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This paper presents a collaboratively adaptive vibration monitoring system that captures
high-fidelity structural vibration signals induced by pedestrians. These signals can be
used for various human activities’ monitoring by inferring information about the impact
sources, such as pedestrian footsteps, door opening and closing, and dragging objects.
Such applications often require high-fidelity (high resolution and low distortion) signals.
Traditionally, expensive high resolution and high dynamic range sensors are adopted
to ensure sufficient resolution. However, for sensing systems that use low-cost sensing
devices, the resolution and dynamic range are often limited; hence this type of sensing
methods is not well explored ubiquitously. We propose a low-cost sensing system that
utilizes (1) a heuristic model of the investigating excitations and (2) shared information
through networked devices to adapt hardware configurations and obtain high-fidelity
structural vibration signals. To further explain the system, we use indoor pedestrian
footstep sensing through ambient structural vibration as an example to demonstrate
the system performance. We evaluate the application with three metrics that measure
the signal quality from different aspects: the sufficient resolution rate to present signal
resolution improvement without clipping, the clipping rate to measure the distortion of
the footstep signal, and the signal magnitude to quantify the detailed resolution of the
detected footstep signal. In experiments conducted in a school building, our system
demonstrated up to 2× increase on the sufficient resolution rate and 2× less error rate
when used to locate the pedestrians as they walk along the hallway, compared to a fixed
sensing setting.

Keywords: structural vibration sensing, indirect sensing, pedestrian monitoring, structural response monitoring,
collaboratively adaptive sensing

1. INTRODUCTION

Structural vibration sensing for pedestrian monitoring has been applied for various spatiotemporal
information acquisition purposes. Works have been done on human information monitoring
through vibration induced by their activities, including identity (Ekimov and Sabatier, 2006; Itai
and Yasukawa, 2008; Pan et al., 2015), gender (Bales et al., 2016a,b), location (Mirshekari et al.,
2015, 2016; Poston et al., 2015; Schloemann et al., 2015), trajectory (Dobbler et al., 2014; Pan
et al., 2014), traffic (Subramanian et al., 2010; Pan et al., 2016), and activity (Pan et al., 2017).
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The non-intrusive nature of this sensing systemmakes it a promis-
ing ubiquitous sensing method. Like other sensing systems, struc-
tural vibration sensing generally requires three steps in order
to fulfill its purposes: signal acquisition, feature extraction, and
information learning.

A large amount of research has been focusing on feature
extraction and information learning for different vibration-based
applications (Dobbler et al., 2014; Mirshekari et al., 2015, 2016;
Pan et al., 2015, 2016; Bales et al., 2016b). However, if the raw
signals acquired are already distorted (signal clipping) or of low
resolution, the learning can hardly compensate for such informa-
tion loss. One way to improve the signal fidelity is to use sensors
with high dynamic range and high resolution. These sensors are
often expensive and impractical for large-scale deployment. On
the other hand, our target signals induced by pedestrian vary in
signal strength (amplitude) fast and significantly, hence existing
adaptive hardware settings methods can hardly adapt fast enough
to such changes.

Therefore, in this paper, we present a low-cost high-fidelity
vibration signal acquisition system targeting at pedestrian-
induced structural vibration responses. Our system ensures high
signal fidelity by predicting the pedestrian-induced vibration sig-
nal strength and calculating the hardware configuration setting
required. The predictions mainly are through two solutions: (1)
for each sensor, it applies heuristic models of structural responses
and adapts amplification settings dynamically to maximize sig-
nal resolution while minimizing clipping rate and (2) for the
networked sensors, the system models the structural variation
through multiple locations to improve dynamic adaption of each
local amplification setting. Finally, the system detects and outputs
high-fidelity pedestrian-induced vibrations. In general, our paper
provides the following contributions:

• We present a hardware system with low-cost off-the-shelf
vibration sensors that adapts hardware configuration (e.g.,
amplification gains) to obtain high-fidelity structural vibration
responses induced by pedestrians.

• We propose a prediction method that employs both a heuris-
tic model to adapt hardware based on local signal change
and a collaborative model to adapt hardware based on global
variance.

• We apply the system to an application: pedestrian monitoring
by footstep-induced vibration and evaluate the system perfor-
mance in this application.

To the best of our knowledge, this is the first work that investi-
gates sensing signal quality for structural vibration monitoring.

The rest of the paper is organized as follows: in Section 2, we
detail related work done on improving signal fidelity and what
is the research gap between prior works and this work. Then,
Section 3 presents the overview of the system. Next, in Section 4
and Section 5, we introduced the optimization solution for hard-
ware configuration, and the algorithm design for collaborative
adaptation of the hardware. Then, in Section 6, we present the
system implementation. Section 7 evaluates the system modules
and analyzes their abilities to preserve footstep-induced structural
vibrations with high fidelity. Then, in Section 8, we further discuss
the system limitation, trade-offs, and usage. Finally, Section 9
presents the conclusions of this work.

2. RELATED WORK

Prior works that focus on improving sensing signal quality mainly
fall into three categories: (1) utilizing expensive enhanced sensors
(Barzilai, 2000), (2) postprocessing to restore signal shape (Janssen
et al., 1986; Miura et al., 2011; Kitic et al., 2013), and (3) adaptive
hardware settings to obtain high-fidelity signals (Loetwassana
et al., 2007; Zhang et al., 2011). The cost of enhancing sensing
device to achieve high dynamic sensing range as well as high res-
olution could make large-scale deployment unrealistic. Previous
methods for obtaining high-fidelity sensing data mainly fall into
two categories: post- and preprocessing. Postprocessingmethods
restore unknown or lost data after data collection (Janssen et al.,
1986; Miura et al., 2011; Kitic et al., 2013). These methods are
usually used for audio data and evaluated by the signal-to-noise
ratio (SNR). Janssen et al. (1986) proposed an adaptive inter-
polation method to restore lost data, with the restrictions that
the positions of the unknown samples are known. Miura et al.
(2011) introduced their clipping removal method through recur-
sive vector projection. Kitic et al. (2013) approached the problem
from another perspective with iterative hard thresholding and
evaluated the results using both signal-to-noise ratio and human
listening. However, for those feature-oriented applications such
as identification (Pan et al., 2015) or TDoA-based localization
(Dobbler et al., 2014), restored data are not dependable enough
since it introduces signal artifacts.

Preprocessing methods utilize signal processing techniques to
predict signal clipping and limit distortion of an amplified signal
(Krochmal et al., 2007). In addition, Zhang et al. (2011) proposed
the robust taking pressure control (RPC) algorithm to adjust
the system sensing configuration for better signal collection. For
pedestrian-induced excitation, the rapid change and variation
make it difficult if not impossible to achieve high fidelity with
those methods.

3. SYSTEM OVERVIEW

The system goal is to capture high fidelity structural vibration sig-
nals induced by indoor pedestrians using low-cost low-dynamic-
range sensors. It is achieved by maximizing the signal resolu-
tion while avoiding signal clipping. Figure 1 shows the relation-
ship between the modules in the system. The vibration signal is
obtained by the analog signal acquisition module, which specifies
the sensing configuration used. Then, the detected impact signals
are sent to a collaborative adaptive prediction module where the
sensing configuration is decided based on sensing data from the
local device as well as from other networked devices.

The rest of the paper introduces the system based on the
application of pedestrian monitoring through footstep-induced
vibration. The causes of variation in detected human footstep
strength mainly fall into two categories: human and environmen-
tal. Human variation includes two aspects: (1) the personal level
as inconsistencies of individual footstep-to-sensor distance within
a series of steps (we refer it as a trace in the rest of the paper)
and (2) the interpersonal level as variations between individuals.
Environmental variation occurs when the sensors are placed at
different locations, which have different impact response due to
structural factors like beams and partitions.
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FIGURE 1 | System overview.

To accommodate these variations, the system, first of all, needs
to have a variety of applicable hardware configurations that sup-
port the signal variation range (Section 4). Then, the system
determines the hardware configuration settings through the col-
laboratively adaptive algorithm (Section 5).

4. HARDWARE: SENSING
CONFIGURATION OPTIMIZATION

The hardware configuration selection is the foundation of the
sensing system. The goal of the selection is to use a minimum
number of amplifiers to satisfy the sensing requirement, which we
solve through an optimization problem. We define an amplified
footstep signal that is represented by a range of integer values
as of “sufficient resolution” when that range is over a selected
threshold. For a different system or application, this threshold
can be defined differently. The goal of optimization is to maxi-
mize the probability that a detected signal falls in the sufficient
resolution interval after amplification with a limited number of
amplifiers. How do we select amplification gain so that amplifiers
allow a step signal on a surface to have sufficient resolution?
First, we explain the relation between the concept of amplifica-
tion and signal resolution (Amplification and Signal Resolution).
Next, since the optimization mainly targets footstep strength
change in a trace due to footstep-to-sensor distance variation,
we model the distribution of the signal amplitude at different
locations on a floor plane (Signal Amplitude Distribution). We
form the optimization problem (Objective Function) to maxi-
mize the probability that a signal with the modeled distribution
falls in the sufficient resolution range with limited amplifica-
tion settings and obtain the optimal solution (Optimal Solu-
tion). Finally, the hardware design using the optimal solution is
discussed.

Before we form the optimization problem, we list the notations
used in the following sections in Table 1. In order to model the

TABLE 1 | Notations.

Notation Descriptions of notations

X–O–Y Cartesian coordinates of sensor/footstep position
T Input signal amplitude
T1 Output signal threshold 1
T2 Output signal threshold 2
k Signal amplitude measured 1 unit distance from sensor
d Distance between sensor and footstep
(L1, L2) Footstep location in X–O–Y
gi ith amplifier; where ∀i, 1<gi <gi+1
n Number of amplifiers
A Sensing area
R Radius of A
FT(t) Cumulative distribution function of T
FD(d) Cumulative distribution function of d in A

amplitude distribution of footstep impulses measured by a sensor,
we represent the floor with a 2-dimensional X–O–Y Cartesian
Coordinate plane. Since the calculation depends only on the rel-
ative locations of the footsteps and the sensor, we simplify the
computation by taking the sensor’s location as the origin on the
plane without losing generality. We make four assumptions to
form the optimization problem:

Assumption 1. The sensing area A is a circular area with the
sensor at the origin (0,0).

Assumption 2. Attenuation model T ∝ 1√
d

(Gutowski and
Dym, 1976; Verhas, 1979; Pan et al., 2014). When d>R, the
impulse is outside the sensing area A, so we assign T = 0.

Assumption 3.The probability distribution of (L1, L2)∈X–O–Y
is a uniform distribution, that is, the probability that a footstep falls
on any point in the sensing area is the same.

Assumption 4. The number of amplifiers is smaller than the
least number needed to properly amplify the raw signal over the
whole input signal range ( k√

d
,T2), i.e., amplification ranges do not

overlap.
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4.1. Amplification and Signal Resolution
The analog-to-digital converting using a limited number (reso-
lution) of values to describe a signal within a specific voltage
range; hence, for each impulsive vibration signal investigated, the
amplification that maximizes the resolution is different. For an
analog-to-digital converter of the specific resolution, a signal that
is represented with a large enough number of different values is
defined as sufficient resolution. This indicates that the amplified
signal falls into a designated voltage range of [T1, T2]. For dif-
ferent applications requirements, the optimal range of [T1, T2]
can be different. For example, human identification may require
higher resolution signal to achieve high accuracy compared to the
application of presence detection. Thus, identification application
may have a higher optimal value for T1 than that of presence
detection. We quantify the relation between signal amplitude and
resolution level as shown in Table 2. If a signal is amplified by
the gain of g and its output falls into the range of [T1, T2], then
the original range of the signal is

[
T1
g , T2

g

]
. In that case, the suffi-

cient resolution interval for input signal amplitude is expanded to[
T1
g , T2

g

]
∪[T1,T2].Withmultiple available amplification gains, say

1= g0 < gi < gn (0< i< n), the system can cover sufficient reso-
lution intervals within the full expected signal range. Although
the method is applicable for any g values, considering the footstep
signal range, it is practical to assume that the signal does not need
to be amplified down, therefore we have g0 = 1 here.

SigRange =
[
T1

g0
,
T2

g0

]
∪
[
T1

g1
,
T2

g1

]
∪ · · · ∪

[
T1

gn
,
T2

gn

]
, (1)

with this definition of SigRange, we further interpret the opti-
mization goal as follows. Given the number of amplification con-
figurations (amplifier gain) n, find a set of amplification gains
1= g0 < gi < gn (0< i< n) so that the probability of the input
signal amplitude that belongs to the SigRange is maximized.

4.2. Signal Amplitude Distribution
To select the optimal amplification setting combination, we need
to understand the possible signal amplitudes (T) and their dis-
tribution. To simplify the model, we consider an ideal surface
described by Assumptions 1 and 3 as a start. On an ideal surface,
the distance (d) between the footstep and the sensor affects this
distribution. Therefore, we can estimate the probability of obtain-
ing a signal of amplitude T from the probability of a step falling on
a point of d away from the sensor, where a relationship between d
and T as T = k√

d
(k> 0) can be specified. Based on Assumption

2, the value k is derived from the absolute value of the impulse
strength, which is caused by interpersonal level difference and not
modeled in the optimization problem.

TABLE 2 | Amplitude and resolution.

Amplitude Resolution

(0, T1) Insufficient
[T1, T2] Sufficient
(T2, +∞) Clipping (distorted)

To model the clipping of amplifiers, we define a threshold T2:
when T >T2, the amplitude is too large and exceeds the upper
bound output, meaning the signal is clipping. The amplitude in
the clipped range (T2, +∞) will always be sensed as the value T2.
In that case, according to Assumption 2, given the circular area A
around a sensor, we formulate the amplitude T as a function of
distance (d) and the impulse strength (k):

T =


T2 d ∈

(
0, k2

T2
2

)
k√
d

d ∈
[
k2

T2
2
,R
]

0 d ∈ (R, +∞)

. (2)

Once we understand the relation between d and T, in order to
derive the distribution of T, we first calculate the distribution of
d. Assumption 1 defines O= (0, 0), so the distance between the
sensor and the footstep can be represented as d =

√
L2

1 + L2
2.

Assumption 3 defines the probability distribution of (L1, L2),
which can be applied here to derive the probability distribution
of d as equation (3).

FD(d) =

{
d2

R2 0 ≤ d ≤ R
1 d > R

. (3)

Then, we can derive the cumulative distribution function
(CDF) of the signal amplitude from equations (2) and (3), and
formulate it in equation (4) as

FT(t) = P(T ≤ t) =


0 t ∈

[
0, k√

R

)
1 − k4

R2t4 t ∈
[

k√
R ,T2

)
1 t ∈ [T2, +∞)

. (4)

Figure 2 indicates that the probability distribution of ampli-
tude is continuous in the interval

[
k√
R ,T2

)
, while discrete at

T =T2. For the continuous part, the probability density function
of amplitude (PDF) fT(t) decreases when t increases. Together
with Assumption 4, this implies that in the optimal solution, the
sufficient resolution intervals of different amplifiers should not
overlap unless we have more than enough amplifiers to cover the
entire input signal range, which violates Assumption 4. That is,
∀gi < gj, if T2

gj > T1
gi > T1

gj , there must be g′
i < gi and T2

gj = T1
g′i

,

such that probability that amplitude lies in
[
T1
gj ,

T2
gj

]
∪
[
T1
g′i

, T2
g′i

]
is

greater than probability that in
[
T1
gj ,

T2
gj

]
∪
[
T1
gi ,

T2
gi

]
(i.e., F

(
T2
gi

)
−

F
(

T1
gj

)
< F

(
T2
g′i

)
− F

(
T1
gj

)
).

4.3. Objective Function
We use an optimization problem to describe the goal of our
amplification setting selection, which is to maximize the prob-
ability that the vibration signal amplitude lies in the sufficient
resolution interval. We formulate the optimization problem into
equation (5).

max
g1,...,gn

n∑
i=0

F
(
T2

gi

)
− F

(
T1

gi

)
, (5)

s.t. 1 < gi < gi+1 ∀i ∈ {1, . . . , n − 1}, (6)
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FIGURE 2 | Probability distribution of the signal amplitude T. Note that the distribution is continuous in interval
[

k√
R
,T2

)
with the function

fT(t) = 4k4

R2t5
, while discrete at T=T2 due to clipping. This figure shows the scenario where k= 1, R= 9, and T2 =3.3. The red region is smaller than the blue

region, which means when gi increases, the probability that the signal amplitude lies in the sufficient resolution interval also increases. Considering d≤R, we can
derive that k2

T2
≤ R, which leads to ∀t ∈

[
T1
gi

,
T1
gi

]
,
T2
gi

>
T1
gi

≥ k√
R
, which is the constraint shown in equation (7). In order to prevent overlapping of the red region

and the blue region, the constraint in equation (8) should be satisfied.

T1

gi
≥ k√

R
∀i ∈ {1, . . . , n}, (7)

T2

gi+1
≤ T1

gi
∀i ∈ {1, . . . , n − 1}. (8)

Three constraints are applied to the optimization problem:

1. Constraint in equation (5). We simplify the calculation by
define the order of amplification gain gi ismonotone increasing
with i. We consider g0 to represent the scenario where there is
no amplifier applied, therefore the gain is g0 = 1, and

[
T1
g0 , T2

g0

]
is the sufficient resolution interval of the raw signal.

2. Constraint in equation (7). Assumption 2 asserts that d≤R,
which leads to k2

T2 ≤ R, therefore we can derive that ∀t ∈[
T1
gi ,

T2
gi

]
, T2

gi > T1
gi ≥ k√

R .

3. Constraint in equation (8). Because ∀i, j ∈ {1, . . ., n},
(

T1
gi ,

T2
gi

)
cannot overlap with

(
T1
gj ,

T2
gj

)
and gi < gi+1, the signal that

gets clipping when gi+1 is used should not be of insufficient
resolution when the next level of gain gi is applied.

4.4. Optimal Solution
To solve the optimization problem (Section 4.3) using the cumu-
lative distribution function of signal amplitude from equation (7),
the objective function can be rewritten as

S =
k4

R2

(
1
T4

1
− 1

T4
2

)
·

(
1 +

n∑
i=1

g4i

)
, (9)

where k4

R2

(
1
T4

1
− 1

T4
2

)
is a positive constant. Thus, we canmaximize

the objective function S by maximizing
∑n

i=1 g4i , which provides
the optimal solution

gi =
(
T1

T2

)n−i
·
√
R · T1

k ∀i ∈ {1, . . . , n}. (10)

FIGURE 3 | Adaptive amplification module. n Levels of the OpAmp are
designed to allow the analog signal to be amplified to different ranges. For
each iteration, a level of OpAmp is selected (S) and sent to Analog-to-Digital
Converter (ADC). Then, the digitized signal is sent to processor for further
analysis.

The variable k is a structural characteristics determined value
affected by the damping factor of the structure. This result is used
to select the optimal amplification gain values in our implemen-
tation introduced in Section 4.5.

4.5. Hardware Design Using Optimal
Solution
To allow the system to obtain signals with different amplification
gains, we design the sensing configuration board with multiple
amplification settings. As shown in Figure 3, in a situation with
n different amplification configurations, the raw signal will go
through the sensing unit with each one. Instead of collecting
signals from all different configurations, the system selects the
optimal one to obtain the signal. Collecting from n configurations
limits the sampling rate to 1/n due to the system sampling rate
limitation as well as radio band width limitation. Then, the signal
from the selected configuration is digitized and stored.

To obtain the structural variable k for the model, we generate
a modeling impulse (for example, a ball drop with a designated
strength) at the edge of the targeting sensing area (a designated R
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that is determined by the structural noise level), and the system
tunes amplification gain gn to allow the impulse to achieve the
highest resolution possible. Then, we calculate the value k based
on the tuned gn and the equation gn =

√
R · T1/k. After that,

we calculate the rest of the gain gi, i= 0, . . ., n− 1 based on the
defined T1 and T2, as well as the structural factor k.

5. ALGORITHM: COLLABORATIVE
ADAPTIVE PREDICTION

In order to adapt to signal strength variation caused by pedes-
trian locations and structural factors, our system operates on two
interconnected levels of feedback control as shown in Figure 1:
local profiling prediction and global profiling prediction. Local
profile prediction refers to the process by which an individual
sensing unit uses the data it collects to predict the optimal amplifi-
cation settings for the next footstep-induced signal. Global profile
prediction refers to the collaborative prediction performed by
multiple sensing units operating with one another. Together, they
serve to provide feedback using known signals to infer and predict
optimal amplification selections for future signals on both local
and global levels.

5.1. Local Profile Prediction (LPP)
The goal of the LPP is to achieve high resolution for the low signal-
to-noise ratio step signals by changing the amplification setting
during a pedestrian approaching/leaving the sensor. It predicts
the optimal configuration for the next footstep signal that the
sensing nodes will detect. To achieve this, the system first detects
footstep-induced signals (Step Event Detection). Then, it analyzes
the detected signals’ resolution condition (Signal ResolutionAnal-
ysis). Finally, based on the analysis, it makes a prediction on the
next step’s amplitude (Optimal Configuration Prediction).

5.1.1. Step Event Detection
The systemdetects distinctive signal segments induced by footstep
impulses, which we refer to as Step Events in the rest of the paper.
They are extracted from the vibration signals through anomaly
detection based on aGaussianmodel of the background noise (i.e.,
the signal detectedwhen there is no impulse on the structure) (Pan
et al., 2014).We utilize a sliding window to collect the background
noise signal. The system calculates the signal energy for each
windowed signal, with noise modeled by a Gaussian distribution
N (μ, σ). If the signal energy in the window falls outside 3σ
range of the Gaussian model, we consider the window to contain
a detected step event since it is an abnormal segment.

5.1.2. Signal Resolution Analysis
Understanding the current Step Event’s resolution condition
allows the system to predict the optimal configuration for the next
Step Event. The Step Event resolution is deduced from the relation
between the analog signal amplitude and resolution shown in
Table 2. For an N-bit analog-to-digital converter configuration,
the T1(v) and T2(v) are converted to a function of N as DT1(N)
and DT2(N). These thresholds are applied on the detected Step
Event range to determine the signal’s resolution class based on the
relation demonstrated in Table 2.

5.1.3. Optimal Configuration Prediction
The optimal configuration for the next Step Event is obtained
using Algorithm shown in Figure 4 with two main steps: (1)
predict the amplitude of the next Step Event and (2) calculate
the amplification gain that allows maximum resolution without
clipping.

To predict the amplitude of the next step signal, the system
looks into Thhistory number of prior step signals’ condition. When
there is less than Thhistory number of steps detected in history, the
decision is made by prior step signal. If the step history is almost
linear, which is the most common step energy change behavior
when the steps are far away due to the noise, the system predicts
the next step amplitude Ampt+1 with linear model estimated from
the step history. On the other hand, if the step history is not linear,
which occurs when steps are near the sensor, the system predicts
the next step amplitude Ampt+1 with the 1/d model (Pan et al.,
2014) estimated from the step history.

To calculate the amplification gain, we separate the cases where
the pedestrian approaches and leaves the sensing area. When the
pedestrian approaches, the system chooses to overestimate the
predicted amplification by theNoiseAmp in order to find the maxi-
mum level of amplification gain that will keep Ampt+1 +NoiseAmp
from getting clipped. On the other hand, when the pedestrian
leaves, the system chooses to underestimate the predicted amplifi-
cation by theNoiseAmp to find the maximum level of amplification
gain that will keepAmpt+1 −NoiseAmp from getting clipped. Then,
the system adjusts the amplification gain based on this calculation.

5.2. Global Profile Prediction (GPP)
The goal of the GPP is to achieve low distortion (e.g., clipping) for
the high-amplitude step signals by utilizing historical information
from neighboring sensors. In practical deployments, structural
factors such as building beams and partitions, increase footstep
strength variance. Such complicationsmay cause different sensors
to observe different local sensing behavior, e.g., if a sensor is
deployed near a beam, the detected footstep amplification is lower
than that of a sensor located between two beams. This type of
structural variation between different sensors/locations can be
propagated through the sensor network based on the pedestrian
moving direction detection and allow sensors to improve their
sensing resolution with the historical information from other
sensors.

FIGURE 4 | Local profile prediction algorithm.
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GPP can either perform alone or be used with LPP to improve
signal fidelity by taking structural variation into account. In this
section, we introduce how the GPP works alone to achieve high
resolution signal acquisition for high signal-to-noise ratio step
signals. Instead of processing on the Step Event level, GPP works
on the Trace Event level (the vibration signal induced by a per-
son passing by the sensor, containing contiguous detected Step
Events). First, it obtains the direction of the target trace (Trace
Event Direction). Then, it predicts the pedestrian’s trace (Trace
Prediction), i.e., to a specific neighbor sensing node, based on
walking direction. GPP propagates the pedestrian walking infor-
mation toward these neighboring sensing nodes that the pedes-
trian might pass based on their walking direction. These nodes
rely on their location specifications (Location Specification) and
the pedestrian walking direction to make predictions.

5.2.1. Trace Event Direction Estimation
The Trace Event direction allows our system to determine which
neighboring sensing nodes a pedestrian approaches and which
node they are heading away from. So that the system can inform
these neighbor nodes of possible structural anomalies causing
signal changes, which we will detail in Location Specification.
At least two sensing nodes are required to determine the stride
direction based on the relative timing of approaching and leaving
different sensors (Pan et al., 2014). Each sensing node detects
the footstep when a pedestrian passes by. When the pedestrian
approaches then leaves the sensor, their footstep signal strength
will increase then decrease. The spatiotemporal information of
the footstep signal with the highest energy within a consecutive
footstep sequence detected by different sensors indicates the order
in which the pedestrian passes sensors. Therefore, the system
can determine which direction (i.e., from/to which sensor) the
pedestrian walks.

5.2.2. Trace Prediction
Propagating the information to the neighboring nodes that need it
makes the system robust for ambiguity when people continuously
walk by a sensor. To predict which sensor the pedestrian is walking
to, the system models all the deployed nodes as vertexes in a
graph. If there is a physical route that a pedestrian can walk
between two vertexes without passing a third vertex, there is an
edge between these two vertexes.We create this graph heuristically
at deployment time as a k× k binary table, where k is the node
number, and the table entry value indicates if there is connectivity
between two nodes. We choose the binary table for computational
search efficiency.When pedestrians walk in the building and their
stride directions are detected, the system will notify all the other
sensing nodes that share an edgewith this node in the graph except
the one that the person walked from.

5.2.3. Location Specification
Due to various structural factors such as beams and parti-
tions, sensors may have different sensitivity to the same impulse
(i.e., same strength and traveling distance). The goal for the
GPP is to achieve high resolution for the high signal-to-noise
ratio step signals by utilizing the historical information from
neighboring sensors.Whenmultiple pedestrians walk by different

sensors/locations, the system learns the different impulse response
strength between sensors/locations.

When a pedestrian walks by one sensor and is detected, the
system models their step energy change and sends it to the
neighboring nodes that the pedestrian will pass by next. The
neighboring node then adjusts its own amplification setting
based on the historical data, which indicates the impulse response
strength variation at these different locations. Then, when
the pedestrian approaches the neighboring node, the system
detects the step signal with highest energy through the structural
variation profile as well as detected step signal strength from the
last sensor.

5.3. LPP+GPP
To achieve high resolution for both low- and high-amplitude step
signals, we combine LPP and GPP. LPP performs better with
low-amplitude step signals because the local adjustment mech-
anism allows these signals to have higher resolution. However,
for high-amplitude step signals, the prediction is highly affected
by the variation/noise in the human step strength, which could
lead to overcompensation for estimation. On the other hand,
GPP performs better with high-amplitude step signals because
for those low-amplitude step signals within one trace, there is
no adjusting mechanism. However, the fixed amplification means
low-amplitude step signals will have low resolution. Therefore, by
combining the LPP and the GPP, the system can achieve better
performance in step signal resolution.

By combining the LPP and GPP, the system utilizes the LPP
to handle step signals with low amplitude when they are far from
the sensor. When the amplitude increases and the step history is
not linear, instead of using the 1/d model as described in Section
5.1.3, the system relies on the GPP to make the decisions. Instead
of using the detected highest step signal energy, the GPP utilizes
the step signal energy changing rate detected by the prior sensors
and matches the current step history changing rate. The system
searches the entire step history of the neighbor nodes andmatches
the changing rate between continuously detected Thhistory number
of steps that has the least square error to that on record. It then
predicts the next step strength.

6. IMPLEMENTATION

To validate our design, we develop a prototype sensing node with
n= 3 amplification settings. We install three operational ampli-
fiers (LMV385) with customized amplification gains on the sens-
ing configuration board. The processor board is connected to the
amplifiers through three analog-to-digital converter pins. Based
on equation (10) and the sufficient resolution range we defined
in Section 4, we have T1/T2 = 1/2, which leads to the ratio of the
optimal gains as (1/2)2:(1/2)1:(1/2)0 = 1:2:4. Through empirical
measurements of the other constants (T1 = 1.5, k= 3× 10−4,
R= 9), we obtain optimal gains of 2,000×, 4,000×, and 8,000×.

The geophone we used is SM-24 (Input/Output Inc, 2006),
with the sensitivity of 28.8 V/m/s. The theoretical sensing range
of the sensor is limited by its max coil excursion, which is 2mm.
However, in practical scenarios, the sensing range is limited by
the amplifier voltage, which in our system is 3.3 V. Therefore,
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when an amplifier with g0 = 1 is applied, the sensing range of
the sensor is 0.1146m/s. When a 10-bits analog-to-digital con-
verter is used, the resolution of the system is 1.12× 10−4 m/s,
which is not enough to observe signals with peak values in the
range of 10−6 and 10−4 m/s. Therefore, when an amplifier with
a gain of 2,000× is applied, the sensing range of the sensor is
5.73× 10−5 m/s, with a resolution of 5.6× 10−8 m/s. Compare to
the setting of g0 = 1, this setting has less sensing range but higher
resolution. Similarly, the gain of 4,000× and 8,000× enables
even higher resolution (2.8× 10−8 and 1.4× 10−8 m/s, respec-
tively) with less sensing range (2.865× 10−5 and 1.43× 10−5 m/s,
respectively). Therefore, by combining multiple settings, the sys-
tem achieves high resolution (1.4× 10−8 m/s) as well as high
sensing range (5.73× 10−5 m/s) at the same time.

Implemented amplification gains, however, differ slightly due
to practical constraints. We use two-stage amplifiers in the imple-
mentation for better signal filtering, because each stage has a
differential amplifier serving as a band pass filter. For the first-
stage amplifier, we selected the resistor value of 470 kΩ over 10 kΩ
for the amplification gain 470/10= 47. When selecting the first-
stage gain, the corresponding resistor should be available and the
gain should not cause clipping under most circumstances; other-
wise, the clipped signal is smoothed by the second-stage filter. If
that happens, the output signal of the second stage will not show
evidence of clipping, even though it is distorted. For the second-
stage amplifier, we selected the resistor values of 470 kΩ, 1MΩ,
and 2MΩ to achieve the designated gain. The calculated gains
from this combination were 2,200≈ 47× 47, 4,700= 47× 100,
and 9,400= 47× 200, respectively. However, due to the limited
open loop gain and filtering effects of the two-level OpAmp
circuit, the actual gains of the configuration were approximately
g1 = 2,200, g2 = 4,400, and g3 = 6,400 (Low-Voltage, 2009). With
chosen configurations, over 90% of the impulses induced by
detected footsteps are not clipped with g1, and the background
structural vibration noise after amplification is still less than 1/10
of the entire resolution range with g3.

We placed a prototype sensing node, which is shown in
Figure 5, in a hallway and collected data from all configura-
tions when a pedestrian passed by, and the signals are shown in
Figure 6. The blue, red, and black linesmark signals collectedwith
configurations of g3, g2, and g1 respectively. Figures 6A–C are
signals collected with fixed configurations, fromwhich we can see
footstep signals of different amplitude. Figure 6D demonstrates

FIGURE 5 | Sensing node.

the footstep signals of highest resolution without clipping, i.e., the
first six footsteps of g1 configuration, and the rest signals of g2 and
g3 configurations. To automatically adapt these configurations
during sensing, the signal condition prediction is needed, which
we will explain in the next section.

7. EVALUATION

To understand the system’s performance on high-fidelity signal
acquisition, we conduct pedestrian monitoring experiments to
evaluate the system. First of all, we introduce the metrics used to
define the “high-fidelity signal,” which is used to measure the per-
formance of the system. Next, we present the experiments. Finally,
we analyze the results of experiments to verify our system design.

7.1. Evaluation Metrics
Signals that exhibit high distortion or low resolution make it
difficult if not impossible to acquire accurate information on
vibrations induced by different impulses. Thus, we define “high-
fidelity signals” to be signals that minimize signal distortion and
noise while maximizing signal resolution. In this subsection, we
present the metrics we use to measure and evaluate high-fidelity
signals quantitatively.

7.1.1. Signal Resolution
Signal resolution in the context of this paper refers to the num-
ber of bits used to represent a signal. We defined the sufficient
resolution range in Section 4. To determine if a Step Event is of
sufficient resolution, its magnitude is calculated as the maximum
absolute value of the zero-mean Step Event signal, and if the
magnitude falls into the defined sufficient resolution range, we
consider this Step Event is of sufficient resolution. Therefore, the
rate of Step Events that of sufficient resolution over all the detected
Step Events measures the general signal resolution level. Based on
such definition, we define sufficient resolution rate (SRR) as

SRR =
#sufficient resolution StepEvents

#detected StepEvents . (11)

The higher the SRR value, the more signals of high resolution,
and the higher the general signal resolution. In the analysis, we
normalize the SRR by the maximum possible SRR value the given
system hardware configurations can achieve. This normalized
SRR evaluates the performance of LPP and GPP.

7.1.2. Signal Distortion
Signal distortion refers to the degree a measured signal shape
differs from the defined baseline. In this work, we focus on the dis-
tortion caused by clipping. Therefore, to measure the proportion
of Step Events that suffers from such distortion, we calculate the
clipping rate of the detected Step Events. The lower the clipping
rate, the less signal distortion the system experiences.

7.1.3. Signal Magnitude
Signal magnitude is defined as the maximum absolute value
of a zero-mean step event signal. It indicates how many digits
are actually used to represent the signal. In the ideal scenario,
the system should achieve maximum signal magnitude for each
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FIGURE 6 | Example of multiple amplification gain configuration. (A–C) Signals collected with amplification gain of 2,200, 4,400, and 6,400. (D) The signal of
optimal resolution selection from events detected in panels (A–C). The impulses shown as black lines are of gain 2,200, and those shown as red lines are of gain
4,400. The blue lines are the original line from panel (A) which is of the starting amplification gain 6,400.

predicted step event signal. However, due to the variation and ran-
domness in human activities as well as the monitored structure,
the prediction result can vary, i.e., even a Step Event is count as of
sufficient resolution, it might not have maximum magnitude. On
the other hand, for different definitions of sufficient resolution,
the same magnitude may be of sufficient or insufficient resolu-
tion. Therefore, we usedmagnitude to reveal detailed information
about each Step Event.

7.2. Experiment
We conducted experiments to evaluate the system from three
different perspectives. First of all, to understand the variables of
the proposed system, we evaluated the calculated configuration
setting, LPP, and GPP, respectively, through a simulation with
different numbers of amplification levels (l< n) implemented
(Section 7.3). Then to evaluate the signal quality with the imple-
mented hardware, we placed five sensing nodes in a busy hallway
and measured the signal condition with and without our sys-
tem (Section 7.4). Finally, we evaluated the system’s localization
performance by comparing the localization accuracy with and
without the adaptive amplification design (Section 7.5).

7.3. Evaluation I: System Variables
The system design is determined by two factors as discussed
in Section 4: (1) the definition of sufficient resolution and (2)
the implemented number of amplification gains. In this section,
we specifically evaluate the system behavior in these two factors
under perfect amplification settings by generating an amplified
10-bit signal through a high resolution oscilloscope signal of
people walking by one sensor.

TABLE 3 | Acronyms.

Acronym Meaning

LPP Local profile prediction
GPP Global profile prediction
SRR Sufficient resolution rate

In total, 15 traces are collected as the seeds for the 10-bit
signal generation. Each seed generates N traces of different
amplification settings. The minimum amplification gain does
not have any signal beyond the sufficient resolution, while the
maximum amplification gain has maximum 0.5% clipped signal
among the entire trace of signals. This discrepancy means the
starting and ending steps are not clipped while most of the
close-to-sensor step signals are clipped. In total 5 sensors with
different structural impulse response strength rates are simulated
for each collected trace. For the first sensor, the step strength
for each trace is derived from the seed, and for the rest of the
sensors, the step strength for each step is calculated with a ratio
of structural_rate× (1+ human_noise) to simulate the human
behavior noise as well as structural variation.

We compare five cases in general: (1) only the LPP algorithm;
(2) the baseline, which is defined as themedian amplification level
available; (3) the ground truth, which is the upper bound perfor-
mance the system can achieve with the implemented hardware,
i.e., the system rejects the settings that result in clipping signal
and keeps the highest resolution signal that is not clipped; (4) only
the GPP algorithm; and (5) both the LPP and GPP conducted
collaborative sensing as discussed in Section 5.3. The acronyms
used in the evaluation section are summarized in Table 3.
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FIGURE 7 | System parameter change: sufficient resolution definition. When the sufficient resolution definition becomes restrict (range [T1, T2] reduces), the
SRR reduced for all cases, including LPP, baseline, ground truth, GPP, and LPP+GPP.

7.3.1. Sufficient Resolution Definition
To understand the effects of different sufficient resolution defini-
tion, we define the sufficient resolution parameter as T2 = 1,024
and T1 = i/16 T2, with i= 1, . . ., 15. For each definition case, we
generate N level of amplified traces as described earlier and run
the LPP algorithm through the N level amplifications. Figure 7
demonstrates the SRR, clipping rate, and signal magnitude of the
results: (1) the blue line with+markers demonstrates the LPP
algorithm, (2) the red line demonstrates the baseline, (3) the
yellow line demonstrates the ground truth result, (4) the purple
line with circle markers shows the GPP algorithm, and (5) the
green line with cross markers demonstrates results with both LPP
and GPP.

When the value of T1/T2 is low, meaning a large portion
of the signal between −512 and 512 is considered as sufficient
resolution, the change between different amplification gains is
large (gi+1/gi =T2/T1). Therefore, a lower number of amplifiers
(N) are needed to cover the variation of the footstep signals. This
also means that more low magnitude step signals are considered
as signals of sufficient resolution and have a high SRR and a low
signal magnitude. With the increase of the value of T1/T2, the
clipping rate remains stable, while the signal magnitude increases.
This means that the signal quality increases, but due to the incre-
ment of the sufficient resolution definition, the SRR decreases.

In addition, since the GPP is focused on decreasing the clipping
rate and hence increasing the sufficient resolution rate, we further
explore a fourth metric, the critical signal SRR, which includes
only 5 steps with the highest signal-to-noise ratio in a trace.

LPP in general outperforms the baseline when the definition of
the sufficient resolution is over 1/4 of the entire resolution range
in terms of SRR and signal magnitude by an average of 5 and 34%,
respectively. GPP reduces the clipping rate when compared to the
baseline when the sufficient resolution is between 1/4 and 3/4 of
the entire resolution range, therefore causing a clipping rate 1.6×
lower and lowering the signal magnitude as well. When LPP and
GPP are combined, the SRR is higher than either algorithm per-
forming alone by 10% on average and raises the signal magnitude
by 12% on average. In general, for all the metrics, the LPP and
GPP combination follows the trend of LPP and outperforms the
LPP mostly in the critical step signals with high signal-to-noise
ratio. This advantage shows an average increase of 10% and up to
4× increase for the highest T1/T2 value when the definition of the
sufficient resolution is of a high standard (T1/T2 value high) for
the critical step signal SRR.

7.3.2. Number of Amplifications
In an ideal scenario, the system could have an infinite number
of amplification levels to cover an infinite range of amplification

Frontiers in Built Environment | www.frontiersin.org May 2017 | Volume 3 | Article 2810

http://www.frontiersin.org/Built_Environment
http://www.frontiersin.org
http://www.frontiersin.org/Built_Environment/archive


Pan et al. Pedestrian Induced Structural Responses Monitoring

needs. However, in reality, only a limited number of amplification
levels can be implemented. Because of this, the number of ampli-
fications actually implemented affects the amplification range the
system can achieve and therefore affects the system performance.
Based on the results from the experiment results in Section 7.3.1,
we selected the definition of T1/T2 = 12/16, which introduces
seven levels of amplification gains. The number is selected so that
there are large enough available amplification gains involved to
demonstrate the system performance when different numbers of
amplification gains are implemented.

To understand the number of implementation of amplifica-
tions, we selected themedian level of amplification, then increased
the number of levels by adding one smaller and one larger amplifi-
cation gain each time, and explored the system performance with
these different number of gains. Figure 8 shows the evaluation
results of SRR, clipping rate, and the signal magnitude when
these different numbers of amplification gains are used. Each
metric shows an increasing trend for all evaluated scenarios except
the baseline, since the baseline is a fixed amplification setting
only affected by the definition of the sufficient resolution rate.
The more amplification gain levels are implemented, the more

adaptable levels can be used for selection, therefore increasing
the sufficient resolution rate and signal magnitude. On the other
hand, the more choices on the high amplification gains the sys-
tem is allowed to have, the higher the chance that the system
selects a higher amplification gain that causes clipping, hence the
increasing clipping rate as well.

7.4. Evaluation II: Adaptive Amplification
To evaluate the system performance in the real-world scenario, we
conducted the experiment with a small-scale deployment of five
sensing nodes in a school building. We mounted these sensing
nodes in a hallway (approximately 20m× 2m area, tile floor)
inside the school building as shown in Figure 9. The system
sampled the vibration data at 1,000Hz in three amplification
configurations. The Real-Time-Clock module on each sensing
node provided timestamps for each sensing node’s data collection.
10 subjects were asked to walk naturally down a hallway with no
restriction on activities (e.g., cell phones, conversing), with the
footstep data being picked up by the system. Figure 10 demon-
strates an example of one of the subjects walks along the hallway
passing five sensors deployed.

FIGURE 8 | System parameter change: number of amplification gains. When the number of amplification gain implemented is increased, the SRR of the
ground truth and the LPP+GPP increases. The clipping rate of the ground truth remains zero since the system can always reject the clipped signal, while that of the
LPP+GPP increases due to the prediction error.
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FIGURE 9 | Deployment floor plan of experimental setups in a school building. Five sensing nodes are deployed in a straight line, approximately 3m apart.
Sensors are directly attached to the floor.
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FIGURE 10 | Structural vibration signal detected by sensors when a pedestrian walks by. (A) Sensor 1 vibration signal. (B) Sensor 1 signal windowed
energy. (C) Sensor 2 vibration signal. (D) Sensor 2 signal windowed energy. (E) Sensor 3 vibration signal. (F) Sensor 3 signal windowed energy. (G) Sensor 4
vibration signal. (H) Sensor 4 signal windowed energy. (I) Sensor 5 vibration signal. (J) Sensor 5 signal windowed energy.

With the data from the experiment, we conduct configuration
adaptation to compare our system (LPP+GPP)with fixed config-
urations. Figure 11A shows the normalized SRR from three dif-
ferent fixed amplification configurations (g1 = 2,200, g2 = 4,400,
and g3 = 6,400), an adaptive configuration using only LPP, and
an adaptive configuration with LPP+GPP, respectively, 32, 36,
61, 67, and 69%. The system improvement comparing to g1, g2,
and g3 are at least 1.7× and up to 2×. Note that the algorithm is
designed for regular footsteps, i.e., footsteps from the same person
are assumed to be the same impulses, and uses fixed padding
values (P1 and P2 as described in Section 5.1.3). However, the
randomness in human footsteps introduced prediction errors,
leading to an approximately 30% lower SRR value compared to
hardware limitation. The LPP achieves higher SRR compared to
that of g1, g2, and g3. g3 and g2 amplify the near field signal so that
many of the signals are clipped, leading to low count on sufficient
resolution rate. To validate that, we also demonstrated clipping
rate of these configurations in Figure 11B, of which values are,
respectively, 3, 15, 21, 11, and 11%. g1 obtains most of the near
field signals without clipping, but the far field signals are of low

resolution due to insufficient amplification, therefore lowering the
SRR. In order to understand the low resolution effects, we also
present average signal magnitude in Figure 11C. As mentioned
earlier, the magnitude of a signal is defined as the maximum
absolute value of the zero-mean signal. The figure shows that fixed
gains have an expected effect on magnitude while LPP and GPP
sometimes reduce and increase gain as needed. The GPP only
made slightly higher SRR comparing to LPP in this experiment
due to the relative uniform nature of the structure.

7.5. Evaluation III: Application
We further investigated the system with the application of 1-
D localization based on a footstep-induced vibration amplitude
decay model (Viktorov, 1970). Based on the Rayleigh-Lamb wave
propagation model, we used the system to locate where the pedes-
trian passes the sensor in a hallway. Accurately detecting the
passing point allows localization of the person in one dimen-
sion. To evaluate that, we fixed the parameters we investigated
in Section 7.3 to T1/T2 = 12/16 and the number of amplification
levels as 7. Then, we selected the detected step signal with the
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FIGURE 11 | Evaluation of the system with the system performance experiment. Approximate amplification ratios for fixed sensing configurations are
g1 = 2,200, g2 = 4,400, and g3 = 6,400. The performance of LPP, as well as LPP+GPP, has higher SRR than the fixed configurations. g3 has highest average
signal magnitude resulting from its high clipping rate. Therefore, LPP+GPP’s over all performance is improved compared to fixed amplification gains. GPP results are
similar to LPP results due to the lack of structural effects in this experiment. (A) Sufficient resolution rate. (B) Clipping rate. (C) Signal magnitude.

highest amplitude as the passing point. We compared the step
count error of our system to that of the fixed amplification, in this
case selecting the middle level (level 4). The average error for our
system in detecting the step where the pedestrian is passing the
sensor is 0.47m, and the average error for the fixed amplification
is 1.13m. Our system shows a 2× less step error when used to
locate the pedestrian steps.

8. DISCUSSION

In this section, we discuss the system limitations, the design trade-
off, themultiple pedestrian sensing conditions, and themotivating
use-cases for the system.

8.1. System Limitations
The limitations of our system come frommainly two assumptions:
(1) the assumption that pedestrian-induced structural vibrations
have the signal strength that can be predicted and (2) the assump-
tion that the algorithm selects from the amplification configura-
tions so that the monitored signal has a sufficient resolution using
at least one of the amplifier gains. When the pedestrian-induced
structural vibration strength is not predictable, e.g., erratic crowd
behavior, the system prediction accuracy will decrease, which
will reduce the signal fidelity. When the monitored signal is
extremely high or low in amplitude, the system configuration
may always be clipping or of insufficient resolution, despite
the accurate prediction, due to a limited number of amplifier
configurations.

8.2. Design Trade-offs
Our system implementation considers the trade-offs between a
number of analog-to-digital converters and the sampling rate.
When the system has access to a large enough number of analog-
to-digital converters, which connects to a large enough number
of amplification settings, and can sample at a high enough rate,
the system, in theory, can obtain highest resolution signal for all
monitored structural responses. When the number of analog-to-
digital converters is limited, and the sampling rate is high enough,
the system can still obtain signals from all available amplification
settings. In this case, the system can reject clipped signals, and
keep the highest resolution signal without clipping, which is the
ground truth scenario in our evaluation. In many practical sce-
narios, however, it is difficult if not impossible for the system to
sample many analog-to-digital converters at the same time, due
to limited sampling rates. Then, the LPP and the GPP are used
to predict and select the amplification settings needed, and the
prediction errors cause the clipping and insufficient resolution
incidences we see in the evaluation.

8.3. Multiple People Sensing
When multiple people passing the sensing area at the same time,
the vibration signals induced by their steps mix. When people
passing by the sensing area in a different manner (side by side,
one after another, toward each other, etc.), their footstep signals
may show different energy change patterns, which may not agree
with the heuristic rules used in LPP. In this case, our system can
utilize the mobility model of the pedestrians and rely on the GPP
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more than LPP to achieve more stable prediction of the structural
response strengths.

8.4. Motivating Use-Cases
Monitoring human activity-induced excitations enables human
information inference. When people walk on the floor, the
footstep-induced structural vibration can be used to track, iden-
tify, and count pedestrian in the sensing area (Pan et al., 2014,
2015, 2016; Mirshekari et al., 2016). When people lie on the bed,
their heartbeat-induced vibration can also be detected, hence be
used for health status estimation (Jia et al., 2016). When people
cook in the kitchen, play games in the living room, or cleaning
in the house, their interaction with the physical environment
induces structural vibration too, which enables activity recog-
nition (Kodeswaran et al., 2016). Furthermore, this inevitable
interaction with the objects in the physical environment makes
it possible to turn ambient objects with a flat solid surface into a
touch screen (Pan et al., 2017). These types of information enable
smart home applications such as kid monitoring and kitchen
safety monitoring. When deployed in large-scale scenarios, such
as in a nursing home or hospital, the human activity-induced
excitation monitoring can enable patient/elderly monitoring.

9. CONCLUSION

In this paper, we introduce a high-fidelity structural vibration
acquisition sensing system. It is an easy-to-install sparse sensing
system that improves the sensing signal fidelity through adapting
hardware configurations based on target signal prediction. The
prediction is achieved through two key aspects: (1) each individual
sensor predicts the step strength change based on a pedestrian
walking model and (2) networked devices collaboratively predict

the step strength through a global profile on a structural variation
model. In our pedestrian footstep monitoring application, our
system demonstrated up to 2× increase on SRR in our evaluation
experiments and up to 2× less error rate when used to locate
the pedestrian when they walk along the hallway. We believe
that such a signal acquisition system can be applied to various
future applications in smart buildings for human activity-induced
excitation vibration data acquisition.
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