre 4 | Data acquisition system and accelerometers installation. (a) Compact DAQ. (B) Sensor and bracket taped to floor.

FigUre 3 | sensor and lidar scans layout. (a) Elevation view with the distribution of the sensors for Setups 1 and 2. (B) Top view of typical scan placements per 
floor and locations of scanned members.
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damage if and only if its relative angle and surface variation values 
are located at the 45 and 60% threshold of their respective kernel 
distributions for coupling beams and walls, respectively.

Table 2 presents the summarized values for surface defect per-
centages, and the detected surface defects are shown in Figures 6 
and 7 for walls and coupling beams, respectively. It should be 

noted that the defect percentages are not directly correlated with 
loss of stiffness or strength but they provide qualitative measures 
of the structural damage at the surface. The detected defects and 
sharp edges are shown by red color (gray in black and white 
prints), while the undamaged areas are shown by black color. As 
illustrated by Figure 6, the third, ninth, and twelfth floor walls 
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FigUre 6 | evidence of damage at select floors for the common wall. 
(a) Third story black and white point cloud, (B) third story color-coded point 
cloud, (c) sixth story black and white point cloud, (D) sixth story color-coded 
point cloud, (e) ninth story black and white point cloud, (F) ninth story 
color-coded point cloud, (g) 12th story black and white point cloud, and  
(h) 12th story color-coded point cloud.
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exhibited moderate cracking and localized spalling with identi-
fied surface defect percentages of 15, 12, and 7%, respectively 
(Figures 6A,B,E,F,H,I). The sixth floor wall exhibited moderate 
to extensive shear and horizontal cracking and moderate-depth 
spalling at the center of the wall (Figures 6C,D) with a surface 
defect percentage of 32%. As for the coupling beam, the member 
sustained significant damage at third and sixth stories with surface 
defect percentage of 50 and 47%, respectively (Table 2). However, 
this percent was reduced at higher stories, as it was found to be 30, 
15, and 9% for the ninth, twelfth, and fifteenth floors, respectively. 
Figure 7 demonstrates the identified surface defects for coupling 
beams at third, sixth, and ninth floors. Additionally, the third 
floor coupling beam sustained significant spalling of its concrete 
cover in the middle with minor spalling at its two bottom end 
where the beam connects to the walls. This damage can be clas-
sified as moderate (Figures  7A,B). Despite the surface defect 
percentage for the coupling beam at the sixth story is reduced in 
comparison to the third floor’s beam, its damage is more severe 
(Figures 7C,D). This coupling beam exhibited significant local-
ized concrete cover spalling with exposed reinforcement. The 

ninth floor beam, shown in Figures 7E,F, exhibited only modest 
concrete cover spalling at its midspan, likely only due to flexural 
loads. The results of surface defects for the two members consid-
ered here indicate that the structure sustained more damage at the 
mid-elevations, likely due to the contribution of higher modes, 
where only moderate to small damage was quantified at lower and 
higher stories. This is consistent with the maximum inter-story 
drifts during the earthquake estimated by the FE model.

sYsTeM iDenTiFicaTiOn

Data Processing
The recorded ambient response data are used for estimating the 
modal parameters of the building using the NExT-ERA method. 
This method has been previously applied successfully for OMA of 
civil structures (Caicedo et al., 2004; He et al., 2006; Siringoringo 
and Fujino, 2008; Brownjohn et al., 2010; Sim et al., 2010; Moaveni 
et al., 2014). The obtained raw data are first processed to mitigate 
signal noise and remove voltage spikes. The processing procedure 
includes

 (1) Filtering: data are filtered by applying a band-pass Finite 
Impulse Response (FIR) (Digital Signal Processing 
Committee of the IEEE, 1979) filter. In the initial analysis, 
the frequency range is chosen to be 0.2–10 Hz.

 (2) Down-sampling: the filtered data is down sampled from 
2,048 to 256  Hz to improve the computational efficiency 
with no adverse effect on resolution of system identification 
results.

 (3) Spike removal: observed voltage spikes are manually 
removed (set to zero) in the measured acceleration time 
history signals.

According to the available data length in each setup, the 
recorded ambient vibration data is divided into six segments 
(referred herein as datasets). Each dataset corresponds to a 9-min 
long ambient vibration recording except for the last dataset of 
Setup 1, which is approximately 6-min long. Figure 8 presents 
the Fourier Amplitude Spectral (FAS) of the dataset 2 in Setup 
1 for all eight channels. In this plot, peaks corresponding to the 
vibration modes of the building can be observed.

In the application of NExT, the cross power spectral densities 
(CPSD) are calculated between all eight channels and two refer-
ence channels using eight Hamming windows with a 50% overlap. 
The reference channels are chosen such that their power spectral 
densities provide clear peaks at the vibration modes of interest. 
The free vibration response of the building is then estimated as 
the inverse Fourier transformation of CPSD. The ERA method is 
used to identify the modal parameters from these free vibration 
estimates. To apply ERA, 800 data points or 3.125 s of derived 
free vibration data are used to form a 3,200 × 800 Hankel matrix, 
and a state-space model is realized through singular value decom-
position of the Hankel matrix. The order of state-space model 
is determined using stabilization diagrams (Verboven et  al., 
2002). Figure 9 shows a sample stabilization diagram of natural 
frequencies. In this plot, the natural frequencies are plotted versus 
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FigUre 8 | Fourier amplitude spectral of dataset 2 in setup 1.

FigUre 7 | illustration of damage propagation in the common coupling beam. (a) third story black and white point cloud, (B) third story color-coded point 
cloud, (c) sixth story black and white point cloud, (D) sixth story color-coded point cloud, (e) ninth story black and white point cloud, and (F) ninth story color-
coded point cloud.
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increasing model orders. The “stable” natural frequencies refer 
to the ones that are repeatedly identified and are shown with red 
lines in the plot. To avoid modeling redundancies, the model 
order should be chosen as the lowest order that can provide all of 
the mode of interest. Modal parameters of the building for each 
of the 12 datasets are estimated.

results of Modal analysis Focused on 
0.2–10 hz
In Table 3, the statistics (mean and standard deviation) of identi-
fied natural frequencies and damping ratios are reported for each 
of the two setups over the six datasets. The small standard devia-
tion (SD) of identified natural frequencies indicates their consist-
ency across the six datasets in both setups. Comparison of the 

mean values of two setups demonstrates an excellent agreement 
with a maximum difference of 2.3% (mode 3). Thus, the natural 
frequencies are identified very consistently among the datasets 
and between setups. For damping ratio, larger SD is observed and 
consequently a less than ideal agreement is found between two 
setups. This is most likely due to larger estimation variance and 
bias for damping ratios compared to natural frequencies (Pintelon 
et al., 2007; Reynders et al., 2008). The damping estimate mean 
values are reasonable for a tall building except for that of mode 
1 (Satake et  al., 2003; Harris et  al., 2015). The mean values of 
identified damping ratio for the first mode is 5.1% for Setup 1 and 
7.5% for Setup 2, that are too large for a tall building (Arakawa 
and Yamamoto, 2004; Çelebi et al., 2014). This can be caused by 
the fact that three closely spaced modes with natural frequencies 
around 0.6 Hz are identified as one mode with an inflated damp-
ing ratio to account for the three peaks.

results of Modal analysis Focused on 
0.2–1 hz
Based on the FE model of the building that is discussed later in 
Section “FE Modeling and Response Prediction,” the first three 
vibration modes of the building are very closely spaced at the fre-
quency range of below 1 Hz. Such closely spaced modes could not 
be reliably identified in the previous application of OMA when 
looking at 0.2–10 Hz range due to the lower resolution of CPSD. 
Figure 10 shows the time history and FAS of channel 2 in dataset 
1. From the FAS plot, three distinct peaks can be observed in the 
0.55–0.75 Hz range. Therefore, in this section, modal analysis is 
carried out again focusing on the frequency range of 0.2–1.0 Hz. 
The procedure is similar to that of initial analysis, except a few 
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A B

FigUre 10 | sample measurement at channel 2 in dataset 1. (a) Time 
history. (B) Fourier Amplitude Spectrum.

TaBle 3 | statistics of identified modal parameters in 0.2–10 hz range.

Mode 
number

natural frequencies (hz) 
(mean, sD)

Damping ratios (%)  
(mean, sD)

setup 1 setup 2 setup 1 setup 2

1 0.62, 0.01 0.62, 0.02 5.1, 2.3 7.5, 1.2
2 2.30, 0.00 2.29, 0.00 2.1, 0.2 1.5, 0.1
3 2.60, 0.02 2.54, 0.02 1.3, 0.2 1.6, 0.2
4 4.20, 0.02 4.18, 0.01 2.2, 0.5 1.7, 0.5
5 4.30, 0.02 4.28, 0.01 0.9, 0.3 0.8, 0.2
6 5.08, 0.02 5.06, 0.03 1.3, 0.5 1.4, 0.6
7 6.58, 0.04 6.55, 0.01 1.2, 0.4 1.8, 0.9
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FigUre 9 | sample stabilization diagram of natural frequencies.
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differences in the data processing. A different FIR filter is used 
with the band-pass frequency range of 0.2–1.0  Hz. To ensure 
the sharpness of the filter edge and its smoothness within the 
band-pass range, the order of filter is selected as 65,536, which 
is 32 times the sampling frequency. Similar down-sampling and 
voltage spike removal steps are performed for the data cleaning 
process.

In the application of NExT-ERA, the reference channels are 
chosen separately for the three modes of interest to ensure the 
identification of that mode. Since the first three vibration modes 
of the building are very closely spaced, a high frequency resolu-
tion is required for the CPSD estimates. Therefore, either three 
or five Hamming windows with 50% overlap are used resulting 

in frequency resolution of 0.005 or 0.007  Hz. The choice of 
three or five windows for each data set is made based on the 
stability and consistency of results. The order of the state-space 
model to fit the data is selected using stabilization diagrams for 
natural frequencies, as well as damping ratios and mode shapes. 
In these plots, the identified natural frequencies and associated 
damping ratios and Modal Assurance Criterion (MAC) values 
are plotted versus different model orders. MAC values quantify 
the similarity of two mode shapes. The MAC value between two 
mode shapes Φ1 and Φ2 is defined as (Allemang and Brown, 
1982):

 MAC ΦΦ ΦΦ
ΦΦ ΦΦ

ΦΦ ΦΦ ΦΦ ΦΦ1 2
1 2

2

1 1 2 2

,
*

* *( ) =  (1)

with superscript * denoting Hermitian transpose (or conjugate 
transpose). The MAC values can vary between 0 and 1, often 
expressed in percent. A MAC value of unity means that the two 
mode shapes are exactly the same, while a MAC of null indicates 
that the two mode shapes are perpendicular. Figure  11 shows 
sample stabilization diagrams for damping ratios and mode 
shapes. The three identified vibration modes are referred to as 
modes 1a, 1b, and 1c since they were collectively identified as 
mode 1 in the initial identification. Note that identification of 
mode 1a is performed separately from modes 1b and 1c due to 
different choices of reference channels. It can be observed that 
the damping ratios are stable for modes 1b and 1c but show some 
deviations at orders 32–36 for mode 1a. MAC values in the stabi-
lization diagrams are computed between a selected order (which 
is deemed stable by the analyst) and all other model orders. The 
reference order for computation of MAC values in this study is 20. 
It is seen that the mode shapes are very consistent across different 
model orders, and thus, the identified mode shapes are robust 
with respect to the choice of model order in the identification 
process.

The mean and SD of the identified natural frequencies and 
damping ratios over six datasets for Setups 1 and 2 are reported 
in Table  4. Similarly, the natural frequencies are identified 
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TaBle 5 | Modal assurance criterion (Mac) values between mode 
shapes of mode 1c from different datasets.
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mode shapes (MAC values).
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consistently among datasets and between setups with a maximum 
difference 0.8% for mode 3. The damping ratios show larger 
variability across different datasets as indicated by the reported 
values of SD. The average damping ratios for the three modes 
and two setups vary between 1.3 and 2.8%, which are much more 
reasonable and anticipated for a tall RC building than the initial 
identification results.

These three mode shapes are also identified for each dataset 
and the two setups. An average mode shape is estimated for each 
setup based on the consistent mode shape estimates from the six 
datasets. To determine the “consistent mode shapes” to be used 
in the average, MAC values are computed pairwise between all 
datasets. The datasets with the MAC value lower than approxi-
mately 0.9 are considered inconsistent with other datasets 
and therefore are not considered in the averaging process. As 
an example, Table 5 shows the MAC values between different 
datasets for mode 1c. In this case, mode shapes from datasets 2 
and 4 are considered inconsistent (underlined in the table), and 
therefore, only mode shapes of datasets 1, 3, 5, and 6 are used 
in averaging. Once the average mode shapes of Setups 1 and 
2 are obtained, these mode shapes are combined to represent 

the complete mode shapes of building along its full height. The 
mode shapes from the two setups are combined by normalizing 
the mode shapes to one of the two channels that are available for 
both setups: Channel 1 (at SE corner of ninth floor measuring 
in north direction) and Channel 4 (at NW corner of ninth floor 
measuring in north direction).

Figure  12A presents the combined mode shapes using 
reference channel 4, while the complex-valued mode shapes are 
plotted in Figure 12B as compass plots. In Figure  12A, x-axis 
indicates the real value of mode shapes while y-axis indicates the 
floor. Solid lines show the identified mode shape, and dashed 
lines show mode shapes of the FE model. The blue lines (with 
square markers) correspond to motions at the NW corner of the 
building along the north-south direction and green lines (with 
triangle markers) correspond to motions at the SE corner of the 
building along the east-west direction. Also in this figure, the “*” 
indicates the position of reference channel used for normaliza-
tion. From Figure 12A, it can be seen that the first two identified 
modes (1a and 1b) have torsional components, while the motion 
of the third identified mode (1c) is mainly in the north-south 
direction. The horizontal and vertical axes of the compass plots in 
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Figure 12B correspond to the real and imaginary values of mode 
shape components. Each arrow in the plot represents a complex-
valued mode shape component (i.e., at a sensor location). While 
the mode shapes of civil structures are often real-valued, the com-
ponents of mode shapes in this plot are not completely aligned 
along the real axis indicating that the identified modes are to 
some degree non-proportional (i.e., not classically damped). The 
fact that the modes are identified as non-proportional indicates 
some identification errors that are most likely caused by the poor 
and uneven signal-to-noise ratios among different channels (sen-
sors and cables).

Fe MODeling anD resPOnse 
PreDicTiOn

Fe Model Properties
A linear FE model of the 18-story building is developed using 
the SAP2000 structural analysis software (Computers and 
Structures Inc., 2013) as shown in Figure  13. The basement 
is herein considered as pinned supports at its base (below the 
ground level) and with rollers applied perpendicular to the exte-
rior basement walls at the ground level, constraining the lateral 
motion of the building at the ground level and neglecting any 
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soil–structure interaction. All RC beams are assumed to have a 
500 mm × 350 mm cross sectional dimensions, as obtained from 
the design drawings. Concrete slabs are 125 mm thick. For the 
RC elements (beams, columns, and shear walls), the mechanical 
properties used are based on a nominal compressive strength 
of 30 MPa and an expected strength of 33 MPa. This expected 
strength was determined based on Schmidt hammer testing 
performed on site. The average value of the concrete compressive 
strength estimated is 33 MPa based on measurements for three 
RC Beams with inter-test coefficient of variation of 0.21 between 
all tested locations. The expected compressive strength was used 
in assigning properties to the FE model.

In the FE model, the shear walls are modeled using four-node 
shell elements. Three-dimensional linear frame elements are 
used to model all the beams and columns of the building. For 
modeling the infill walls, the equivalent diagonal strut method 
is used (Saneinejad and Hobbs, 1995). In this method, each infill 
wall panel was replaced with two diagonal compression-only 
struts. The guidelines in FEMA 356-2000 (Federal Emergency 
Management Agency, 2000), which are based on the work of 

Stafford Smith and Carter (1969) and Mainstone (1971), are used 
to determine the equivalent width of the struts. The tension limit 
and end moments of the frame element used to model the infill 
walls are set to 0 in order to model the diagonal compression-only 
struts. Values assumed for the masonry compressive strength and 
Young’s modulus are 4.5 and 2,400  MPa, respectively. Stiffness 
reduction factors are applied to account for panel openings 
depending on size of the opening, as per design drawings, rang-
ing from 0.3 to 0.7. An additional stiffness reduction factor with 
different values is used to simulate the observed damage in the 
masonry infill walls of the building after the earthquake. A sensi-
tivity study if performed to investigate the correlation of natural 
frequencies and mode shapes with respect to section flexural stiff-
ness ranging from EcIcolumns = 0.7 to 0.9 EcIgross, and EcIbeams = 0.3 
to 0.5 EcIgross, to account for cracking and microcracking of the 
RC sections. Walls were modeled using EcIgross with Ewalls = Ec. In 
this sensitivity study, the values used for EcIcolumns  =  0.7 EcIgross, 
EcIbeams = 0.3 resulted in the highest MAC values between model 
and data. Even though these may seem large reductions of stiff-
ness based on the observed damage, it is worth noting that the 
effect of model parameters of the infills was considerably greater 
than the impact of the selection of the RC member values.

Linear modal analysis is performed to obtain the natural fre-
quencies and mode shapes of the building. The obtained modal 
parameters are then compared with that from system identifica-
tion at the 0.2–1.0 Hz range. Figure 14 shows the plan view of the 
roof for the first three mode shapes of the model. Table 6 lists the 
cumulative effective mass participation factors of the FE model. 
It can be observed that mode 1 has the largest contribution to 
cumulative mass participation factor in the north-south direction 
while modes 2 and 3 have major contributions to east-west and 
torsional motions, respectively. The cumulative participation fac-
tor with the largest increase is shown in bold for each direction 
of motion. Additionally, linear time history analysis is performed 
after applying of the gravity loads by using the validated model 
to predict the structural response and compare the inter-story 
drift ratios of different stories with the observed damage along the 
height of the building. 5% damping ratio is used for the analysis. 
This value of damping is higher than the obtained one from the 
ambient vibration test, so some of the degradation behavior dur-
ing the earthquake can be captured in the linear FE model. The 
mainshock ground motion of Gorkha Earthquake (M7.8) and 
aftershock earthquake (M7.3) that recorded by at USGS station 
in Kathmandu (KATNP, 27.71N, 85.31E) are used to carry out 
the linear time history analysis. The obtained drift ratios from 
the analysis are used to estimate the structural performance levels 
and damage after applying the earthquake.

Model-Data comparison
Table 7 shows the comparison of natural frequencies and mode 
shapes of the FE model and system identification results. In the 
computation of MAC values, the mode shape components at 
the SE-N sensors are not used due to the larger estimation error 
of identified mode shapes at this location. The pairing between 
modes of the FE model and the identified modes is based on 
the MAC values of Table 7. Based on the MAC values, it can be 
concluded that mode 1b from system identification is comparable 
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TaBle 7 | Modal assurance criterion values between identified (iD) mode 
shapes and those from finite element (Fe) model.

iD mode 1a 
(0.61 hz)

iD mode 1b 
(0.67 hz)

iD mode 1c 
(0.73 hz)

FE mode 1 (0.64 Hz) 0.28 0.97 0.37
FE mode 2 (0.72 Hz) 0.04 0.72 0.93
FE mode 3 (0.85 Hz) 0.28 0.12 0.14

TaBle 6 | cumulative effective mass participation factors of the finite 
element model.

Mode north-south east-West rZ

1 0.71 0.01 0.03
2 0.71 0.69 0.29
3 0.74 0.75 0.79

FigUre 14 | Plan view of the roof level for mode 1 (left), mode 2 (middle), and mode 3 (right) from finite element model.
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to mode 1 of the FE model, while mode 1c from system identifica-
tion is comparable to mode 2 of the FE model. In this table, the 
MAC values between paired modes are shown in bold. The first 
two mode shapes of the FE model are also plotted on Figure 12A 
for comparison. It is worth noting that the FE model cannot rep-
resent the identified mode 1a. This is most likely due to modeling 
simplifications/errors of this complex structure. The identified 
natural frequencies of modes 1b and 1c are in excellent agreement 
with model-predicted natural frequencies of the matched modes 
(i.e., modes 1 and 2 of model). Overall, there is good agreement 
between the model and the recorded data at the lower frequencies.

response Prediction
To examine the performance of the building after the earthquake, 
the inter-story drift ratios of the different stories are computed 
using the FE model. These values are compared with the observed 
damage and surface defect detection results from lidar scans. It 
is worth highlighting that a linear elastic model is used for the 
response prediction. Even though the model is linear, the mean 
displacement demands of linear elastic and inelastic systems are 
expected to be similar for structures with frequencies below 1 Hz 
(e.g., Miranda, 1999; Miranda and Ruiz-García, 2002). Figure 15 
shows the displacement response spectrum and obtained inter-
story drift ratios from the linear time history analysis for the 

mainshock (M7.8) and aftershock earthquakes (M7.3). As it can 
be seen in the figure, the lower stories of the building exhibit larger 
inter-story drift ratios than the upper ones. The range of the maxi-
mum inter-story drift ratios from the analysis is between 0.05 to 
0.49%. To estimate the damage based on the estimated inter-story 
drift ratios, the response prediction results are compared to the 
damage scale proposed by Rossetto and Elnashai (2003). Table 8 
lists the expected damage state with corresponding drift limits for 
infilled RC frames. By comparing the drift ratios from the analysis 
with the drift limits that provided in Table 8, the expected level of 
damage for the building after the earthquake is ranged between 
light to moderate. These results obtained from the FE model cor-
relate well with the lidar assessment of the observed damage on 
site as shown in Figures 6 and 7 and Table 2.

cOnclUDing reMarKs

This study investigates post-earthquake dynamic performance of 
an 18-story building in Nepal that was partially damaged during 
the 2015 Gorkha earthquake and its subsequent aftershocks. The 
performance is assessed through system identification using 
ambient vibration measurements, lidar scans for surface defect 
detection, and FE modeling and response simulation. Modal 
parameters of the most excited vibration modes of the building 
are extracted from the measured ambient vibration measure-
ments in the frequency range of 0.2–10 Hz. The natural frequen-
cies are identified accurately and consistently across different 
subsets of data. The damping ratios are estimated with larger 
variability but have reasonable values except for the first mode 
which seems to be inflated. The FAS of measurements reveals the 
presence of three very closely spaced modes at the frequency of 
the first identified mode, which is consistent with the FE model. 
A second modal identification is performed with increased fre-
quency resolution in the frequency range of 0.2–1.0 Hz, and the 
three closely spaced modes are successfully identified. A linear FE 
model of the building is also developed, and its modal parameters 
are compared with those identified from measured data. A good 
agreement for the first two modes of the FE model with identified 
modes provides a validation measure for the model. The validated 
model is used for prediction of structural response to the main 
earthquake and a major aftershock. Lidar scans of the interior of 
the structure were collected and analyzed to locate and quantify 
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TaBle 8 | expected damage limit states for infilled reinforced concrete 
structures [modified from rossetto and elnashai (2003)].

Damage 
state

Description Drift limits 
(%)

None No damage 0.0–0.049

Slight Fine cracks in plaster partitions/infill 0.05–0.079

Light Cracking at wall-frame interfaces 0.08–0.29
Cracking initiates from corners of openings
Diagonal cracking of walls. Limited crushing of bricks 
at b/c connections

Moderate Increased brick crushing at b/c connections 0.3–1.149
Start of structural damage
Some diagonal shear cracking in members

Extensive Extensive cracking of infills, falling bricks, out of 
plane bulging

1.15–2.79

Partial failure of many infills, heavier damage in frame 
members, some fail in shear

Partial 
collapse

Beams and/or columns fail in shear crushing partial 
collapse. Near total infill failure

2.8–4.359

Collapse Complete or impending building collapse >4.36

FigUre 15 | Displacement response spectrum and peak inter-story drift ratios. (a) Displacement response spectrum (5% damping). (B) Peak inter-story 
drift %.
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surface defects. The results of point cloud damage assessment 
confirm moderate to low damage at lower and higher elevations 
in comparison to mid-elevations, where more severe damage 
exhibited by both studied members. These results also comply 
with predicted response from the FE model.

A few of the lessons learned from this study that may be valu-
able for other researchers are listed below:

 – Natural frequencies of this tall building are identified very 
accurately even with low amplitude of ambient response and 
relatively large measurement noise from cables.

 – The damping estimates have larger estimation uncertainty 
compared to the natural frequencies, however, are useful for 
providing a basis for modeling.

 – The closely spaced modes can be missed when identification 
is performed over a wide frequency range.

 – Identification of several modes as a single mode will cause the 
damping ratio estimate of that mode to be inflated.

 – Selection of different reference channels for different modes 
in the NExT-ERA can improve the accuracy of identification 
results.

 – Using different types of sensors and having unequal signal-
to-noise ratio at different channels (due to quality of cables/
connectors) will negatively influence the accuracy of mode 
shape estimates and modal complexities.

 – Using a linear FE model to predict the response of the building 
to earthquake includes some errors as the non-linear behavior 
cannot be modeled. However, the predictions still provides 
reasonable accurate estimates for the level and distribution of 
damage for buildings with primary natural frequency of below 
1 Hz.

 – The lidar scans of the building provide accurate and quantita-
tive measure of surface defects that are closely correlated with 
the estimated damage as maximum inter-story drift obtained 
from the FE model.

aUThOr cOnTriBUTiOns

HY performed signal processing and system identification. 
MAM performed FE modeling and response prediction. MEM 
performed lidar data processing and surface defect detection. 
BM supervised the system identification study. AB supervised 

http://www.frontiersin.org/Built_Environment/
http://www.frontiersin.org
http://www.frontiersin.org/Built_Environment/archive


14

Yu et al. Post-Earthquake Identification of 18-Story Building

Frontiers in Built Environment | www.frontiersin.org February 2017 | Volume 3 | Article 11

the FE modeling. AS provided feedback about modeling and 
identification. RW supervised lidar data processing and defect 
detection. AB and RW also performed the data collection on site.

FUnDing

Partial support of this study by the National Science 
Foundation Grants 1254338, 1545632, and 1545595 is gratefully 

acknowledged. The authors express their gratitude to the build-
ing owners who provided access to the buildings and thank  
Mr. Supratik Bose, Mr. Patrick Burns, Mr. Rajendra Soti, and 
Mr. Sandip Timsina for their assistance in the collection of data. 
The opinions, findings, and conclusions expressed in this paper 
are those of the authors and do not necessarily represent the 
views of the organizations and collaborators involved in this 
project.

reFerences

Allemang, R. J., and Brown, D. L. (1982). “A correlation coefficient for modal vector 
analysis,” in Proceedings of the 1st International Modal Analysis Conference 
(Orlando: SEM), 110–116.

Antonacci, E., De Stefano, A., Gattulli, V., Lepidi, M., and Matta, E. (2012). 
Comparative study of vibration-based parametric identification techniques 
for a three-dimensional frame structure. Struct. Control Health Monit. 19,  
579–608. doi:10.1002/stc.449 

Arakawa, T., and Yamamoto, K. (2004). “Frequencies and damping ratios of a 
high rise building based on microtremor measurement,” in Proc., 13th World 
Conference on Earthquake Engineering (Vancouver, BC).

Au, S. K., and Zhang, F. L. (2016). Fundamental two-stage formulation for 
Bayesian system identification, part I: general theory. Mech. Syst. Signal Process.  
66, 31–42. doi:10.1016/j.ymssp.2015.04.025 

Au, S. K., Zhang, F. L., and Ni, Y. C. (2013). Bayesian operational modal anal-
ysis: theory, computation, practice. Comput. Struct. 126, 3–14. doi:10.1016/j.
compstruc.2012.12.015 

Belleri, A., Moaveni, B., and Restrepo, J. I. (2014). Damage assessment through 
structural identification of a three-story large-scale precast concrete structure. 
Earthquake Eng. Struct. Dyn. 43, 61–76. doi:10.1002/eqe.2332 

Brando, G., Rapone, D., Spacone, E., Barbosa, A., Olsen, M., Gillins, D., et  al. 
(2015). “Reconnaissance report on the 2015 Gorkha earthquake effects in 
Nepal,” in XVI Convegno ANIDIS. L’AQUILA, Italy.

Brincker, R., and Kirkegaard, P. H. (2010). Editorial for the special issue on opera-
tional modal analysis. Mech. Syst. Signal Process. 24, 1209–1212. doi:10.1016/j.
ymssp.2010.03.005 

Brincker, R., Zhang, L., and Andersen, P. (2001). Modal identification of out-
put-only systems using frequency domain decomposition. Smart Mater. Struct.  
10, 441–445. doi:10.1088/0964-1726/10/3/303  

Brownjohn, J. M. W. (2003). Ambient vibration studies for system identification 
of tall buildings. Earthquake Eng. Struct. Dyn. 32, 71–95. doi:10.1002/eqe.215 

Brownjohn, J. M. W., Magalhaes, F., Caetano, E., and Cunha, A. (2010). Ambient 
vibration re-testing and operational modal analysis of the Humber Bridge. 
Eng. Struct. 32, 2003–2018. doi:10.1016/j.engstruct.2010.02.034 

Caicedo, J. M., Dyke, S. J., and Johnson, E. A. (2004). Natural excitation tech-
nique and eigensystem realization algorithm for phase I of the IASC-ASCE 
benchmark problem: simulated data. J. Eng. Mech. 130, 49–60. doi:10.1061/
(ASCE)0733-9399(2004) 

Çelebi, M., Okawa, I., Kashima, T., Koyama, S., and Iiba, M. (2014). Response of 
a tall building far from the epicenter of the 11 March 2011 M 9.0 Great East 
Japan earthquake and aftershocks. Struct. Des. Tall Spec. Build. 23, 427–441. 
doi:10.1002/tal.1047 

Computers and Structures Inc. (2013). SAP2000 V.16 Software. Berkeley: CSI.
Cunha, A., Caetano, E., Magalhães, F., and Moutinho, C. (2013). Recent perspec-

tives in dynamic testing and monitoring of bridges. Struct. Control Health 
Monit. 20, 853–877. doi:10.1002/stc.1516

Digital Signal Processing Committee of the IEEE, Acoustics, Speech, and Signal 
Processing Society, eds. (1979). Programs for Digital Signal Processing.  
New York: IEEE Press.

FARO. (2011). “Faro laser scanner focus 3D: features, benefits & technical specifi-
cations,” FARO Technologies. Lake Mary, FL.

Federal Emergency Management Agency. FEMA 356. (2000). Prestandard and 
Commentary for the Seismic Rehabilitation of Buildings. Washington, DC: 
Federal Emergency Management Agency.

Feng, M. Q., Kim, J. M., and Xue, H. (1998). Identification of a dynamic system 
using ambient vibration measurements. J. Appl. Mech. 65, 1010–1021. 

Guldur, B., and Hajjar, J. F. (2014). Laser-Based Structural Sensing and Surface 
Damage Detection. Report No. NEU-CEE-2014-03. Boston, MA: Department 
of Civil Engineering, Northeastern University.

Harris, A., Xiang, Y., Naeim, F., and Zareian, F. (2015). “Identification and validation 
of natural periods and modal damping ratios for steel and reinforced concrete 
buildings in California,” in SMIP15 Seminar on Utilization of Strong-Motion 
Data (Davis), 121–134.

He, X., Moaveni, B., Conte, J. P., and Elgamal, A. (2006). “Comparative study 
of system identification techniques applied to New Carquinez Bridge.” in 
Proceedings of the Third International Conference on Bridge Maintenance, Safety 
and Management, ed. P. J. d. S. Cruz,  D. M. Frangopol, and L. C. C. Neves 
(Porto: CRC Press), 259–260.

IS 13920. (1993). Indian Standard, Ductile Detailing of Reinforced Concrete 
Structures Subjected to Seismic Forces – Code of Practice. New Delhi: Bureau of 
Indian Standards.

IS 1893 (part 1). (2002). Indian Standard, Criteria for Earthquake Resistant Design 
of Structures. New Delhi: Bureau of Indian Standards.

James, G. H., Carne, T. G., Lauffer, J. P., and Nord, A. R. (1992). “Modal testing using 
natural excitation,” in Proceedings of the International Modal Analysis Confe-
rence (San Diego: SEM Society for Experimental Mechanics Inc.), 1209–1216.

Jin, S., Lewis, R. R., and West, D. (2005). A comparison of algorithms for vertex 
normal computation. Vis. Comput. 21, 71–82. doi:10.1007/s00371-004-0271-1 

Juang, J. N., and Pappa, R. S. (1985). An eigensystem realization algorithm for 
modal parameter identification and model reduction. J. Guid. Control Dyn. 8, 
620–627. doi:10.2514/3.20031 

Kim, M., Sohn, H., and Chang, C. (2014). Localization and quantification of 
concrete spalling defects using terrestrial laser scanning. J. Comput. Civ. Eng. 
29:04014086. doi:10.1061/(ASCE)CP.1943-5487.0000415 

Mainstone, R. J. (1971). Summary of paper 7360. On the stiffness and strengths of 
infilled frames. Proc. Inst. Civ. Eng. 49, 230. 

Miranda, E. (1999). Approximate seismic lateral deformation demands in multi-
story buildings. ASCE J. Struct. Eng. 125, 417–425. 

Miranda, E., and Ruiz-García, J. (2002). Evaluation of approximate methods to 
estimate maximum inelastic displacement demands. Earthquake Eng. Struct. 
Dyn. 31, 539–560. doi:10.1002/eqe.143 

Moaveni, B., Barbosa, A. R., Conte, J. P., and Hemez, F. M. (2014). Uncertainty 
analysis of system identification results obtained for a seven story building 
slice tested on the UCSD-NEES shake table. Struct. Control Health Monit. 21, 
466–483. doi:10.1002/stc.1577 

Pauly, M., Gross, M., and Kobbelt, L. P. (2002). “Efficient simplification of 
point-sampled surfaces,” in Proceedings of the Conference on Visualization’02 
(Boston, MA: IEEE Computer Society), 163–170.

Peeters, B., and De Roeck, G. (2001). Stochastic system identification for oper-
ational modal analysis: a review. J. Dyn. Syst. Meas. Control 123, 659–667. 
doi:10.1115/1.1410370 

Pintelon, R., Guillaume, P., and Schoukens, J. (2007). Uncertainty calcu-
lation in operational modal analysis. Mech. Syst. Signal Process. 21,  
2359–2373. doi:10.1016/j.ymssp.2006.11.007 

Rai, D. C., Singhal, V., Raj, S. B., and Sagar, S. L. (2015). Reconnaissance of the 
effects of the M7.8 Gorkha (Nepal) earthquake of April 25, 2015. Geomatics Nat. 
Hazards Risk 7, 1–17. doi:10.1080/19475705.2015.1084955 

Reynders, E., Pintelon, R., and De Roeck, G. (2008). Uncertainty bounds on modal 
parameters obtained from stochastic subspace identification. Mech. Syst. Signal 
Process. 22, 948–969. doi:10.1016/j.ymssp.2007.10.009 

Rossetto, T., and Elnashai, A. (2003). Derivation of vulnerability functions for 
European-type RC structures based on observational data. Eng. Struct. 25, 
1241–1263. doi:10.1016/S0141-0296(03)00060-9 

http://www.frontiersin.org/Built_Environment/
http://www.frontiersin.org
http://www.frontiersin.org/Built_Environment/archive
https://doi.org/10.1002/stc.449
https://doi.org/10.1016/j.ymssp.2015.04.025
https://doi.org/10.1016/j.compstruc.2012.12.015
https://doi.org/10.1016/j.compstruc.2012.12.015
https://doi.org/10.1002/eqe.2332
https://doi.org/10.1016/j.ymssp.2010.03.005
https://doi.org/10.1016/j.ymssp.2010.03.005
https://doi.org/10.1088/0964-1726/10/3/303
https://doi.org/10.1002/eqe.215
https://doi.org/10.1016/j.engstruct.2010.02.034
https://doi.org/10.1061/(ASCE)0733-9399(2004)
https://doi.org/10.1061/(ASCE)0733-9399(2004)
https://doi.org/10.1002/tal.1047
https://doi.org/10.1002/stc.1516
https://doi.org/10.1007/s00371-004-0271-1
https://doi.org/10.2514/3.20031
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000415
https://doi.org/10.1002/eqe.143
https://doi.org/10.1002/stc.1577
https://doi.org/10.1115/1.1410370
https://doi.org/10.1016/j.ymssp.2006.11.007
https://doi.org/10.1080/19475705.2015.1084955
https://doi.org/10.1016/j.ymssp.2007.10.009
https://doi.org/10.1016/S0141-0296(03)00060-9


15

Yu et al. Post-Earthquake Identification of 18-Story Building

Frontiers in Built Environment | www.frontiersin.org February 2017 | Volume 3 | Article 11

Saneinejad, A., and Hobbs, B. (1995). Inelastic design of infilled frames. 
J. Struct. Eng. Asce 121, 634–650. doi:10.1061/(Asce)0733-9445(1995) 
121:4(634) 

Satake, N., Suda, K. I., Arakawa, T., Sasaki, A., and Tamura, Y. (2003). Damping 
evaluation using full-scale data of buildings in Japan. J. Struct. Eng. 129, 
470–477. doi:10.1061/(ASCE)0733-9445(2003)129:4(470) 

Shakarji, C. M. (1998). Least-squares fitting algorithms of the NIST algorithm 
testing system. J. Res. Nat. Inst Stand. Technol. 103, 633–641. doi:10.6028/
jres.103.043 

Sim, S. H., Spencer, B. F., Zhang, M., and Xie, H. (2010). Automated decentralized 
modal analysis using smart sensors. Struct. Control Health Monit. 17, 872–894. 
doi:10.1002/stc.348 

Siringoringo, D. M., and Fujino, Y. (2008). System identification of suspension 
bridge from ambient vibration response. Eng. Struct. 30, 462–477. doi:10.1016/ 
j.engstruct.2007.03.004 

Stafford Smith, B., and Carter, C. (1969). A method of analysis for infilled frames. 
Proc. Inst. Civ. Eng. 44, 31–48. 

Van Overschee, P., and de Moore, B. (1996). Subspace Identification for Linear 
Systems. Massachusetts, USA: Kluer Academic Publishers.

Verboven, P., Parloo, E., Guillaume, P., and Van Overmeire, M. (2002). Autonomous 
structural health monitoring – part 1: modal parameter estimation and track-
ing. Mech. Syst. Signal Process. 16, 637–657. doi:10.1006/mssp.1492 

Yu, H. (2016). Post-Earthquake System Identification of an 18-Story RC Building in 
Nepal. Master’s thesis, Department of Civil and Environmental Engineering, 
Tufts University, Massachusetts.

Zhang, F. L., and Au, S. K. (2016). Fundamental two-stage formulation for 
Bayesian system identification, part II: application to ambient vibration data. 
Mech. Syst. Signal Process. 66, 43–61. doi:10.1016/j.ymssp.2015.04.024 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2017 Yu, Mohammed, Mohammadi, Moaveni, Barbosa, Stavridis and 
Wood. This is an open-access article distributed under the terms of the Creative Commons 
Attribution License (CC BY). The use, distribution or reproduction in other forums is 
permitted, provided the original author(s) or licensor are credited and that the original 
publication in this journal is cited, in accordance with accepted academic practice. No 
use, distribution or reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/Built_Environment/
http://www.frontiersin.org
http://www.frontiersin.org/Built_Environment/archive
https://doi.org/10.1061/(Asce)0733-9445(1995)
121:4(634)
https://doi.org/10.1061/(Asce)0733-9445(1995)
121:4(634)
https://doi.org/10.1061/(ASCE)0733-9445(2003)129:4(470)
https://doi.org/10.6028/jres.103.043
https://doi.org/10.6028/jres.103.043
https://doi.org/10.1002/stc.348
https://doi.org/10.1016/
j.engstruct.2007.03.004
https://doi.org/10.1016/
j.engstruct.2007.03.004
https://doi.org/10.1006/mssp.1492
https://doi.org/10.1016/j.ymssp.2015.04.024
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Structural Identification of an 18-Story RC Building in Nepal Using Post-Earthquake Ambient Vibration and Lidar Data
	Introduction
	Test Structure and Collected Data
	Vibration Measurements
	Lidar Data Collection

	Surface Defect Detection from Lidar Point Clouds
	System Identification
	Data Processing
	Results of Modal Analysis Focused on 0.2–10 Hz
	Results of Modal Analysis Focused on 0.2–1 Hz

	FE Modeling and Response Prediction
	FE Model Properties
	Model-Data Comparison
	Response Prediction

	Concluding Remarks
	Author Contributions
	Funding
	References


