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A new method of robustness evaluation is proposed for an elastoplastic base-isolated
high-rise building considering simultaneous uncertainties of structural parameters. Since
it is difficult to evaluate the robustness of elastoplastic structures due to heavy compu-
tational load on the time-history response analysis including elastoplastic response, a
double impulse input is used to provide a closed-form solution of the critical response
of a single-degree-of-freedom (SDOF) elastic–perfectly plastic structure under a near-
field ground motion. Introducing an equivalent elastoplastic SDOF model of a base-
isolated high-rise building, the worst combination of uncertain structural parameters, i.e.,
the stiffness and yield deformation at the base-isolation story and the stiffness of the
superstructure, can be derived which leads to the upper bound of the critical elastoplastic
response. It is shown that, by using the derived upper bound of the critical response,
the robustness function, a measure of the robustness, of elastoplastic structures can be
evaluated efficiently. In numerical examples, the robustness of a 30-story base-isolated
high-rise building is compared with those of other models with different yield deformations
at the base-isolation story to find a preferable design with larger robustness.

Keywords: robustness evaluation, critical response, double impulse, base-isolated building, elastoplastic
response, robust design

INTRODUCTION

To enhance the structural safety of buildings, the variation of their structural performances with
respect to various uncertainties should be evaluated from the view point of robustness. Uncer-
tainties of design ground motions and structural parameters resulting from various sources, e.g.,
unpredictability of natural phenomena, material-property variability, initial manufacturing error,
aging deterioration of performance, are of great concern in assessing the structural performances.
In particular, the isolators, e.g., natural rubber bearing (NRB), used for base-isolated buildings have
large variations of structural properties and should be used with careful attention. It is therefore
desired to evaluate these variations of structural performances efficiently.

The interval evaluation methods of structural performances based on a probabilistic or non-
probabilistic approach have been studied extensively (Ben-Haim and Elishakoff, 1990; Ben-Haim
et al., 1996; Qiu andWang, 2003; Elishakoff and Ohsaki, 2010; Fujita and Takewaki, 2011; Roy et al.,
2012; Guo and Li, 2013; Han et al., 2014; Yang et al., 2015, 2017). Furthermore, the robustness
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evaluation methods have been proposed as advanced methods for
evaluating the toughness of structures under various uncertain
circumstances. A number of studies on the robustness evaluation
methods and its application to the robust design have been dis-
cussed for various building models (Kanno and Takewaki, 2006;
Matsuda and Kanno, 2008; Takewaki, 2008; Tsompanakis et al.,
2008; Fujita and Takewaki, 2012).

A non-probabilistic robustness index, called the robustness
function, was introduced by Ben-Haim (2006) based on the so-
called info-gap model to evaluate the structural robustness as a
quantitative index. The robustness function can be defined as
the maximum allowable uncertainty level in parameters to satisfy
the specified structural performance demand. In this formulation,
the interval parameter is one of the non-probabilistic uncertain-
but-bounded parameters based on the info-gap model. By using
the abovementioned structural uncertainties and the robustness
function, the robustness with respect to various structural per-
formances in various structural models has been investigated so
far (Takewaki and Ben-Haim, 2005; Kanno and Takewaki, 2006;
Matsuda and Kanno, 2008; Fujita and Takewaki, 2011). Although
the robustness using the robustness function has been studied
extensively, most object structures were modeled as elastic struc-
tures. Since the evaluation of the maximum elastoplastic defor-
mation of structures using time-history response analysis is too
time-consuming, a few references can be found in this field.

To take into account the uncertainty of earthquake ground
motions in a reliable manner, it may be important to find the
critical excitation which maximizes the structural responses. As a
simplified pulse-typemodel of near-fault groundmotions, Kojima
and Takewaki (2015) introduced the double impulse input and
derived the critical input interval, which maximizes the peak
elastoplastic response. In the theory of critical double impulse
input, a closed-form solution of the critical response, i.e., themax-
imum elastoplastic displacement, to this critical double impulse
input has been formulated for an undamped elastoplastic single-
degree-of-freedom (SDOF) model. By using this closed-form
solution of the critical elastoplastic response, Kanno and Take-
waki (2016) and Kanno et al. (2017) investigated the robustness
evaluation method for elastoplastic structures under the simul-
taneous structural uncertainties. However, since the closed-form
solution of the elastoplastic displacement proposed by Kojima
and Takewaki (2015) is applicable only to SDOF models, the
structural uncertainties are limited to two parameters, i.e., only
the fundamental natural frequency and yield deformation.

In this paper, the robustness evaluation method for base-
isolated high-rise buildings is presented where simultaneous
uncertainties are considered for both the elastoplastic property,
i.e., stiffness and yield deformation, of the base-isolation story
and the stiffness of the superstructure. The base-isolated high-
rise building is treated first as a two DOF model. To apply the
closed-form solution of the elastoplastic displacement of an SDOF
model, the two DOF model is transformed first into an equiva-
lent elastoplastic SDOF model. The upper bounds of the critical
elastoplastic response of the base-isolation story and the elastic
response of the superstructure are derived where the worst case
scenario of the uncertain structural parameters are investigated
in detail. Finally, by applying the derived supremum value of the
upper bound of the critical elastoplastic responses to the objective
function of the robustness function, the robustness of the base-
isolated building is evaluated for several yield deformations at
the base-isolation story. It is shown through numerical examples
that a preferable design of the nominal yield deformation at the
base-isolation story exists in base-isolated high-rise buildings to
make the robustness in terms of elastoplastic structural responses
larger.

MAXIMUM ELASTOPLASTIC RESPONSE
UNDER CRITICAL DOUBLE IMPULSE
INPUT

In this section, a simplified response evaluation method used for
the robustness evaluation is briefly explained where the maxi-
mum elastoplastic response of an SDOF elastic–perfectly plastic
structure under the critical double impulse is expressed in closed
form.

Kojima and Takewaki (2015) introduced the double impulse
to represent the principal part of a pulse-type near-fault ground
motion and derived the closed-form maximum elastoplastic
response of an SDOF structure by considering the energy balance
and the critical timing of the double impulse. Figure 1 shows
an example of the double impulse compared with one-cycle sine
wave. Let us consider an undamped elastic–perfectly plastic SDOF
system with ω and dy as the undamped natural circular frequency
and the yield deformation, respectively. The double impulse can
be described by the following equation:

üg(t) = Vδ(t) − Vδ(t − t0) (1)
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FIGURE 1 | One-cycle sine wave as representative of principal part of near-fault ground motion and double impulse (Rinaldi station fault-normal
component, Northridge 1994) (A) acceleration, (B) velocity.
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where V, t0, and δ(t) denote the amplitude (velocity level) of
impulse, the time interval between the first and second impulses,
and the Dirac delta function, respectively. It has been shown
that there exists the critical time interval tc0 for a given input
level V, which maximizes the elastoplastic deformation of the
SDOF system. In the past study, it was made clear that tc0 is
the time when the restoring force of the SDOF system after the
first impulse becomes 0. Let w(1) and w(2) denote the absolute
value of the maximum deformation after the first and second
impulses, respectively. Then, themaximum elastoplastic deforma-
tion of the SDOF system can be obtained as max {w(1), w(2)}. This
maximum deformation is defined as the critical response wc. By
specifying tc0 and V, uc can be derived from the energy balance as
follows:

wc(ω; dy;V) =
(2/ω)V (0 < V ≤ Vy/2){
2/(ω2dy)

}
V2 + (1/2)dy (Vy/2 < V ≤ Vy)

(1/ω)V + (3/2)dy (Vy < V ≤ (
√
3 + 1)Vy){

1/(2ω2dy)
}
V2 + (1/2)dy ((

√
3 + 1)Vy < V)

(2)

whereVy is defined as the velocity atwhich the structure just yields
after the first impulse andω denotes the natural circular frequency
of the SDOF system using initial elastic stiffness. Therefore, Vy
represents the strength of the SDOF system given by Vy = ωdy
with dy being the yield deformation. In Eq. 2, wc is categorized by
the input level V. This is because the energy balance equation of
the elastoplastic deformation exhibits different situations accord-
ing to the amplitude of V. By substituting Vy = ωdy in Eq. 2, the
inequality equations can be described in terms of either ω or dy.
From the observation of the variation of wc, Kanno et al. (2017)
showed the monotonicity of wc with respect to ω and the non-
monotonicity ofwc with respect to dy.Figure 2 shows the variation
ofwc with respect to dy for a fixed ω. It has been shown thatwc can
be minimized at w(1) =w(2).

UPPER BOUND OF DISPLACEMENT OF
ELASTOPLASTIC BASE-ISOLATED
HIGH-RISE BUILDING UNDER
SIMULTANEOUS UNCERTAINTIES IN
STRUCTURAL PARAMETERS

To evaluate the robustness of elastoplastic base-isolated high-
rise buildings for various uncertainties, it is desired to obtain
the maximum structural response without large computational
load. Kanno et al. (2017) presented the robustness evaluation
method using an SDOF model subjected to the critical double
impulse. It was shown that, by using the closed-form solution of
the maximum elastoplastic displacement derived by Kojima and
Takewaki (2015), the robustness of the SDOF model exhibiting
elastoplastic responses can be derived efficiently. However, in the
previous study, only two parameters, i.e., the yield deformation
and the natural frequency of the SDOF model, were treated as
uncertain parameters. To apply the robustness evaluation method
using the critical double impulse to a practical building model, a
base-isolated high-rise building is considered in this paper.

Relationship between Equivalent SDOF
Model and 2DOF Base-Isolated Building
Model
As a simplified structural model of a base-isolated building, a
2DOFmodel is often used in the seismic analysis where themasses
of the superstructure are reduced to a single mass (Naeim and
Kelly, 1999). Furthermore, to apply the closed-form solution of the
critical elastoplastic displacement as shown in Eq. 2, it is necessary
that a 2DOF model is further reduced to an equivalent SDOF
model (Figure 3).

Let m1, k1, and dy1 denote the mass, elastic stiffness, and yield
deformation of the base-isolation story, respectively. In addition,
let m2 and k2 denote the mass and stiffness of the superstruc-
ture, respectively. The restoring-force characteristic of the base-
isolation story is assumed to be elastic–perfectly plastic. This is

FIGURE 2 | Non-monotonicity property of critical elastoplastic response with respect to yield deformation.
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FIGURE 3 | Simplified model of base-isolated high-rise building.

a simple model of the combination of natural rubbers and steel
dampers. The elastic–perfectly plastic structure model can be
regarded as a simplified model with safer margin. This is because
the seismic response of the elastic–perfectly plastic model may
often be larger than that of the bilinear model considering sec-
ondary stiffness. On the other hand, the superstructure is regarded
to be elastic due to the seismic response reduction by base-
isolation. Since the mass of the base-isolation story is relatively
small compared with that of the high-rise superstructure, the
mass me of the equivalent SDOF model can be given by m2, i.e.,
m1 is neglected. The equivalent stiffness ke of the SDOF model
can be given as the series model of k1 and k2 by the following
equation:

ke =
k1k2

k1 + k2
(3)

Then, the equivalent natural circular frequency ωe can be
obtained as ωe =

√
ke/me. Therefore, ωe is a function of k1

and k2. A closed-form solution, Eq. 2, for the SDOF model was
derived by ignoring the inherent damping. It seems that this
approximation provides a larger response than that of the model
with the inherent damping. Therefore, the inherent damping is
neglected here.

Figure 4 shows the restoring-force relation of the 2DOFmodel
and the equivalent SDOF model. Since the yield forces of those
models are the same due to the simplification using a series
model, the equivalent yield deformation dye can be derived by the
following equation:

dye = dy1
(
1 +

k1
k2

)
(4)

Finally, by substituting ωe and dye of the equivalent SDOF
model into Eq. 2, the maximum elastoplastic displacement of the
base-isolated high-rise building model subjected to the critical
double impulse can be obtained in the closed-form.

In base-isolated high-rise buildings, the investigation on
higher-mode effects and overturning effects may be necessary.
It should be noted that, while the story shear forces are highly
influenced by higher-modes, their effects on the building top
displacement and the isolation-story displacement are rather lim-
ited. These will be discussed in the future. Because the principal
purpose of the present paper is to focus on the robustness analysis
of base-isolated high-rise buildings with plastic deformation, a

A B

FIGURE 4 | Restoring force–displacement relations of simplified
structural models: (A) 2DOF model, (B) single-degree-of-freedom
(SDOF) model.

rather simplified model enabling the derivation of closed-form
expression of the maximum response is used. The relationship
between the 2DOF model and the SDOF model is discussed in
Appendix (Taniguchi et al., 2016a,b).

Closed-Form Expression of Upper Bound
of Maximum Critical Elastoplastic
Response
In this section, the upper bound of the maximum critical elasto-
plastic displacementwc(ωe; dye;V) of the equivalent SDOFmodel
is investigated with respect to simultaneous uncertainties of k1,
k2, and dy1. In the following formulations, the maximum critical
elastoplastic displacement for a fixed input level V is treated as
a function of k1, k2, and dy1. Therefore, we redefine it as uc(k1;
k2; dy1) instead of wc(ωe; dye; V) in Eq. 2. While the maximum
displacement uc means the maximum value with respect to time,
the upper bound of uc represents the maximum value of uc in the
structural uncertainties.

The uncertain parameters k1, k2, and dy1 are given by the inter-
val parameters based on the info-gap model (Ben-Haim, 2006).
The interval parameters k1, k2, and dy1 are bounded in terms of
the upper and lower bounds of each parameter as follows:

0 < k−1 ≤ k1 ≤ k̄1

0 < k−2 ≤ k2 ≤ k̄2

0 < d−y1 ≤ dy1 ≤ d̄y1 (5a,b,c)

where the upper and lower bar symbols denote the upper and
lower limits, respectively, of the interval parameters.

To derive the upper bound of uc with respect to simultane-
ous uncertainties of k1, k2, and dy1, it is important to under-
stand first the property of uc with respect to the variation of
k1 and k2. In Eq. 2, wc (uc in this section) can be regarded
as an increasing function of 1/ω in all categories. Therefore, if
dye is fixed as a constant value during the variation of k1 and
k2 in Eq. 2, it is evident that uc decreases with respect to the
increase of ω. Furthermore, since ∂ke/∂k1 = (k2/k1 + k2)2 > 0,
∂ke/∂k2 = (k1/k1 + k2)2 > 0 are derived from Eq. 3, the mono-
tonicity of ωe with respect to k1 and k2 can be obtained as
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∂ωe/∂k1 > 0, ∂ωe/∂k2 > 0. From above investigations on the
monotonic properties of uc with respect to ω(=ωe) and ωe with
respect to k1 and k2, the relationship betweenuc and k1, k2 for fixed
dye can be derived as follows:

∂uc(k1, k2)
∂k1

< 0, ∂uc(k1, k2)
∂k2

< 0 (dye = const.) (6a,b)

Although dye defined by Eq. 4 can be regarded as a function of
k1 and k1, dye can be understood as a constant value by choosing
dy1 appropriately within the interval in Eq. 5c. From Eq. 6a, b,
it can be observed that uc increases when k1 and k2 decrease for
any fixed value of dye. This monotonicity of uc can be used to
derive the upper bound of uc with respect to the variation of
uncertain parameters k1, k2, and dy1. It should be noted that this
monotonicity of uc is not applicable to actual groundmotions with
randomness.

Consider the interval of the equivalent yield deformation dye.
This is because uc may be non-monotonic function of dye and it
is useful to deal with dye directly in the uncertainty analysis. The
upper and lower bounds of dye with respect to the interval param-
eters k1, k2, and dy1 can be derived from the interval arithmetic
well known in the interval analysis as follows:

d−y1

(
1 + k−1/k̄2

)
≤ dye ≤ d̄y1

(
1 + k̄1/k−2

)
(7)

In Eq. 7, the variation of dye is limited by the upper and lower
bounds. We suppose that three intervals of the interval of dye,
called the intervals I–III, can be categorized as follows:

d−y1

(
1 + k−1/k̄2

)
≤ dye < d−y1

(
1 + k−1/k−2

)
[Interval I]

d−y1

(
1 + k−1/k−2

)
≤ dye ≤ d̄y1

(
1 + k−1/k−2

)
[Interval II]

d̄y1
(
1 + k−1/k−2

)
< dye ≤ d̄y1

(
1 + k̄1/k−2

)
[Interval III] (8)

where the lower bound of interval I coincides with that of the
whole interval of dye in Eq. 7 and the upper bound of interval III
coincides with that of interval of dye.

First, we consider the upper bound of uc in interval II. Since
the upper and lower bounds of dye are determined only by the
difference of dy1 in the interval II, k1 and k2 can be given by the
lower bounds as k1 = k−1, k2 = k−2 for any dye when dy1 is
determined by the following equation:

dy1 = dye
k−2

k−1 + k−2
(9)

Since uc is maximized at k1 = k−1, k2 = k−2 for fixed dye as
explained in Eq. 6, it can be concluded that the upper bound of
uc in the interval II is derived by the combination of uncertain
parameters in k1 = k−1, k2 = k−2, and dy1 in Eq. 9. Figure 5
shows the conceptual diagram for determination of the upper

FIGURE 5 | Determination of upper bound of maximum elastoplastic
displacement (interval II).

bound of uc in the interval II. The categorized interval of dye in the
intervals I–III is not related with the categorization of the interval
due to the non-monotonicity property of uc as shown in Figure 2.
Therefore, the variation of the upper bound is varied according to
the nominal design.

Secondly, the upper bounds of uc in the interval I and III are
investigated. In the interval I and III, k1 and k2 cannot be given by
the lower bounds k1 = k−1, k2 = k−2. This is because the upper and
lower bounds of dye in the interval I are determined so that dy1
reaches the lower bound of itself and those in the interval III are
also calculated so that dy1 reaches the upper bound of itself. For
example, when the upper bound of dye in the interval I is given by
k1 = k−1, k2 = k−2, and dy1 = d−y1, k2 is needed to be increased to
decrease dye. This can be easily understood from the definition of
dye in Eq. 4. In this case, k2 for a fixed value of dye can be described
as follows:

k2 =
d−y1

dye − d−y1
k−1 (10)

In a similar way, the upper bound of uc in the interval III can
be derived by k2 = k−2, dy1 = d̄y1, and k1 is given by the following
equation:

k1 =
dye − d̄y1

d̄y1
k−2 (11)

Finally, the upper bound of uc(k1; k2; dy1), defined as ūc, can be
summarized as follows:

ūc =


uc

(
k−1; d−y1k−1

/(
dye − d−y1

)
; d−y1

)
[Interval I ]

uc
(
k−1; k−2; k−2dye

/(
k−2 + k−1

))
[Interval II],

uc
(
k−2

(
dye

/
d̄y1 − 1

)
; k−2; d̄y1

)
[Interval III]

(12)
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Figure 6 shows the diagram for determination of ūc with
respect to the variation of k1, k2, and dy1. The supremum value
of the maximum critical elastoplastic displacement can be derived
from the maximum value of ūc.

Evaluation of Upper Bound of Maximum
Elastoplastic Displacement at
Base-Isolation Story
The supremum value of the upper bound of the maximum dis-
placement derived in the previous section corresponds to the
maximumdisplacement of the superstructure including the defor-
mation of the base-isolation story. However, the maximum defor-
mation at the base-isolation story may be needed in the practical
design. To apply the proposed method to evaluate the response
of the base-isolation story, the maximum displacement ucI at the

FIGURE 6 | Determination of upper bounds and supremum value of
maximum elastoplastic displacement for critical double impulse.

base-isolation story is obtained in this section by using uc derived
for the equivalent SDOF model.

Figure 7 shows the comparison of the restoring-force charac-
teristics of the 2DOF model and the SDOF model. In the case
where the base-isolation story yields after the first or second
impulse, the plastic deformations of the 2DOF model and the
equivalent SDOF model is the same. This is because the super-
structure in the 2DOF model is assumed to be elastic. In this
case, ucI can be estimated as shown in Figure 7A. In Figure 7A,
u(1) and u(1)

I denote the maximum deformation of the equivalent
SDOF model after the first impulse and that at the base-isolation
story of the 2DOF model, respectively, and u(2) and u(2)

I repre-
sent those after the second impulse. Furthermore, u(1)

p and u(1)
pI

denote the maximum plastic deformation of the equivalent SDOF
model after the first impulse and that at the base-isolation story
of the 2DOF model, respectively, and u(2)

p and u(2)
pI represent

those after the second impulse. On the other hand, in the case
where the base-isolation story is elastic even after the impulse
input, ucI can be determined as shown in Figure 7B. Therefore,
ucI ≡ max{u(1)

I , u(2)
I } can be evaluated by using Eq. 2 as

follows:

ucI(ωe; dye; dy1) =
2dy1V/ωedye (0 < V ≤ Vy/2)

2
ωe2dyeV

2 − 1
2 dye + dy1 (Vy/2 < V ≤ Vy)

1
ωe
V + 1

2dye + dy1 (Vy < V ≤ (
√
3 + 1)Vy)

1
2ωe2dyeV

2 − 1
2 dye + dy1 ((

√
3 + 1)Vy < V)

(13)

Consider the upper bound of ucI , defined as ūcI , with respect to
the variation of k1, k2, and dy1. As a similar formulation to derive
ūc in Eq. 12, the monotonicity of ucI with respect to k1 and k2
cannot be introduced under the constraint that dye is constant.
This is because it is needed to use dy1 and dye in the estimation of
ucI from uc and dy1 is a function of k1 and k2 to keep dye constant.
Therefore, ūcI is derived approximately by substituting the critical
combination of k1, k2, and dy1 in Eq. 12 into the relation of ucI with
uc in Eq. 13.

A B

FIGURE 7 | Estimation of maximum elastoplastic deformation at base-isolation story through comparison of restoring force–displacement relations:
(A) case: u(1) <u(2): both plastic, (B) case: u(1), u(2): both elastic.
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ROBUSTNESS EVALUATION USING
ROBUSTNESS FUNCTION BASED ON
INFO-GAP MODEL

In this section, the robustness function (Ben-Haim, 2006) is
introduced to evaluate the robustness of a base-isolated high-
rise building by using the supremum response of ūc and ūcI
derived in the previous section. The robustness in this paper is
defined as the ability to keep the structural performance within
a certain range under uncertainty of structural parameters. As
shown in Figure 8, if the variation of performance is relatively
small for the variation of design parameters X, the robustness
of the structure is evaluated as high. However, in the case
where the nominal responses are different in various nominal

designs, it is difficult to compare the robustness of each nominal
design.

To evaluate the robustness of a structure, Ben-Haim (2006)
proposed the robustness function as a quantitative index. By
applying the info-gap model to the uncertain parameters in the
2DOF model, the non-probabilistic interval parameters of k1, k2,
and dy1 can be defined in the real coordinate space R as follows:

K1(α) =
{
k1 ∈ R

∣∣∣k̃1 − αΔk1 ≤ k1 ≤ k̃1 + αΔk1, k1 > 0
}

K2(α) =
{
k2 ∈ R

∣∣∣k̃2 − αΔk2 ≤ k2 ≤ k̃2 + αΔk2, k2 > 0
}

D1(α) =
{
dy1 ∈ R

∣∣∣d̃y1 − αΔdy1 ≤ dy1 ≤ d̃y1 + αΔdy1, dy1 > 0
}

(14a,b,c)

A. B.

FIGURE 8 | Comparison of robustness for different nominal designs: (A) difference of robustness for the same nominal design, (B) difference of
nominal design.

A B

FIGURE 9 | Concept of robustness function: (A) nominal design and performance criterion, (B) determination of robustness function.

A B

FIGURE 10 | Practical computation of robustness function: (A) original procedure of specifying performance criterion and (B) inverse procedure of
specifying robustness function.
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where α ≥ 0 denotes the variable range level, i.e., amplitude, of an
interval parameter. The upper tilde symbol indicates the nominal
value and the variations Δk1, Δk2, Δdy1 are normalized at α = 1.

The robustness function α̂ is defined as the maximum value
of α with which the performance requirement is satisfied for
uncertain parameters X(α) described as follows:

α̂(X̃, fc) = max {α| max{f(k1, k2, dy1)|k1 ∈ K1(α),

k2 ∈ K2(α), dy1 ∈ D1(α)} < fc} (15)

where f and fc denote a function of structural performance, e.g.,
the maximum interstory drift, and the performance criterion of
f, respectively. Figure 9 shows the concept of determining the
robustness function. As shown in Figure 9B, when the supremum
of the maximum response caused by the variation of the seismic
response due to the uncertainty ofK1(α),K2(α), andD(α) reaches
the performance criterion fc, the robustness function α̂ can be
determined. In the case for α̂ = 0, fc can be regarded to corre-
spond to the nominal response f(X̃). The larger value of α̂ means
that the current nominal structural design has a larger robustness
to uncertainties for satisfying the constraint given by the specified
value of fc.

For the practical computation of the robustness function α̂, it
is known that the direct computation of α̂ for given value of fc
is difficult due to the need of iterative calculation as shown in
Figure 10A. On the other hand, by regarding the maximum value
of f, i.e., the supremum of the objective function, for a given value
of α as fc in α̂ − fc relation, the robustness function α̂ can be
obtained as shown in Figure 10B. In this practical procedure of
computing the robustness function, the supremum value of the
structural response, e.g., themaximumelastoplastic displacement,
can be evaluated as shown in the Section “Evaluation of Upper
Bound of Maximum Elastoplastic Displacement at Base-Isolation
Story.”

NUMERICAL EXAMPLES

Numerical examples are presented for a 30-story base-isolated
building model to evaluate the robustness concerned with the
maximum elastoplastic displacement. To show the accuracy
of the upper bound derived in Eq. 12, the upper and lower

bounds of the maximum elastoplastic displacement derived in
the proposed formulations are compared with the maximum
elastoplastic displacements generated by the Monte Carlo sim-
ulation (MCS) where the stiffness and yield deformation at
the base-isolation story and the stiffness of the superstruc-
ture are randomly generated as uncertain parameters. Then,
the robustness functions in terms of the supremum value of
the maximum elastoplastic displacements of the overall struc-
ture and that of the base-isolation story are evaluated for var-
ious yield deformations. In particular, the robustness evalua-
tion for different nominal designs with different yield defor-
mations at the base-isolation story is performed to derive a
preferable robust design for the base-isolated high-rise building
model.

Consider a 30-story base-isolated building and introduce a
2DOF model as shown in Figure 3. The mass of each story
in the superstructure is 2.0× 106 kg, i.e., m2 = 6.0× 107 kg. The
stiffness k2 of the superstructure is given so that the fundamen-
tal natural period of the superstructure with fixed base is 3.0 s,
i.e., k2 = 2.63× 108 N/m. The mass of the base-isolation story is
m1 = 6.0× 106 kg. It is assumed that NRBs and U-shaped steel
dampers are installed at the base-isolation story. The restoring-
force characteristic of the combination of the natural rubber
isolators and the U-shaped steel dampers is assumed to be elas-
tic–perfectly plastic and this modeling enables the application of
the critical response of an elastic–perfectly plastic model to the
double impulse (Kojima and Takewaki, 2015). The yield defor-
mation at the base-isolation story is treated as the target design
parameter and given by d̃y1 = 0.01, 0.02, 0.03, and 0.04 m. The
initial stiffness k1 of the base-isolation story is given so that the
fundamental natural period of the model with a rigid superstruc-
ture is 1.0 s, i.e., k1 = 2.61× 109 N/m. The reference uncertainties
of Δk1, Δk1, and Δdy1 are determined as Δk1 = 0.2k̃1, Δk2 =
0.05k̃2, and Δdy1 = 0.2d̃y1.

Figure 11 shows examples of the variation of the upper and
lower bounds of the critical elastoplastic deformation for d̃y1 =
0.01 and 0.02 m and V= 1.0m/s with respect to the equivalent
yield deformation. The dotted two lines represent the variation of
the relation uc–dye for k1 = 0.8k̃1, k2 = 0.95k̃2 (upper dotted line)
and k1 = 1.2k̃1, k2 = 1.05k̃2 (lower dotted line), respectively. It
can be observed from this figure that the variation of uc is different

A B

FIGURE 11 | Upper and lower bounds of critical elastoplastic displacement of superstructure: (A) d̃y1 = 0.01 and (B) d̃y1 = 0.02.
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A B

C D

FIGURE 12 | Comparison of variations of maximum elastoplastic displacement: (A) d̃y1 = 0.01, (B) d̃y1 = 0.02, (C) d̃y1 = 0.03, and (D) d̃y1 = 0.04.

A B

FIGURE 13 | Comparison of robustness functions for maximum displacement of models with various nominal yield deformations: (A) superstructure
and (B) base-isolation story.

for different d̃y1, i.e., the variation ratio to the nominal response
for d̃y1 = 0.01 m is ūc/ũc = 1.52, u−c/ũc = 0.72, and that for
d̃y1 = 0.02m is ūc/ũc = 1.20, u−c/ũc = 0.91.

To examine the accuracy of the upper bounds of uc and ucI
derived in this paper, Figure 12 shows the comparison of the

variation of uc and ucI for randomly selected uncertainmodels with
the upper and lower bounds of uc and ucI . The random models
are generated by the MCS, where k1, k2, and dy1 are produced
randomly by using the probabilistic density function based on
the normal distribution. As shown in these figures, the maximum
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elastoplastic displacements uc and ucI of any models in the interval
of dye are enveloped by ūc and ūcI .

Figure 13 shows the comparison of the robustness functions
of ūc and ūcI for different d̃y1 and V= 1.0m/s. To evaluate the
robustness of the structure, we focused on the specified perfor-
mance criterion. For example, if the limit maximum displacement
of the superstructure is 1.0m and the limit maximum elastoplastic
deformation of the base-isolation story is 0.7m, the robustness
function for d̃y1 = 0.02m is the largest in these models. This is
because, as shown in Figure 12, the non-monotonic variation of
uc is included in the range of variation of dye for d̃y1 = 0.02m
where the maximum elastoplastic deformations of the overall
structure after the first and second impulses coincide. From these
observations, it can be concluded that there exists a preferable
design of the yield deformation dy1 at the base-isolation story from
the view point of the robust design.

CONCLUSION

A new method for evaluating the structural robustness of an
elastoplastic base-isolated high-rise building has been proposed
where the closed-form expression (Kojima and Takewaki, 2015)
on the maximum elastoplastic deformation of an SDOF system
under the critical double impulse is used. Since this closed-form
expression on the critical response is based on the SDOF model,
a 2DOF model with simultaneous uncertainties of the structural
parameters has been transformed into an equivalent elastoplastic
SDOF model. The elastic stiffness and yield deformation of the
base-isolation story and the stiffness of the superstructure have
been chosen as uncertain parameters.

In the closed-form formulation of the maximum elastoplastic
deformation, there exists a non-monotonicity property of the
critical elastoplastic deformation with respect to the yield defor-
mation. The robustness function based on the info-gap model
(Ben-Haim, 2006) has been introduced to measure the robustness
quantitatively. The equivalent yield deformation in the SDOF
model has been selected as a key uncertain parameter in the info-
gapmodel. To find theworst scenario of the elastoplastic response,
we have proposed the classified three different domains in this
interval of the equivalent yield deformation. In each domain of
the equivalent yield deformation, the upper bound of the maxi-
mum elastoplastic response has been derived by investigating the
combination of the structural uncertain parameters where the two

parameters can be fixed at the edges of interval, i.e., an upper or
lower bound of the interval parameter, and another one parameter
is varied according to the fixed equivalent yield deformation.

The robustness function has been evaluated by using the supre-
mum value of the maximum elastoplastic displacement. In addi-
tion to the evaluation of the maximum displacement of the equiv-
alent SDOF model, i.e., the displacement of the overall structure,
the robustness of the displacement at the base-isolation story has
been studied. Although the robustness evaluation considering the
elastoplastic structural responses seems to be difficult due to the
large amount of computational load by the time-history response
analysis, this was overcome by using the closed-form expression
explained above.

A 30-story base-isolated building model has been investigated
as a numerical example where the yield deformation at the base-
isolation story was treated as the principal design parameter. The
robustness functions for the supremum value of the elastoplas-
tic displacement at the overall structure and the base-isolation
story have been evaluated in these building models with different
yield deformations at the base-isolation story. It has been shown
that a preferable nominal yield deformation design exists in the
base-isolated high-rise building to make the robustness in terms
of the elastoplastic structural response larger. This is because
the variation of the structural response due to the simultaneous
uncertainties may be small in the domain where the maximum
displacement after the first impulse and that after the second
impulse coincide at the specified equivalent yield deformation.
It may be concluded that the proposed method is useful for
finding preferable design parameters leading to higher robustness
of elastoplastic base-isolated high-rise buildings.
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APPENDIX

Relationship between 2DOF Model and
SDOF Model
Consider a base-isolated building structure as shown in FigureA1
(the same as the model in Figure 3). It is often the case that base-
isolated building structures are modeled into a simplified model.
A 2DOF model is a good simplified model. However further
simplification into an SDOF model is desirable because a closed-
form solution (Kojima and Takewaki, 2015) can be used for the
SDOF model under the double impulse.

Consider two SDOF models, i.e., SDOF (a) model (the same as
the model in Figure 3) and SDOF (b) model under the double
impulse. SDOF (a) model is a model with series springs and
ignored base-isolation story mass and SDOF (b) model is a model
with rigid superstructure (Figure A1). For the SDOF (a) model,
those equivalent quantities can be expressed as follows:

me = m2

1/ke = 1/k1 + 1/k2
fy = k1dy1 = kedye (A1)

On the other hand, for the SDOF (b) model, those equivalent
quantities can be expressed as follows:

me = m1 + m2

ke = k1
dye = dy1 (A2)

Another possibility of modeling by modifying me =m2 into
me =m1 +m2 in the SDOF (a) model may be considered.

However, this modification seems to influence the result slightly
(smaller than 10% in high-rise base-isolated buildings as
treated here). Furthermore, the series spring modeling in
the SDOF (a) model appears compatible with the neglect
ofm1.

For numerical simulations, consider a base-isolated N-story
shear building model. The fundamental natural period of the
superstructure with fixed base is given by 0.1×N (s). The stiffness
k2 is obtained from this condition. The floor mass per story is
assumed to be 200× 103 kg. Thenm2 = 200× 103 ×N (kg).

The yield displacement of the base-isolation story is
dy1 = 0.03m. The fundamental natural period of the base-
isolated building with rigid superstructure is given by 1.0 s
(the stiffness is the sum of the isolators and steel dampers).
The stiffness k1 is obtained by this condition. The mass of the
base-isolation story ism1 = 600× 103 kg.

Figure A2 shows the comparison of the critical plastic defor-
mation in the base-isolation story after the second impulse among
the 2DOF model (time-history response analysis), the SDOF (a)
model (series springmodel and ignored base-isolation storymass)
and the SODF (b)model (rigid superstructuremodel). The critical
plastic deformation of the SDOF model after the second impulse
was derived in the reference (Kojima and Takewaki, 2015). It can
be observed that, while the SDOF (b) model with rigid super-
structure is a better model for a low-rise building model (N= 5,
10), the SDOF (a) model with series springs and ignored base-
isolation story mass is a better model for a high-rise building
model (N= 30). It can also be observed that, for N= 20, the
SDOF (a) model can simulate the response of the 2DOF model
in the lower input level up to V/Vy = 3 and the response of SODF
(b) model is more close to the actual response in the range of
V/Vy = 4–5.
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FIGURE A1 | Modeling of base-isolated building into single-degree-of-freedom (SDOF) model with series springs and ignored base-isolation story
mass and SDOF model with rigid superstructure.

FIGURE A2 | Plastic deformation in base-isolation story in 5, 10, 20, and 30-story base-isolated buildings after the second impulse under double
impulse with respect to input level (2DOF model, single-degree-of-freedom (SDOF) model (a) with series springs and SDOF model (b) with rigid
superstructure).
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