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A method of physical parameter system identification (SI) is proposed here for three-
dimensional (3D) building structures with in-plane rigid floors in which the stiffness and
damping coefficients of each structural frame in the 3D building structure are identified
from the measured floor horizontal accelerations. A batch processing least-squares
estimation method for many discrete time domain measured data is proposed for the
direct identification of the stiffness and damping coefficients of each structural frame.
Although previous researches on the SI of 3D building structures are limited to a class
of structures with regular eccentricity, this article removes this limitation. Advantageous
features of the proposed identification method are that it is unnecessary to specify the
stiffness eccentricities (location of the center of stiffness) before identification, and the
identification of all stiffness and damping parameters can be performed simultaneously.
The reliability and accuracy of the proposed method are demonstrated by numerical
simulations.

Keywords: system identification, torsional response, general eccentricity, batch processing least-squaresmethod,
physical parameter identification

INTRODUCTION

A new physical parameter system identification (SI) theory is proposed in this article for three-
dimensional (3D) building structures with in-plane rigid floors in which the stiffness and damping
coefficients of each structural frame in the 3D building structure are identified from the measured
floor horizontal accelerations. Research on physical parameter SI of 3D building structures with
eccentricity is very limited (for example, Omrani et al., 2012). This is because there are many
parameters to be identified in 3D building structures. The approach by Omrani et al. (2012) is based
on the statistical analysis, and the quantity of eccentricity is assumed to be known.On the other hand,
advantageous features of the proposed identification method are that it is unnecessary to specify the
stiffness eccentricities (location of center of stiffness) before identification, and the identification of
all stiffness and damping parameters can be performed simultaneously.

Recently, the business continuity plan (BCP) has been discussed academically and practically
with great interest in the construction and operating management of various built environments.
Unexpected hazards experienced during the last few decades made BCP a key subject, and many
significant attempts on BCP have been made. It is recognized worldwide that the structural health
monitoring plays a key role in BCP.
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The structural health monitoring has a long history in many
engineering fields, such as civil, mechanical, and aerospace engi-
neering (Boller et al., 2009; Takewaki et al., 2011). The SI method-
ologies play a key role in the structural health monitoring. It is
commonly understood that the modal parameter SI and physical
parameter SI are two principal branches in the field of SI. His-
torically great concern has been directed to the modal parameter
SI (Hart and Yao, 1977; Agbabian et al., 1991; Nagarajaiah and
Basu, 2009), which can provide the overall mechanical properties
of a structural system and has a stable characteristic. On the
other hand, the physical parameter SI has another merit from
the different point of view that the physical parameters, e.g.,
stiffness and/or damping coefficient of the structural model, can
be obtained directly, and this is quite effective for the damage
detection. In spite of the fact that the physical parameter SI is
preferred in the structural health monitoring, its advancement is
limited due to the strict requirement of multiple measurements or
the necessity of complicated manipulation (Hart and Yao, 1977;
Udwadia et al., 1978; Shinozuka andGhanem, 1995; Takewaki and
Nakamura, 2000, 2005; Brownjohn, 2003; Nagarajaiah and Basu,
2009; Takewaki et al., 2011; Zhang and Johnson, 2013a,b; Johnson
and Wojtkiewicz, 2014; Wojtkiewicz and Johnson, 2014).

In the field of physical parameter SI, Nakamura and Yasui
(1999) developed a direct method using a least-squares method.
They discussed a damage detection problem for steel buildings,
which were severely damaged during theHyogoken-Nanbu earth-
quake in 1995. However, their approach requires many measure-
ment points and components. Therefore, it can be used only
for one-dimensional shear-type building models. On the other
hand, Takewaki and Nakamura (2000) were looking for a smart
identification method and introduced a unique SI formulation
based on the pioneering work devised by Udwadia et al. (1978). In
the method demonstrated by Udwadia et al. (1978), the stiffness
and damping coefficient at a given story of a shear building model
(S model) can be identified directly from the floor acceleration
records just above and below the target story using the so-called
identification function. However, in the SI method proposed by
Takewaki and Nakamura (2000, 2005), there exists an issue to be
overcome in applying to actual data, e.g., microtremors, due to the
small signal/noise (SN) ratio in the low frequency range (Ikeda
et al., 2014, 2015; Fujita et al., 2015). Furthermore, an S model
is not necessarily a suitable model of high-rise buildings with
large aspect ratios due to the influence of building overall bending
deformation. The former problem has been a major and most
difficult problem in the field of the physical parameter SI method
where the limit value evaluation of the transfer function forω → 0
is needed. The autoregressive with exogenous (ARX) model with
constraints on theARXparameters has been introduced byMaeda
et al. (2011), Kuwabara et al. (2013), and Minami et al. (2013)
to avoid the difficulty caused by the noise. By applying the ARX
model to transfer functions, the difficulty in the evaluation of limit
value for a small SN ratio data has been avoided. On the other
hand, the latter problem has been tackled by expanding the SI
algorithm to the shear-bending model (Fujita et al., 2013; Minami
et al., 2013).

To develop a hybrid method of the modal parameter SI and
physical parameter SI, some researchers proposed a reliable SI

method in which the physical parameters are identified from the
preidentified modal parameters (Hjelmstad et al., 1995). How-
ever, it needs a deeper consideration of the relation between the
physical parameters and the modal parameters together with the
detailed theoretical investigation on inverse problem formulation
(Hjelmstad, 1996).

As another effective approach, the SI method using Kalman
filter or extended Kalman filter was developed many years ago
(Hoshiya and Saito, 1984). Although the approach is general and
can consider noise issues appropriately, it requires strong mathe-
matical backgrounds, and simple usemay be difficult. Recently, an
approach to the SI based on the Bayesian updating is developing
very fast (Boller et al., 2009). The procedure of simple application
of this approach to actual problems is desired.

A method of physical parameter SI is proposed here for 3D
building structures with in-plane rigid floors. A batch processing
least-squares estimation method for many discrete time domain
measured data is proposed for the direct identification of the
stiffness and damping coefficients of each structural frame in
the 3D building structure. The reliability and accuracy of the
proposed method are demonstrated by numerical simulations.

MODEL FOR IDENTIFICATION
AND EQUATIONS OF MOTION

Consider an N-story 3D shear building model, as shown in
Figure 1A, with in-plane rigid horizontal floors. Each story of
this model has four vertical plane frames parallel to the x or
y axis. It is unnecessary that the vertical plane frames exist in
the common plane through all stories. The locations of these
four frames in the nth story are denoted by r[x1]xn , r[x2]xn , r[y1]yn , r[y2]yn
as shown in Figure 1B, and the locations of the center of mass
Gn in the nth story are denoted by rGxn, rGyn. Each vertical plane
frame is a shear-type model and consists of a stiffness element
and a viscous damping element. Let k[y1]xn , k[y2]xn , k[x1]yn , k[x2]yn and
c[y1]xn , c[y2]xn , c[x1]yn , c[x2]yn denote the horizontal stiffnesses and damping
coefficients, respectively, of four vertical plane frames in the nth
story. The advantage of the present model is that the specification
of the location of the center of stiffness is unnecessary. The center
of stiffness is determined automatically after the identification of
horizontal stiffnesses of the vertical frames. On the other hand,

A B

FIGURE 1 | Three-dimensional shear building model with four vertical
plane frames subjected to inclined horizontal ground motion:
(A) overview and (B) plan.
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the masses are concentrated at the corners of the plan. Let m[xj,yl]
n

denote the mass located at the intersection of xj ( j = 1, 2) frame
and yl (l = 1, 2) frame (see Figure 1B).

This buildingmodel is subjected to the horizontal ground accel-
eration ÿg in the direction angle φ from the x-axis. Let un, vn, θn
denote the horizontal displacements of the center of mass in the x
and y directions and the angle of floor rotation around the vertical
axis in the nth story.

Let y[yl]i denote the yl (l = 1, 2) frame displacements in the x-
direction in the ith story and let y[xj]i denote the xj ( j = 1, 2) frame
displacements in the y-direction in the ith story (see Figure 1B).
These displacements can be expresses as

y[yl]i = ui − L[yl]
yi θi (l = 1, 2) (1)

y[xj]i = vi + L[xj]
xi θi ( j = 1, 2), (2)

where
L[yl]
yi = (r[yl]yi − rGyi), L

[xj]
xi = (r[xj]xi − rGxi). (3a,b)

A more detailed explanation can be found in Figures 2 and 3.
Let M, C, and K denote the stiffness, damping, and stiffness

matrices, respectively, of this model. The equations of motion of
this 3D building structure can be expressed by

Mÿ + Cẏ + Ky = −Mrÿg. (4)

The vectors r and y are defined by

r =
[
cos φ · · · cos φ sin φ · · · sin φ 0 · · · 0

]T
(5)

A B

FIGURE 2 | Definition of displacements: (A) x-direction displacement
without rotation and (B) x-direction displacement due to rotation
around center of mass.

A B

FIGURE 3 | Definition of displacements: (A) y-direction displacement
without rotation and (B) y-direction displacement due to rotation
around center of mass.

y =
[
u1 · · · uN v1 · · · vN θ1 · · · θN

]T
. (6)

The mass matrixM is obtained as

M =

mx 0
my

0 mr

, (7)

where
mx = my = diag(m1, · · · , mi, · · · , mN)

mr = diag(mr1 , · · · mri, · · ·mrN). (8a, b)
Themassmi and themassmoment of inertiamri in the ith story

can be expressed as

mi =
2∑

j=1

2∑
l=1

m[xj,yl]
i , m[yl]

xi =
2∑

j=1
m[xj,yl]

i , m[xj]
yi =

2∑
l=1

m[xj,yl]
i

mri =
2∑

l=1

m[yl]
xi (L[yl]

yi )
2
+

2∑
j=1

m[xj]
yi (L[xj]

xi )
2
. (8c–f)

On the other hand, the stiffness matrix K can be expressed by

K =

Kxx 0 Kxr
0 Kyy Kyr
Krx Kry Krr

, (9)

where

Ka =
N∑
i=1

 2∑
j=1

K[xj]
ai +

2∑
l=1

K[yl]
ai

. (10)

In Eq. 10, xx, xr, rx, yy, yr, ry, and rr should be substituted in the
suffix {a}.K[xj]

ai andK[yl]
ai are the element stiffness matrix ofN ×N

in which kai defined below exists as the only non-zero terms in
(i− 1, i) rows and (i− 1, i) columns.

kxxi =
2∑

l=1

k[yl]xi T, kxri = krxiT =
2∑

l=1

k[yl]xi L[yl]
yi (11a, b)

kyyi =
2∑

j=1
k[xj]yi T, kyri = kryiT =

2∑
j=1

k[xj]yi L[xj]
xi (12a, b)

krri =
2∑

j=1
k[xj]
rri +

2∑
l=1

k[yl]
rri ,

k[yl]
rri = k[yl]xi LL[yl]

yi (l = 1, 2), k[xj]
rri = k[xj]yi LL[xj]

xi ( j = 1, 2),
(13a–c)

where

T =
[
1 −1

−1 1

]
, L[yl]

yi =

[
−L[yl]

y(i−1) L[yl]
yi

L[yl]
y(i−1) −L[yl]

yi

]
,

L[xj]
xi =

[
L[xj]
x(i−1) −L[xj]

xi

−L[xj]
x(i−1) L[xj]

xi

]

LL[yl]
yi =

 (L[yl]
y(i−1))

2
−L[yl]

yi L[yl]
y(i−1)

−L[yl]
yi L[yl]

y(i−1) (L[yl]
yi )

2

,
LL[xj]

xi =

 (L[xj]
x(i−1))

2
−L[xj]

xi L[xj]
x(i−1)

−L[xj]
xi L[xj]

x(i−1) (L[xj]
xi )

2

 (14a–e)
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Finally, the damping matrix C is assumed to be proportional to
the stiffness matrix and expressed as

C =
(
2h
ω

)
K, (15)

where h is the lowest-mode damping ratio and ω is the fundamen-
tal natural circular frequency.

FORMULATION OF DIRECT SI

In this section, a new formulation of direct SI is presented. An
advantageous feature of the proposed identificationmethod is that
it is unnecessary to specify the stiffness eccentricities (location of
center of stiffness) before identification.

Assume that ÿ(t) and ÿg(t) are measured. More specifically
assume that ÿg(t) and {ÿ(t)+rÿg(t)} aremeasured. As an example,
it is sufficient to measure the x and y-direction absolute accelera-
tions at the diagonal two edges at all floors inFigure 1B in addition
to the x and y-direction absolute accelerations at the base. Then,
ẏ(t) and y(t) can be integrated numerically.

By transforming the equations of motion into the equations
in terms of unknown parameters, i.e., stiffness and damping
coefficients, the following relations are derived.

H(t)ΘΘΘ = Z(t), (16)
where

ΘΘΘ =
[
k[y1]
x k[y2]

x k[x1]
y k[x2]

y c[y1]x c[y2]x c[x1]y c[x2]y

]T
.

(17)

A B

C D

FIGURE 4 | Three-story model with storywise different plans: (A) overview, (B) plan, (C) side view 1, and (D) side view 2.

A B

FIGURE 5 | Five-story model with common plan: (A) overview and (B) plan.
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k[yl]
x = (k[yl]x1 , . . . , k[yl]xi , . . . , k[yl]xN ) (l = 1, 2),

k[xj]
y = (k[xj]y1 , . . . , k[xj]yi , . . . , k[xj]yN ) ( j = 1, 2),

c[yl]x = (c[yl]x1 , . . . , c[yl]xi , . . . , c[yl]xN ) (l = 1, 2),

c[xj]y = (c[xj]y1 , . . . , c[xj]yi , . . . , c[xj]yN ) ( j = 1, 2). (18a–d)

H(t) =


H[y1]

x H[y2]
x 0 0 Ḣ[y1]

x Ḣ[y2]
x 0 0

0 0 H[x1]
y H[x2]

y 0 0 Ḣ[x1]
y Ḣ[x2]

y

H[y1]
r H[y2]

r H[x1]
r H[x2]

r Ḣ[y1]
r Ḣ[y2]

r Ḣ[x1]
r Ḣ[x2]

r

.
(19)

H[b]
a (t) and Ḣ[b]

a (t) in Eq. 19 are the element coefficientmatrices
of N × N. x, y, and r are substituted in the suffix {a} and x1, x2,
y1, and y2 are substituted in the suffix {b}. h[b]

ai (t) defined below
exists as the only non-zero terms in (i− 1, i) rows and ith column
ofH[b]

a (t).

h[yl]
xi (t) = Tui(t) + L[yl]

yi θθθi(t) (l = 1, 2),

h[xj]
yi (t) = Tvi(t) + L[xj]

xi θθθi(t) ( j = 1, 2)

h[yl]
ri (t) = L[yl]

yi
T
ui(t) + LL[yl]

yi θθθi(t) (l = 1, 2),

h[xj]
ri (t) = L[xj]

xi
T
vi(t) + LL[xj]

xi θθθi(t) ( j = 1, 2)

ui(t) =
{
ui−1(t)
ui(t)

}
, vi(t) =

{
vi−1(t)
vi(t)

}
, θθθi(t) =

{
θi−1(t)

θi(t)

}
.

(20a–g)

As for Ḣ[b]
a (t), u,ν, and θ are replaced by u̇, v̇, and θ̇, respec-

tively. In Eq. 16, Z(t) is defined by

Z(t) = −M{ÿ(t) + rÿg(t)}. (21)

The errors in Eq. 16 derived from the equations of motion can
be expressed by

εεε(t) = H(t)ΘΘΘ − Z(t). (22)

The sum of the squares of the errors εεε(t) during the time
duration from t1 to t2 can be expressed by

E =
t2∑

t=t1

εεεT(t) · εεε(t) =
t2∑

t=t1

[H(t)ΘΘΘ − Z(t)]T [H(t)ΘΘΘ − Z(t)]

=
t2∑

t=t1

[
ΘΘΘTHT(t)H(t)ΘΘΘ − 2ΘΘΘTHT(t)Z(t)ΘΘΘ + ZT(t)Z(t)

]
.

(23)

The differential of E with respect to ΘΘΘ provides

∂E
∂ΘΘΘ

= 2

[ t2∑
t=t1

HT(t)H(t)

]
ΘΘΘ − 2

t2∑
t=t1

HT(t)Z(t). (24)

The least-squares estimation method incorporating the batch
processing (Takewaki and Nakamura, 2010) provides the param-
eters ΘΘΘ, which minimize the error E.

ΘΘΘ =

[ t2∑
t=t1

HT(t)H(t)

]−1 [ t2∑
t=t1

HT(t)Z(t)

]
. (25)

It is important to note that the identification of all stiffness and
damping parameters can be performed simultaneously.

NUMERICAL EXAMPLE

Examples without Noise
To verify the validity and accuracy of the proposed method, a
three-story model and a five-story model as shown in Figures 4
and 5, respectively, have been used. The three-story model has
storywise different plans and the five-story model has a storywise
common plan. The model parameters are shown in Table 1. The
damping ratio in the lowest mode is assumed to be 0.02. As an
input ground motion, El Centro NS 1940 as shown in Figure 6
has been used and input in the direction angle φ = π/4. The
data during 10(s) from the beginning were used for identifica-
tion. The time history responses of these two models have been

TABLE 1 | Model parameters.

Number of stories Coordinates of center of mass
Gn (rGxn, r

G
yn) in m

Number of stories Coordinates of center of mass
Gn (rGxn, r

G
yn) in m

3 story G1= (7,10.5) G2= (7,13) G3= (5,13) 5 story G1= (7,10.5) G2= (7,10.5) G3= (7,10.5)
G4= (7,10.5) G5= (7,10.5)

Frame stiffness (kN/m) Frame stiffness (kN/m)

k[y1]x1 = 3,500 k[y2]x1 = 2,000 k[x1]y1 = 2,000 k[x2]y1 = 3,000 k[y1]x1 = 3,500 k[y2]x1 = 2,000 k[x1]y1 = 2,000 k[x2]y1 = 3,000

k[y1]x2 = 3,000 k[y2]x2 = 2,500 k[x1]y2 = 3,000 k[x2]y2 = 2,000 k[y1]x2 = 3,000 k[y2]x2 = 2,500 k[x1]y2 = 3,000 k[x2]y2 = 2,000

k[y1]x3 = 3,500 k[y2]x3 = 2,000 k[x1]y3 = 2,500 k[x2]y3 = 3,000 k[y1]x3 = 3,500 k[y2]x3 = 2,000 k[x1]y3 = 2,500 k[x2]y3 = 3,000

k[y1]x4 = 3,300 k[y2]x4 = 2,500 k[x1]y4 = 2,000 k[x2]y4 = 2,500

k[y1]x5 = 3,500 k[y2]x5 = 2,000 k[x1]y5 = 2,500 k[x2]y5 = 2,000

Plan size (m) (first floor) Nodal mass (kg) Plan size (m) Nodal mass (kg)

Lx= 10 Ly= 15 16,500 Lx=10 Ly=15 16,500
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simulated numerically using theNewmark-betamethod. The time
increment is 0.02 s.

Figure 7 shows the correspondence between the given stiffness
and damping coefficients and the identified values in the three-
story model. On the other hand, Figure 8 presents the correspon-
dence between the given stiffness and damping coefficients and
the identified values in the five-story model. The horizontal axis
illustrates the location of the stiffness and damping parameters,
e.g., x1(1F) indicates k[y1]x1 and x2(1F) indicates k[y2]x1 . It can be
observed that the proposed identification method has a reliable
accuracy in both the stiffness and the damping.

To investigate the effect of the input direction of ground
motions on the identification accuracy, φ = 0, π/5 were used in

FIGURE 6 | Input ground acceleration.

addition to φ = π/4. It has been confirmed that the sufficient
accuracy is maintained regardless of the input motion direction.
As for the effect of the location of data window used for identi-
fication on the identification accuracy, no remarkable effect has
been observed except during the short duration at the beginning.
Furthermore, it has been found that the duration longer than 2 s
is sufficient.

Examples with Noise
To investigate the effect of noise on the accuracy of identification
(Koyama et al., 2015), noises have been added to the input and
response values simulated without noise. The noise was produced
by using a band-limited white noise with the frequency range
0.075–150 (rad/s). Different independent noises were added to
the original input and response data (acceleration, velocity, and
displacement) simulated without noise. Root mean square values
were employed to quantify the noise level, and the data during
10(s) from the beginning were used for identification.

Figure 9 shows the plot of story stiffness and damping coeffi-
cient with respect to the noise level in the three-story model. It
can be observed that, although the accuracy of stiffness degrades
gradually for the increase of noise, the order of accuracy degra-
dation in damping is larger. This phenomenon corresponds well
with the well-recognized knowledge in the field of SI (Takewaki
and Nakamura, 2005; Boller et al., 2009; Takewaki et al., 2011).
Furthermore, although most of stiffnesses become smaller with
the increase of noise level, some damping coefficients become
smaller and others become larger.

A B

FIGURE 7 | Accuracy of identification without noise (three-story model): (A) stiffness and (B) damping coefficient.

A B

FIGURE 8 | Accuracy of identification without noise (five-story model): (A) stiffness and (B) damping coefficient.
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A B

FIGURE 9 | Influence of noise level on accuracy of identification of stiffness and damping in three-story model: (A) stiffness and (B) damping
coefficient.

EXTENSION TO MODEL WITH IN-PLANE
FLEXIBLE FLOOR

Since the present theory has flexibility and generality (treatment
of each vertical frame as independent stiffness and damping
element), it can be extended to 3D building structures with in-
plane flexible floors by specifying the in-plane flexibility of floors.
There are four degrees of freedom in each story (four horizontal
degrees of freedom). The four degrees of freedom in each story
are related by introducing the in-plane shear stiffness of flexi-
ble floors. Because the batch processing least-squares estimation
method explained in Section “Formulation of Direct SI” does not
depend on the number of degrees of freedom and the number of
parameters to be identified, a similar formulation may be possible
for the model with in-plane flexible floors. This formulation will
be presented in the future.

CONCLUSION

A method of physical parameter SI has been proposed for 3D
building structures inwhich the stiffness anddamping coefficients
of each structural frame in the building structure are identified
from the measured floor horizontal accelerations. The following
conclusions have been derived.

(1) A batch processing least-squares estimationmethod formany
discrete measured data has been proposed for the direct
identification of the stiffness and damping coefficients of
each story. A model with in-plane rigid floors has been used
as the model for the physical parameter SI. Advantageous

features of the proposed identification method are that it is
unnecessary to specify the stiffness eccentricities (location of
center of stiffness) before identification, and the identification
of all stiffness and damping parameters can be performed
simultaneously.

(2) Numerical simulations have been conducted for three-story
and five-story 3D building structures with different mass
and stiffness eccentricities. It has been demonstrated that,
irrespective of the condition of mass and stiffness eccentric-
ities, the proposed method is reliable and accurate in noise-
free models. On the other hand, the identification accuracy
degrades gradually as the noise level increases. However, a
certain accuracy level can be maintained by limiting the level
of noise.
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